# Accelerated deprotonation with a hydroxy-silicon alkali solid for rechargeable zinc-air batteries

Wang et al.

#### **Supplementary Note 1. DFT Calculation method.**

Current first-principle DFT calculations are performed by the VASP (VASP) and PAW (PAW) methods. The exchange functional employs the generalized gradient approximation (GGA) of the Perdew-Burke-Ernzerhof (PBE) functional. All calculations are spin-polarized. The diffusion energy of the plane wave substrate is set to 450 eV, and the per-atom force below 0.03 eV/Å is set as a convergence criterion. Brillouin zone integration was performed using 3x2x1 k-point sampling. An energy threshold of 10<sup>-4</sup> eV was adopted for the self-consistent calculation. The effect of van der Waals was investigated using the DFT-D3 method. Add 12 Å vacuums in the z direction to prevent interaction between periodic structures.

In an alkaline environment, OER can be performed in the following four basic steps:

$$OH^- + * \rightarrow *OH + e^- \tag{1}$$

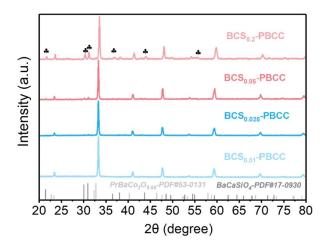
$$*OH + OH^{-} \rightarrow *O + H_{2}O + e^{-}$$
 (2)

$$*O + OH^- \rightarrow *OOH + e^-$$
 (3)

$$*OOH + OH^- \rightarrow * + O_2 + H_2O + e^-$$
 (4)

The \* represents the reaction site on the surface of the catalyst. According to the above mechanism, under the action of OER of a given substance, the free energy of the three intermediate states is the key to determine the activity of OER. To calculate the free energy of OER, a hydrogen electrode model63 is used.

The free energy of the OER/ORR step is calculated using equation (5):


$$\Delta G = \Delta E_{DFT} + \Delta E_{ZPE} - T\Delta S \tag{5}$$

where  $\Delta E_{DFT}$  is the DFT energy difference, and  $\Delta E_{ZPE}$  and T $\Delta S$  obtained from the vibration analysis.

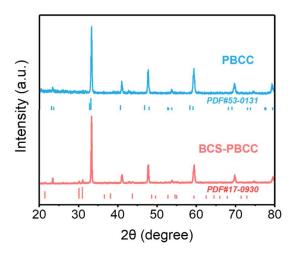
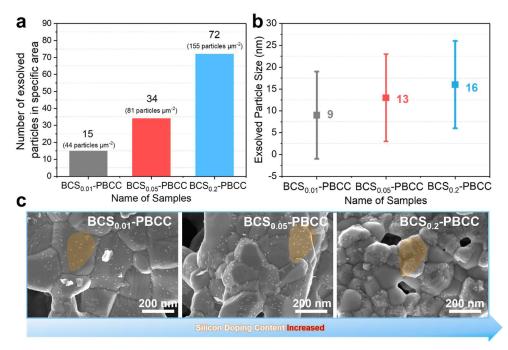
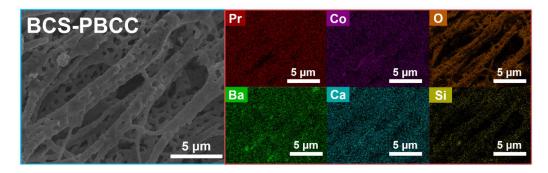
### Supplementary Note 2. Fabrication of Zn-Air Batteries

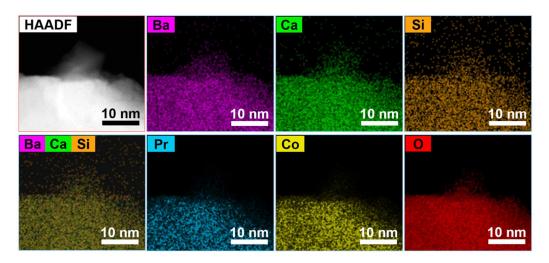
Home-made Zn-Air batteries were assembled with air cathode, metal anode (high purity Zn foil), and electrolyte (6 M KOH + 0.2 M ZnCl<sub>2</sub> aqueous solution). To prepare the air cathode, the as-prepared catalyst and acetylene black with a mass ratio of 2:1 were dispersed in the mixed solution which containing isopropanol and Nafion (5%)

commercially available solution) with volume ratio of 9:1 by ultrasonication for 30 min. The ink-liked solution was then drop-casted on the surface of a gas diffusion layer with the catalyst loading of 1 mg cm<sup>-2</sup>. For comparison, Pt/C and mixture of Pt/C and RuO<sub>2</sub> (mass ratio of 1:1) were also prepared with above procedure for pristine and rechargeable Zn-air batteries respectively. All batteries were tested at ambient atmosphere and room temperature of 25 °C.

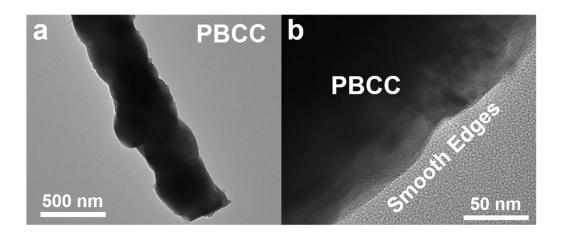


**Fig. S1.** The XRD patterns of the Si-incorporated BCS $_{0.2}$ -PBCC, BCS $_{0.05}$ -PBCC, BCS $_{0.025}$ -PBCC and BCS $_{0.01}$ -PBCC perovskites.

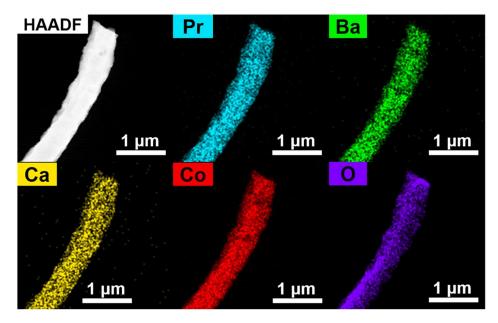






Fig. S2. The XRD patterns of the pristine PBCC catalyst and BCS-PBCC catalyst.

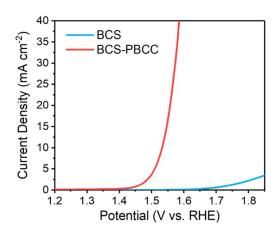



**Fig. S3.** Scanning electron microscopy images and the correlation between the amount of silicon doping (1%~20%) and the particle population/size. **a** ImageJ software was used to quantify the number of particles. The exsolution number of BCS nanoparticles on the PBCC surface follows the order: BCS<sub>0.01</sub>-PBCC (44 particles/mm<sup>2</sup>) < BCS<sub>0.05</sub>-PBCC (81 particles/mm<sup>2</sup>) < BCS<sub>0.2</sub>-PBCC (155 particles/mm<sup>2</sup>). **b** Exsolved particle size of BCS<sub>0.01</sub>-PBCC, BCS<sub>0.05</sub>-PBCC, and BCS<sub>0.2</sub>-PBCC. **c** Scanning electron microscopy images of surface silicon particles as a function of increasing doping.

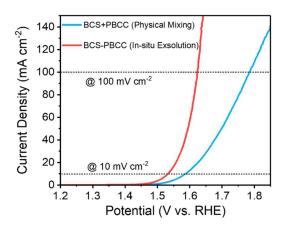



**Fig. S4.** The corresponding EDX element mapping of BCS-PBCC and highlight images of each element.

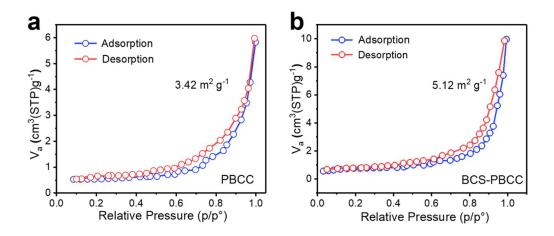



**Fig. S5.** HRTEM images of surface regions of BCS-PBCC, and EDS elemental map of Pr, Ba, Ca, Co, Si, O.

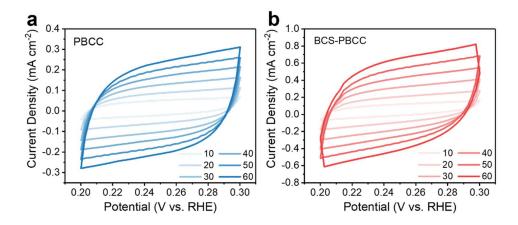



**Fig. S6. a** HR-TEM image of the perovskite oxide in PBCC. **b** Local magnified image showing smooth edges.




**Fig. S7.** HRTEM images of surface regions of PBCC, and EDS elemental map of Pr, Ba, Ca, Co, O.




**Fig. S8.** Polarization curves of BCS-PBCC and BCS catalysts in an O<sub>2</sub>-saturated 1 M KOH solution.



**Fig. S9.** Polarization curves of physically mixed BCS+PBCC and in situ ex-solved BCS-PBCC catalysts in O<sub>2</sub>-saturated 1 M KOH solution.



**Fig. S10.** Nitrogen adsorption-desorption isotherm curves of **a** PBCC and **b** BCS-PBCC samples.



**Fig. S11.** ECSA estimation determined from  $C_{dl}$ . The  $C_{dl}$  obtained from the CV method is expected to be linearly proportional to the ECSA. CV measurements in a non-faradic current region (0.2–0.3 V vs. RHE, no  $iR_{corrected}$ ) at scan rates of 10, 20, 30, 40, 50 and 60 mV s<sup>-1</sup> of **a** PBCC and **b** BCS-PBCC.

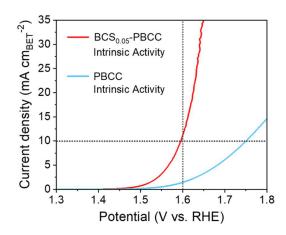



Fig. S12. The intrinsic activity of BCS-PBCC and PBCC.

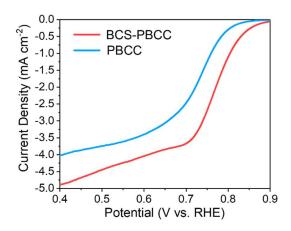
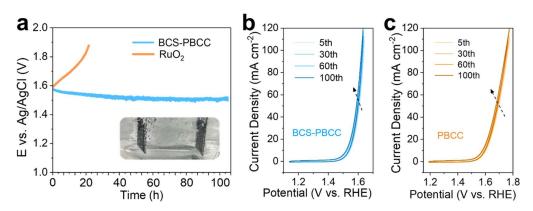




Fig. S13. LSV curves of ORR for PBCC and BCS-PBCC.



**Fig. S14. a** Chronopotentiometry curve of water electrolysis using BCS-PBCC and RuO<sub>2</sub> as the anode at a constant current density of 10 mA cm<sup>-2</sup> in 1 M KOH. Inset: a digital image of the electrode in the chronopotentiometry test. Select CV curves of **b** BCS-PBCC and **c** PBCC in O<sub>2</sub>-saturated 1 M KOH over 100 cycles at a 20 mV s<sup>-1</sup> scan rate.

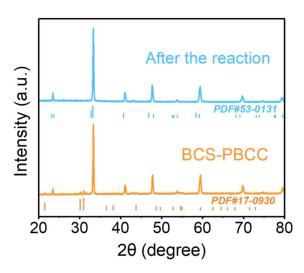
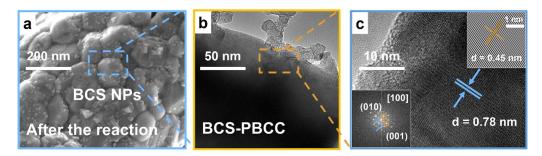
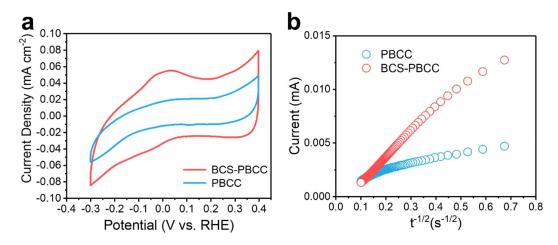
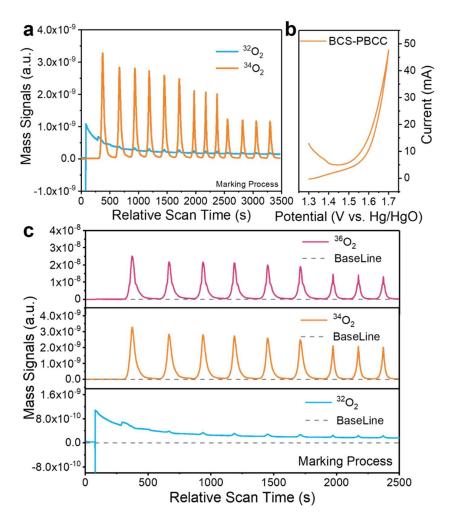
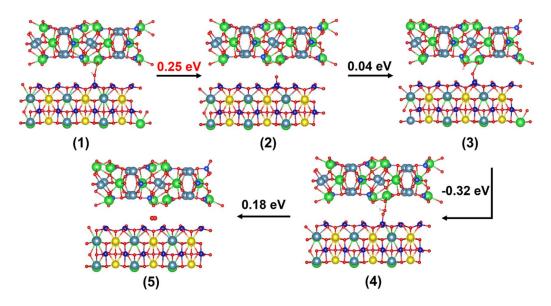
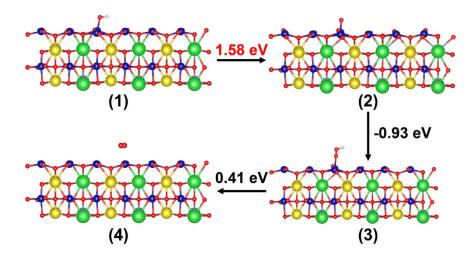



Fig. S15. XRD pattern of BCS-PBCC after ADT.

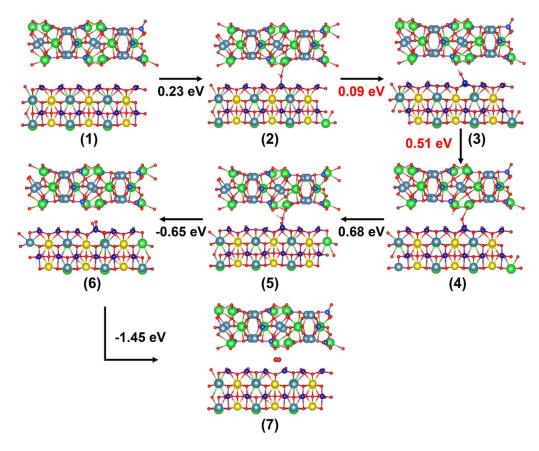






Fig. S16. a SEM image after reaction and b HRTEM image of BCS-PBCC after ADT.c corresponding FFT pattern, inset: the corresponding FFT pattern and corresponding IFFT images.

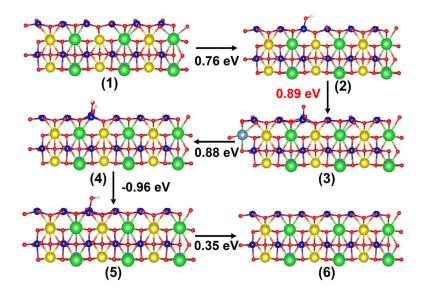



**Fig. S17. a** CV curves of PBCC and BCS-PBCC in Ar-saturated 6 M KOH, where redox peaks indicate the electrochemical oxygen intercalation/deintercalation. **b** shows the chronoamperometry data (i vs.  $t^{-1/2}$ ) used for the calculation of oxygen ion diffusion coefficients.

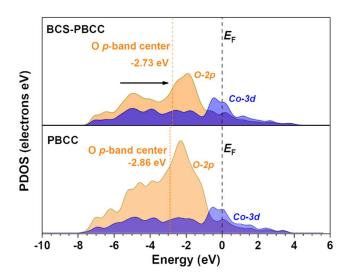



**Fig. S18. a** DEMS signals of  $^{32}O_2$  ( $^{16}O^{16}O$ ) and  $^{34}O_2$  ( $^{16}O^{18}O$ ) from the reaction products for  $^{18}O$ -labeled BCS-PBCC catalyst in  $H_2^{18}O$  aqueous KOH electrolyte and **b** corresponding CV cycles. The mass spectroscopy signals are baseline subtracted. **c** DEMS signals of  $^{34}O_2$  and  $^{36}O_2$  from the reaction products cycled in  $H_2^{18}O$  aqueous sulfuric acid electrolyte.

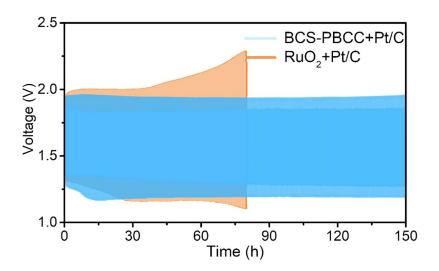



**Fig. S19.** Structural schematic diagram and energy barrier change of BCS-PBCC reaction in AEM pathway during OER. Color representation: Pr (yellow), Ba (green), Ca (grey), Co (navy blue), Si (light blue), O (red), H (pink).




**Fig. S20.** Structural schematic diagram and energy barrier change of PBCC reaction in AEM pathway during OER. Color representation: Pr (yellow), Ba (green), Ca (grey), Co (navy blue), Si (light blue), O (red), H (pink).




**Fig. S21.** Structural schematic diagram and energy barrier change of BCS-PBCC reaction in LOM pathway during OER. Color representation: Pr (yellow), Ba (green), Ca (grey), Co (navy blue), Si (light blue), O (red), H (pink).



**Fig. S22.** Structural schematic diagram and energy barrier change of PBCC reaction in LOM pathway during OER. Color representation: Pr (yellow), Ba (green), Ca (grey), Co (navy blue), Si (light blue), O (red), H (pink).



**Fig. S23.** Projected density of states ( $E_F$ : Fermi level, O 2p band center).



**Fig. S24.** Galvanostatic charge/discharge test at 5 mA cm<sup>-2</sup> for Zn-air batteries with BCS-PBCC + Pt/C and RuO<sub>2</sub> + Pt/C as air cathode.

## Supplementary Table 1. Rietveld refinement results of XRD patterns of Si-incorporated perovskites.

| Perovskite    | PrBa <sub>0.5</sub> Ca <sub>0.5</sub> Co <sub>2</sub> O5 <sub>5+δ</sub> | BaCaSiO <sub>4</sub> |  |
|---------------|-------------------------------------------------------------------------|----------------------|--|
| Phase Content | 95.855                                                                  | 4.145                |  |
| Space Group   | Pbnm                                                                    | P 63/mmc             |  |
| a (Å)         | 5.41775(83)                                                             | 5.7812(13)           |  |
| b(Å)          | 5.38692(86)                                                             | 5.7812(13)           |  |
| c(Å)          | 7.6209(11)                                                              | 7.3958(27)           |  |
| a (°)         | 90                                                                      | 90                   |  |
| β (°)         | 90                                                                      | 90                   |  |
| γ (°)         | 90                                                                      | 120                  |  |
| Volume(ų)     | 222.417(59)                                                             | 214.07(12)           |  |

## Supplementary Table 2. Summary of OER activity in alkaline media for various representative state-of-the-art catalysts.

| Electrocatalyst                                                                               | Over-potential<br>[mV vs RHE] | Tafel slope<br>[mV dec <sup>-1</sup> ] | Electrolyte                | Loading<br>[mg cm <sup>-2</sup> ] | Electrode | Ref.           |
|-----------------------------------------------------------------------------------------------|-------------------------------|----------------------------------------|----------------------------|-----------------------------------|-----------|----------------|
| BCS-PBCC                                                                                      | 300                           | 49                                     | 1.0 M KOH                  | 0.202                             | GC        | (This<br>Work) |
| LaCoO <sub>3</sub>                                                                            | 470                           | 180                                    | 1.0 M KOH                  | /                                 | GC        | 1              |
| LaFeO <sub>3</sub>                                                                            | 420                           | 62                                     | 1.0 M KOH                  | 0.232                             | GC        | 2              |
| $SmBa_{0.5}Sr_{0.5}Co_{2}O_{6-\delta}$                                                        | 370                           | 46                                     | 0.1 M KOH                  | 0.5                               | GC        | 3              |
| La <sub>0.6</sub> Sr <sub>0.4</sub> CoO <sub>3</sub>                                          | 426                           | /                                      | 1.0 M KOH                  | 0.212                             | GC        | 4              |
| La <sub>0.2</sub> Sr <sub>0.8</sub> FeO <sub>3-δ</sub>                                        | 370                           | 60                                     | 0.1 M KOH                  | 0.232                             | GC        | 5              |
| CaCu <sub>3</sub> Ti <sub>4</sub> O <sub>12</sub>                                             | /                             | 46                                     | 0.1 M KOH                  | 0.096                             | GC        | 6              |
| Pr <sub>0.5</sub> Ba <sub>0.5</sub> CoO <sub>3-δ</sub>                                        | 440                           | 82                                     | 0.1 M KOH                  | 0.39                              | GC        | 7              |
| PrBa <sub>0.25</sub> Sr <sub>0.75</sub> Co <sub>2</sub> O <sub>5.95</sub>                     | 290                           | 75.8                                   | 0.1 M KOH                  | 0.545                             | GC        | 8              |
| La <sub>0.6</sub> Sr <sub>0.4</sub> Co <sub>0.8</sub> Fe <sub>0.2</sub> O <sub>3</sub>        | 353                           | 63                                     | 1.0 M KOH                  | 0.245                             | GC        | 9              |
| La <sub>0.8</sub> Sr <sub>0.2</sub> Co <sub>0.8</sub> Fe <sub>0.2</sub> O <sub>3-δ</sub>      | 248                           | 51                                     | 1.0 M KOH                  | 0.245                             | GC        | 9              |
| LaSr <sub>3</sub> Co <sub>1.5</sub> Fe <sub>1.5</sub> O <sub>10-δ</sub>                       | 388                           | 84                                     | 0.1 M KOH                  | 0.255                             | GC        | 10             |
| La <sub>0.5</sub> Sr <sub>0.5</sub> Ni <sub>0.4</sub> Fe <sub>0.6</sub> O <sub>3-δ</sub>      | 330                           | 76                                     | 1.0 M KOH                  | 0.4                               | GC        | 11             |
| La <sub>1.5</sub> Sr <sub>0.5</sub> NiMn <sub>0.5</sub> Ru <sub>0.5</sub><br>O <sub>6</sub>   | 430                           | /                                      | 0.1 M KOH                  | 0.255                             | GC        | 12             |
| CaLaScRuO <sub>6+δ</sub>                                                                      | 478                           | 84                                     | 1.0 M KOH                  | 0.708                             | GC        | 13             |
| Sr <sub>0.9</sub> Na <sub>0.1</sub> RuO <sub>3</sub>                                          | 170                           | /                                      | 0.1 M<br>HClO <sub>4</sub> | 0.510                             | GC        | 14             |
| $ \frac{Sr_2Fe_{0.8}Co_{0.2}Mo_{0.65}Ni_0}{_{.35}O_{6-\delta}} $                              | 310                           | 56                                     | 0.1 M KOH                  | 0.232                             | GC        | 15             |
| PrBa <sub>0.5</sub> Sr <sub>0.5</sub> Co <sub>1.5</sub> Fe <sub>0.5</sub><br>O <sub>5-δ</sub> | 370                           | 67                                     | 0.1 M KOH                  | 0.202                             | GC        | 16             |
| PrBa <sub>0.85</sub> Ca <sub>0.15</sub> MnFeO <sub>5</sub>                                    | 400                           | 88                                     | 0.1 M KOH                  | 0.2806                            | GC        | 17             |
| LaNi <sub>0.85</sub> Mg <sub>0.15</sub> O <sub>3</sub>                                        | 450                           | 95                                     | 0.1 M KOH                  | 0.153                             | GC        | 18             |

|                                                                                                        |     | 1  |                                         |       |         |    |
|--------------------------------------------------------------------------------------------------------|-----|----|-----------------------------------------|-------|---------|----|
| La <sub>2</sub> NiMnO <sub>6</sub>                                                                     | 370 | 58 | 1.0 M KOH                               | /     | GC      | 19 |
| LaCo <sub>0.9</sub> Ni <sub>0.1</sub> O <sub>3</sub>                                                   | 650 | 73 | 0.1 M KOH                               | /     | GC      | 20 |
| LaCo <sub>0.8</sub> V <sub>0.2</sub> O <sub>3</sub>                                                    | 306 | 40 | 1.0 M KOH                               | /     | GC      | 21 |
| SrCo <sub>0.4</sub> Fe <sub>0.2</sub> W <sub>0.4</sub> O <sub>3-δ</sub>                                | 296 | 50 | 0.1 M KOH                               | 0.232 | GC      | 22 |
| BaZr <sub>x</sub> Fe <sub>1-x</sub> O <sub>3-δ</sub>                                                   | 412 | 97 | 0.1 M KOH                               | 1     | GC      | 23 |
| Ba <sub>2</sub> CoMo <sub>0.5</sub> Nb <sub>0.5</sub> O <sub>6-δ</sub>                                 | 435 | 77 | 0.1 M KOH                               | 0.232 | GC      | 24 |
| BaCo <sub>0.7</sub> Fe <sub>0.2</sub> Sn <sub>0.1</sub> O <sub>3-δ</sub>                               | 450 | 69 | 0.1 M KOH                               | 0.232 | GC      | 25 |
| BaCo <sub>0.5-x</sub> Fe <sub>0.5-</sub> $_x$ Zr <sub>x</sub> Y <sub>x</sub> O3-δ                      | 360 | 69 | 0.1 M KOH                               | 0.255 | GC      | 26 |
| SrNb <sub>0.1</sub> Co <sub>0.7</sub> Fe <sub>0.2</sub> O <sub>3-δ</sub>                               | 420 | 76 | 0.1 M KOH                               | 0.232 | GC      | 27 |
| BaCo <sub>0.8-</sub><br><sub>x</sub> Fe <sub>x</sub> Zr <sub>0.1</sub> Y <sub>0.1</sub> O <sub>3</sub> | 420 | 83 | 0.1 M KOH                               | 0.232 | GC      | 28 |
| $Sr_{2}Fe_{0.8}Co_{0.2}Mo_{0.6}Co_{0.}\\ _{4}O_{6-\delta}$                                             | 345 | 60 | 0.1 M KOH                               | 0.232 | GC      | 29 |
| SrM <sub>0.9</sub> Ti <sub>0.1</sub> O <sub>3-δ</sub>                                                  | 510 | 88 | 0.1 M KOH                               | 0.32  | GC      | 30 |
| Co-doped 6H-SrIrO <sub>3</sub>                                                                         | 235 | 52 | 0.1 M<br>HClO <sub>4</sub>              | 0.45  | GC      | 31 |
| Ba <sub>4</sub> PrIr <sub>3</sub> O <sub>12</sub>                                                      | 278 | /  | 0.1 M<br>HClO <sub>4</sub>              | 0.562 | GC      | 32 |
| Sr <sub>2</sub> FeIr(V)O <sub>6</sub>                                                                  | 300 | /  | 0.1 M<br>HClO <sub>4</sub>              | 0.25  | GC      | 33 |
| SrCo <sub>0.9</sub> Ir <sub>0.1</sub> O <sub>3-δ</sub>                                                 | 300 | /  | 0.1 M<br>HClO <sub>4</sub>              | 0.25  | GC      | 34 |
| CaCu <sub>3</sub> Ru <sub>4</sub> O <sub>12</sub>                                                      | 171 | 40 | 0.5 M<br>H <sub>2</sub> SO <sub>4</sub> | 0.25  | GC      | 35 |
| $\begin{array}{c} PrBa_{0.5}Sr_{0.5}Co_{1.5}Fe_{0.5} \\ O_{5+\delta} \end{array}$                      | 359 | 56 | 0.1 M KOH                               | 0.2   | GC      | 36 |
| SrCo <sub>0.95</sub> P <sub>0.05</sub> O <sub>3-δ</sub>                                                | 480 | 84 | 0.1 M KOH                               | 0.232 | GC      | 37 |
| $SrCo_{0.85}Fe_{0.1}P_{0.05}O_{3-\delta}$                                                              | 290 | 52 | 1.0 M KOH                               | 0.3   | Ni foam | 38 |
| F-BSCF                                                                                                 | 280 | /  | 1.0 M KOH                               | 0.255 | GC      | 39 |
| $La_{0.5}Ba_{0.25}Sr_{0.25}CoO_{2.9}$ $_{-\delta}F_{0.1}$                                              | /   | 44 | 1.0 M KOH                               | 0.274 | GC      | 40 |
| Proton Acceptor-Oxide Composite Catalyst                                                               |     |    |                                         |       |         |    |

| PO <sub>4</sub> -<br>PrBa <sub>0.5</sub> Ca <sub>0.5</sub> Co <sub>2</sub> O <sub>5+δ</sub> | 290 | 51 | 0.1 M KOH | 0.202 | GC | 41 |
|---------------------------------------------------------------------------------------------|-----|----|-----------|-------|----|----|
| $Sr(Co_{0.8}Fe_{0.2})_{0.7}B_{0.3}O_{3}\\ -\delta$                                          | 340 | 58 | 0.1 M KOH | 0.232 | GC | 42 |
| MoS <sub>2</sub> @SrCoO <sub>3-δ</sub>                                                      | 351 | 37 | 0.1M KOH  | /     | GC | 43 |

#### References

- 1. Tong, Y. *et al.* Spin-State Regulation of Perovskite Cobaltite to Realize Enhanced Oxygen Evolution Activity. *Chem* **3**, 812–821 (2017).
- 2. Dai, J. *et al.* Enabling High and Stable Electrocatalytic Activity of Iron-Based Perovskite Oxides for Water Splitting by Combined Bulk Doping and Morphology Designing. *Adv. Mater. Interfaces* **6**, 21576135 (2019).
- 3. Zhang, H. *et al.* Morphology, crystal structure and electronic state one-step cotuning strategy towards developing superior perovskite electrocatalysts for water oxidation. *J. Mater. Chem. A* 7, 19228–19233 (2019).
- 4. Zhang, L. *et al.* Integrating the cationic engineering and hollow structure engineering into perovskites oxides for efficient and stable electrocatalytic oxygen evolution. *Electrochim. Acta* **327**, 135033 (2019).
- 5. She, S. *et al.* Systematic Study of Oxygen Evolution Activity and Stability on La<sub>1-x</sub>Sr<sub>x</sub>FeO<sub>3-δ</sub> Perovskite Electrocatalysts in Alkaline Media. *ACS Appl. Mater. Interfaces* **10**, 11715–11721 (2018).
- 6. Kushwaha, H. S., Halder, A., Thomas, P. & Vaish, R. CaCu<sub>3</sub>Ti<sub>4</sub>O<sub>12</sub>: A Bifunctional Perovskite Electrocatalyst for Oxygen Evolution and Reduction Reaction in Alkaline Medium. *Electrochim. Acta* **252**, 532–540 (2017).
- 7. He, D., He, G., Jiang, H., Chen, Z. & Huang, M. Enhanced durability and activity of the perovskite electrocatalyst Pr<sub>0.5</sub>Ba<sub>0.5</sub>CoO<sub>3-δ</sub> by Ca doping for the oxygen evolution reaction at room temperature. *Chem. Commun.* **53**, 5132–5135 (2017).
- 8. Wu, Z. *et al.* Effect of Sr doping on the electrochemical properties of bifunctional oxygen electrode PrBa<sub>1-x</sub>Sr<sub>x</sub>Co<sub>2</sub>O<sub>5+δ</sub>. *J. Power Sources* **334**, 86–93 (2016).
- 9. Zhao, C. *et al.* Surface Reconstruction of La<sub>0.8</sub>Sr<sub>0.2</sub>Co<sub>0.8</sub>Fe<sub>0.2</sub>O<sub>3-δ</sub> for Superimposed OER Performance. *ACS Appl. Mater. Interfaces* **11**, 47858–47867 (2019).
- 10. Liu, S., Luo, H., Li, Y., Liu, Q. & Luo, J. L. Structure-engineered electrocatalyst enables highly active and stable oxygen evolution reaction over layered perovskite LaSr<sub>3</sub>Co<sub>1.5</sub>Fe<sub>1.5</sub>O<sub>10-δ</sub>. *Nano Energy* **40**, 115–121 (2017).
- 11. Wang, C. C., Cheng, Y., Ianni, E., Jiang, S. P. & Lin, B. A highly active and stable La<sub>0.5</sub>Sr<sub>0.5</sub>Ni<sub>0.4</sub>Fe<sub>0.6</sub>O<sub>3-δ</sub> perovskite electrocatalyst for oxygen evolution reaction in alkaline media. *Electrochim. Acta* **246**, 997–1003 (2017).
- 12. Retuerto, M. *et al.* La<sub>1.5</sub>Sr<sub>0.5</sub>NiMn<sub>0.5</sub>Ru<sub>0.5</sub>O<sub>6</sub> Double Perovskite with Enhanced ORR/OER Bifunctional Catalytic Activity. *ACS Appl. Mater. Interfaces* **11**, 21454–21464 (2019).
- 13. Kumar, N. *et al.* Investigation of New B-Site-Disordered Perovskite Oxide CaLaScRuO<sub>6+δ</sub>: An Efficient Oxygen Bifunctional Electrocatalyst in a Highly

- Alkaline Medium. ACS Appl. Mater. Interfaces 12, 9190–9200 (2020).
- 14. Retuerto, M. *et al.* Na-doped ruthenium perovskite electrocatalysts with improved oxygen evolution activity and durability in acidic media. *Nat. Commun.* **10**, 2041 (2019).
- 15. Sun, H. *et al.* Boosting oxygen evolution reaction activity of perovskite through introducing multi-elements synergy and building ordered structure. *J. Mater. Chem. A* 7, 9924-9932 (2019).
- 16. Zhao, B. *et al.* A tailored double perovskite nanofiber catalyst enables ultrafast oxygen evolution. *Nat. Commun.* **8**, 14586 (2017).
- 17. Hua, B. *et al.* Stabilizing Double Perovskite for Effective Bifunctional Oxygen Electrocatalysis in Alkaline Conditions. *Chem. Mater.* **29**, 6228–6237 (2017).
- 18. Bian, J. *et al.* Mg doped perovskite LaNiO<sub>3</sub> nanofibers as an efficient bifunctional catalyst for rechargeable zinc-air batteries. *ACS Appl. Energy Mater.* **2**, 923–931 (2019).
- 19. Tong, Y. *et al.* Vibronic Superexchange in Double Perovskite Electrocatalyst for Efficient Electrocatalytic Oxygen Evolution. *J. Am. Chem. Soc.* **140**, 11165–11169 (2018).
- 20. Wang, H. *et al.* Polymer-assisted approach to LaCo<sub>1-x</sub>Ni<sub>x</sub>O<sub>3</sub> network nanostructures as bifunctional oxygen electrocatalysts. *Electrochim. Acta* **296**, 945–953 (2019).
- 21. Sun, Y. *et al.* Engineering of the d-Band Center of Perovskite Cobaltite for Enhanced Electrocatalytic Oxygen Evolution. *ChemSusChem* **13**, 2671–2676 (2020).
- 22. Chen, G. *et al.* Ultrahigh-performance tungsten-doped perovskites for the oxygen evolution reaction. *J. Mater. Chem. A* **6**, 9854–9859 (2018).
- 23. Zhu, K. *et al.* Oxygen evolution reaction over Fe site of BaZrxFe<sub>1-x</sub>O<sub>3-δ</sub> perovskite oxides. *Electrochim. Acta* **241**, 433–439 (2017).
- Sun, H. et al. Molybdenum and Niobium Codoped B-Site-Ordered Double Perovskite Catalyst for Efficient Oxygen Evolution Reaction. ACS Appl. Mater. Interfaces 10, 16939–16942 (2018).
- 25. Xu, X. et al. Co-doping strategy for developing perovskite oxides as highly efficient electrocatalysts for oxygen evolution reaction. Adv. Sci. 3, 1500187 (2015).
- 26. Li, X. *et al.* Redox inactive ion meliorated BaCo<sub>0.4</sub>Fe<sub>0.4</sub>Zr<sub>0.1</sub>Y<sub>0.1</sub>O<sub>3-δ</sub> perovskite oxides as efficient electrocatalysts for the oxygen evolution reaction. *J. Mater. Chem. A* **6**, 17288–17296 (2018).
- 27. Zhu, Y. *et al.* SrNb<sub>0.1</sub>Co<sub>0.7</sub>Fe<sub>0.2</sub>O<sub>3-δ</sub> Perovskite as a Next-Generation Electrocatalyst for Oxygen Evolution in Alkaline Solution . *Angew. Chemie* **127**, 3969–3973 (2015).
- 28. Liu, H. *et al.* Mixed protonic-electronic conducting perovskite oxide as a robust oxygen evolution reaction catalyst. *Electrochim. Acta* **282**, 324–330 (2018).
- 29. Sun, H. *et al.* Smart Control of Composition for Double Perovskite Electrocatalysts toward Enhanced Oxygen Evolution Reaction. *ChemSusChem* **12**, 5111–5116 (2019).

- 30. Su, C. *et al.* SrCo<sub>0.9</sub>Ti<sub>0.1</sub>O<sub>3-δ</sub> As a New Electrocatalyst for the Oxygen Evolution Reaction in Alkaline Electrolyte with Stable Performance. *ACS Appl. Mater. Interfaces* **7**, 17663–17670 (2015).
- 31. Yang, L. *et al.* Enhanced Iridium Mass Activity of 6H-Phase, Ir-Based Perovskite with Nonprecious Incorporation for Acidic Oxygen Evolution Electrocatalysis. *ACS Appl. Mater. Interfaces* **11**, 42006–42013 (2019).
- 32. Gao, R. *et al.* Efficient acidic oxygen evolution reaction electrocatalyzed by iridium-based 12L-perovskites comprising trinuclear face-shared IrO<sub>6</sub> octahedral strings. *J. Energy Chem.* 47, 291–298 (2020).
- 33. Zhang, R. *et al.* A Dissolution/Precipitation Equilibrium on the Surface of Iridium-Based Perovskites Controls Their Activity as Oxygen Evolution Reaction Catalysts in Acidic Media. *Angew. Chemie Int. Ed.* **58**, 4571–4575 (2019).
- 34. Chen, Y. *et al.* Exceptionally active iridium evolved from a pseudo-cubic perovskite for oxygen evolution in acid. *Nat. Commun.* **10**, 572 (2019).
- 35. Miao, X. *et al.* Quadruple perovskite ruthenate as a highly efficient catalyst for acidic water oxidation. *Nat. Commun.* **10**, 3809 (2019).
- 36. Meng, J. *et al.* Advances in metal-organic framework coatings: Versatile synthesis and broad applications. *Chem. Soc. Rev.* **49**, 3142–3186 (2020).
- 37. Zhu, Y., Zhou, W., Sunarso, J., Zhong, Y. & Shao, Z. Phosphorus-Doped Perovskite Oxide as Highly Efficient Water Oxidation Electrocatalyst in Alkaline Solution. *Adv. Funct. Mater.* **26**, 5862–5872 (2016).
- 38. Du, X. *et al.* PLD-fabricated perovskite oxide nanofilm as efficient electrocatalyst with highly enhanced water oxidation performance. *Appl. Catal. B Environ.* **272**, 119046 (2020).
- 39. Xiong, J. *et al.* Engineering highly active oxygen sites in perovskite oxides for stable and efficient oxygen evolution. *Appl. Catal. B Environ.* **256**, 117817 (2019).
- 40. Hua, B. *et al.* Activating p-Blocking Centers in Perovskite for Efficient Water Splitting. *Chem* **4**, 2902–2916 (2018).
- 41. Wang, Y. *et al.* ScienceDirect Molecular-level proton acceptor boosts oxygen evolution catalysis to enable efficient industrial-scale water splitting. *Green Energy Environ.* (2022) DOI:10.1016/j.gee.2022.07.001.
- 42. She, S. *et al.* Realizing Ultrafast Oxygen Evolution by Introducing Proton Acceptor into Perovskites. *Adv. Energy Mater.* **9**, 1900429 (2019).
- 43. Curcio, A. *et al.* Unlocking the Potential of Mechanochemical Coupling: Boosting the Oxygen Evolution Reaction by Mating Proton Acceptors with Electron Donors. *Adv. Funct. Mater.* **31**, 2008077 (2021).