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ABSTRACT: Since the outset of COVID-19, the pandemic has prompted
immediate global efforts to sequence SARS-CoV-2, and over 450 000
complete genomes have been publicly deposited over the course of 12
months. Despite this, comparative nucleotide and amino acid sequence
analyses often fall short in answering key questions in vaccine design. For
example, the binding affinity between different ACE2 receptors and SARS-
COV-2 spike protein cannot be fully explained by amino acid similarity at
ACE2 contact sites because protein structure similarities are not fully
reflected by amino acid sequence similarities. To comprehensively compare
protein homology, secondary structure (SS) analysis is required. While
protein structure is slow and difficult to obtain, SS predictions can be made
rapidly, and a well-predicted SS structure may serve as a viable proxy to gain biological insight. Here we review algorithms and
information used in predicting protein SS to highlight its potential application in pandemics research. We also showed examples of
how SS predictions can be used to compare ACE2 proteins and to evaluate the zoonotic origins of viruses. As computational tools
are much faster than wet-lab experiments, these applications can be important for research especially in times when quickly obtained
biological insights can help in speeding up response to pandemics.

KEYWORDS: COVID-19, spike protein, secondary structure, protein similarity, SARS-CoV-2

1. INTRODUCTION

Since the outbreak of COVID-19 in late December of 2019,
more than 450 000 full genomes of SARS-CoV-2 have been
sequenced and deposited in GISAD database (https://www.
gisaid.org/, last accessed February 1, 2021). Both SARS-CoV-
21 and SARS-CoV2−4 encode a Spike (S) protein, hereafter
respectively referred to as SARS-2-S and SARS-S. The S1
receptor binding domain (RBD) binds to host Angiotensin-
converting enzyme 2 (ACE2) receptor to mediate cell entry.
The efficacy of this interaction determines host specificity and
severity of infection.4−6 Given a mammalian species, a high
similarity between human ACE2 (hACE2) and mammalian
ACE2 at S protein contact sites implies high susceptibility, and
one can expect to determine species susceptibility to SARS-
CoV or SARS-CoV-2 infections by comparative amino acid
sequence analyses at contact sites at the ACE2 receptors.

2. SECONDARY STRUCTURE STUDIES ARE REQUIRED
TO UNDERSTAND HOST SUSCEPTIBILITY TO
SARS-COV-2

The above expectation, while largely correct, is not completely
accurate. For example, of the 18 amino acid (aa) sites in
contact between hACE2 and the RBD of SARS-S, nine aa sites
differ between ferret ACE2 and hACE2, but both ferret ACE2
and hACE2 are effective as receptors for binding to RBD and

mediating viral entry into host cells. In contrast, ACE2 from
mouse and rat also differ from hACE2 by nine aa sites, but they
cannot support viral RBD binding and viral entry.2 This
discrepancy invokes two simple explanations. First, aa sites
beyond the 18 contact sites may also contribute to structural
interactions and those sites might be more similar between
hACE2 and ferret ACE2 than between hACE2 and mouse and
rat ACE2. Second, structural similarity is not fully reflected in
sequence similarity; i.e., structural similarity between hACE2
and ferret ACE2 may be greater than that between hACE2 and
the mouse and rat ACE2. Only through structural studies can
we hope to gain mechanistic insights into the differences in
mammalian susceptibility to SARS-CoV-2.
Nevertheless, protein structure is difficult to obtain, and

well-predicted protein secondary structure (SS) may serve as
the next best answer. The Protein Data Bank (PDB) is the
main depository of experimentally determined 3D protein
structures, and around 160 thousand protein structures are
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deposited.7 In comparison, over 216 million aa sequences can
be found in the NCBI GenBank database as of May 2020.8

This inequality arises because experimental determination of
structures is an expensive and lengthy process.9,10

In silico structure prediction techniques are faster and
cheaper, and they have been useful in many research areas. For
example, SS predictions have been used in enzyme structure
similarity calculations,11 ribosomal protein comparison,12

protein activity mechanisms,13 COVID-19 proteomics,14 and
many other areas. In section 3 we review examples of protein
secondary structure predictions (PSSP) algorithms, and in
section 4 we review their practical uses in pandemics research.
In section 5, we describe examples of our own PSSP analyses
on S protein-ACE2 binding to study species’ susceptibility to
SARS-CoV and SARS-2-CoV. The examples described in this
review highlight how PSSP can be a useful tool in pandemics
research.

3. AN EVALUATION OF CURRENT PSSP ALGORITHMS

In protein structure models, aa sequences are used to predict
secondary and tertiary protein structures. SS are often classified
in either three states or eight states of structures. Early PSSP
models predict three secondary structure states: helix (H),
strand (E), and coil (C), whereas in recent years, PSSP models
have shifted to predict structures in eight states. Figure 1
summarizes PSSP programs developed over the years.
In addition to PSSP, protein structures can be modeled at

the 2D level as contact maps15 and at the 3D level as tertiary
structures.16,17 While modeling in 2D or 3D are appealing,
there are several reasons why PSSP can be practical. First,
unlike 2D or 3D structures, PSSP is reported as a sequence and
can be used together with aa chains in multiple sequence
alignments. This makes PSSP modeling useful in determining
proteins that might be more similar in structures than in
nucleotide or aa sequence. Second, the sequential nature allows
alignment of SS elements with known or exploratory protein

Figure 1. An overview of PSSP programs and implemented computational algorithms18−31 developed over the past 50 years.

Table 1. A Comparison of PSSP Programs by Q3 Accuracy Assessmentsa

program TS115 (%) CASP10 (%) CASP11 (%) CASP12 (%) TS2019 (%) CB513 (%)

JPRED425 77.1 81.6 80.4 78.8 76.6 81.7
PSIPRED v4.024 80.2 81.2 80.7 80.5 82.3 79.2
CNF26 − 78.9 79.1 − − 78.3
RAPTORX (DeepCNF)27 82.3 84.4 84.7 82.1 − 82.3
SPIDER329 83.9 82.6 81.5 79.9 84.4 −
PORTER528 − − − − 84.5 −
MUFOLD-SS30 − 86.5 85.2 83.4 85.9 82.7
CRRNN31 − 86.1 84.2 82.6 − 87.3
eCRRNN31 − 87.8 85.9 83.7 − 87.8

aAccuracy scores (in percentage) are obtained from the programs’ publication papers and from Yang et al.32 and Smolarczuk et al.33
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hotspots. Lastly, PSSP is faster and less computation-heavy
than 3D predictions.
Typically, three metrics are used to evaluate accuracy of

PSSP programs: Q3, Q8, and Segment Overlap (SOV) scores.
Q3 and Q8 represent the percentages of SS sequence positions
correctly predicted by the models using three or eight structure
states, respectively. SOV is a more complex measure that
represents the percentage of segment overlap between
predicted and correct sequences. Different protein databases
can be used for the evaluation, and the best practice is to use
multiple data sets. Tables 1 and 2 show a collection of different

PSSP models’ accuracies calculated using various protein data
sets.27−33 Note that models are continually retrained with new
protein structures, so there are discrepancies in reported
accuracy values. Also, depending on data sets and metrics used,
results of PSSP programs comparisons vary.
In addition to prediction accuracy, it is important to

consider the programs’ usability and their limitations. While
some programs are readily available through web servers,
predictions through server are often limited by sequence length
or number. For example, Mufold-SS only allows sequences of
up to 700 aa long and Jpred4 only allows sequences of up to
800 aa long. In addition, most web servers only allow
prediction of one protein sequence at a time, which is often
impractical when working with a large number of sequences.
Standalone versions of the programs do not have the
restrictions of the web servers.

4. PSSP METHODS HAVE BEEN USED WIDELY IN
PANDEMICS RESEARCH

4.1. Structural Conformation at SARS-CoV nsp5 Protein

Lu et al.34 explored the structure of the SARS-CoV nsp5 gene.
With reference to SARS-CoV strain GD, comparative sequence
analyses with 110 strains at nsp5 showed that five nsp5 had
mutations. Secondary structure predictions were performed at
the five mutated strains using PSIPRED and the analysis
showed that all five mutated strains had identical predicted
secondary structure, which implies that nsp5 encoded proteins
retain a conserved structure and may be a better therapeutic
target than more rapidly evolving genes.
4.2. Rapid Evolution of Pandemic Norovirus Genogroups

Bull et al.35 examined RNA polymerase and capsid protein
similarities in five norovirus genogroups, of which the GII.4
genogroup was associated with acute gastroenteritis global
outbreaks. To evaluate whether this highly pathogenic
genogroup had a greater epidemiological fitness than the

other four genogroups, rate of mutation at RNA polymerase
and capsid secondary structures were modeled using the
CPHmodels Server.36 The PSSP model revealed that the 15
varying amino acid residues on capsid were located on the
exposed loops in GII.4. Moreover, more pathogenic
genogroups had more similarities with GII.4 in structure
than less pathogenic ones.

4.3. Identification of a Potential Inhibitor of H1N1
Neuraminidase

Seniya et al.37 studied the potential effect of the Boesenbergia
pandurata metabolite 4-hydroxy panduratin A to inhibit spread
of Influenza A H1N1 (swine flu) infection. Influenza has two
major surface proteins, neuraminidase (NA) and hemaggluti-
nin (HA), to facilitate viral breach into host cell. To evaluate
the potential of 4-hydroxy panduratin A to dock into active
binding pockets of H1N1 NA, a homology-based protein
structure prediction program, Modeler 9.10,38 was used. In
addition, I-TASSER39 prediction was also used in combination
with ab initio methods of modeling. These steps required
secondary structure templates which were predicted using the
PSIPRED server and rated using Z scores in LOMETS.40 The
combination of PSSP and I-TASSER enabled the downstream
analysis of protein interactions between the viral NA and the
plant metabolite.

4.4. Determining Conserved Segments of H7N9
Hemagglutinin

Sarkar et al.16 examined the Avian Influenza A (H7N9)
hemagglutinin (HA) protein to determine conserved HA
regions that could serve as potential peptide vaccines. As
aforementioned, HA is one of the two major surface proteins
that facilitate viral entry into host cells. In addition, HA can
also elicit an antibody response during infection. The PSSP
server, SABLE,41 was used to predict accessible surface area
(ASA) in 120 HA sequences from H7N9 strains, and Jpred42

and HHpred43 were used to verify results. ASA, like secondary
structure, is a 1D prediction; the aa sequence is converted to a
sequence of numerical values, between 0 and 100, that
describes aa sites accessibility in the solvent. Eight highly
accessible regions were predicted by ASA and through epitope
prediction, four regions were found with promising immuno-
genic potential.

4.5. Computationally Designed Peptides to Block Binding
between SARS-2-S and Host ACE2

Good binding between SARS-2-S and host ACE2 receptor is
crucial for viral entry into host cells. This interaction has been
extensively explored by experimental research as a COVID-19
vaccine target and by computational research aiming to design
competitive binding peptides44 to bring forth new avenues to
COVID-19 treatment. Using computational tools EvoEF245

and EvoDesign,46 Huang et al.44 designed peptide sequences
that potentially bind competitively to SARS-2-S to limit viral
entry. On the basis of a hACE2 structure template, they
explored thousands of peptide designs through 3D modeling
and selected best candidates by SARS-2-S binding affinity
scored by PSSP performed in EvoDesign. The computational
nature of this study allowed results to be obtained rapidly;
currently, the computationally designed peptides are being
evaluated experimentally.44

Table 2. A Comparison of PSSP Programs by Q8 Accuracy
Assessmentsa

program
CASP10
(%)

CASP11
(%)

CASP12
(%)

TS2019
(%)

CB513
(%)

CNF26 64.8 65.1 − − 64.9
RAPTORX
(DeepCNF)27

71.8 72.3 69.8 − 68.3

PORTER528 − − − 73.6 −
MUFOLD-SS30 76.5 74.5 72.1 74.9 70.6
CRRNN31 73.8 71.6 68.7 − 71.4
eCRRNN31 76.3 73.9 70.7 − 74.0
aAccuracy scores (in percentage) are obtained from program
publication papers and from Yang et al.32 and Smolarczuk et al.33

Journal of Proteome Research pubs.acs.org/jpr Reviews

https://dx.doi.org/10.1021/acs.jproteome.0c00734
J. Proteome Res. 2021, 20, 1457−1463

1459

pubs.acs.org/jpr?ref=pdf
https://dx.doi.org/10.1021/acs.jproteome.0c00734?ref=pdf


5. USING PSSP MODELS TO GAIN BIOLOGICAL
INSIGHT INTO SARS-COV-2 AND SARS-COV
INFECTIVITY

Focusing on SARS-CoV-2, we tested the ability of several
PSSP programs to predict SS of hACE2 and SARS-2-S S1
domain. We used experimentally derived SS from ACE2
structures available on PDB (1r42:A, 6m0j:A, 6m18:B,
6m1d:B, and 6m17:B; S1: 6vxx:A, 6vyb:A, 6m0j:E, and
6m17:E) to compare with SS predictions. Table 3 shows
that the accuracy metrics of SS predicted for ACE2 and for
SARS-2-S S1 were much lower than test scores from Tables 1
and 2, possibly because membrane protein structures are hard
to predict. Another possible reason is that the training data
used for the PSSP programs were not specific enough to
predict ACE2 and S1 proteins more accurately. The Q8 results
for PSIPRED and JPRED4, which only predict three structure
states, were expected to be lower than that of PORTER5 and
MUFOLD-SS, which predicted eight structure states. How-
ever, Q8 results were similar for all four programs (Table 3),
possibly because extra types of secondary structures are rare in
the studied proteins.
As previously mentioned, mammalian susceptibility to

SARS-CoV cannot always be accurately predicted by differ-
ences in ACE2 aa sequences. This problem can be viewed as a
mismatch between empirical and theoretical results. Using
ACE2 PSSP instead of aa sequences, we attempt to explain this
mismatch. To showcase that PSSP can circumvent this
mismatch, Table 4 shows the P_distance, a measurement of
differences in predicted SS between hACE2 and other species’

ACE2. Here, we choose to use Mufold-SS to predict ACE2 SS
(Table 3). P_distance is based on Q3 and Q8 scores, and the
formula used for calculation is shown in eq 1, where M is the
number of residues that are the same in both windows and L is
sequence length (analogous to Q3/Q8 evaluations). Mufold-
SS can be robust with three states but not with eight states, as
it assumes equal weight for all SS differences. Hence, all
calculated P_distances (Table 4) were based on three-state SS
predictions.

i
k
jjj

y
{
zzz_ = − M

L
P distance 1

(1)

The P_distance shows that SS variations better explain
patterns of SARS-CoV infectivity than hotspot aa differences.
First, unlike differences in ACE2 aa, differences in ACE2 SS
corroborate the finding that rats47 are less susceptible to SARS-
CoV than palm civets48 and mice,49 with P_distances of
0.0509 (rats) vs 0.0472 (palm civets and mice). Second, ACE2
SS explains why Chinese horseshoe bats (P_distance =
0.0335) are more susceptible to SARS-CoV than Pearson’s
horseshoe bats (P_distance = 0.0410).50 Nonetheless, our
findings cannot be generalized further, as not all patterns of
infectivity are explained through P_distance. For example,
P_distance cannot explain why palm civets (0.0472) are more
susceptible to SARS-CoV than Pearson’s horseshoe bat
(0.0410).48,50

To further examine the ACE2 of species shown in Table 4,
we calculated aa sequence similarities using the Lake9451

phylogenetic distance with hACE2 as reference. Indeed, with
respect to hACE2, aa sequence similarities as measured by
Lake94 poorly reflect similarities at SS as measured by
P_distance in many species (Figure 2: R2 = 0.179, P =
0.150), an example is Rhinolophus sinicus.
We next performed multiple sequence alignment (MSA)

using MAFFT52 on ACE2 aa sequence and on predicted ACE2
SS sequence for Rhinolophus sinicus highlighted in red in Figure
2. Hotspot sites were highlighted in the alignment,
representing hACE2 sites S19, Q24, D30, K31, H34, E35,
E37, D38, Y41, Q42, L79, M82, Y83, K353, and R393 that
form contact with SARS-2-S at sites K417, G446, Y449, L455,
F456, A475, F486, N487, Y489, Q498, T500, N501, G502, and
Y505, as previously identified through X-ray crystallography
experiments.53,54

Rhinolophus sinicus ACE2 seems to be more conserved at
hotspot locations (boxed in light blue) than other regions at
the SS level (Figure 3). Furthermore, lack of SS differences at
some aa substitution sites can be explained by the nature of aa
substitutions: some aa substitutions are considered conserva-
tive as they have similar physicochemical properties.55 Indeed,

Table 3. Average PSSP Program Accuracies as Measured Using ACE2 and Spike Protein Data from PDBa

protein set metric PORTER528 (%) MUFOLD-SS30 (%) PSIPRED24 (%) JPRED425 (%)

totals (other 2 sets combined) Q3 75.2 77.1 77.7 76.5
Q8 62.8 64.0 61.0 60.9
SOV 57.6 57.8 60.3 58.3

hACE2 (1r42:A, 6m0j:A, 6m18:B, 6m1d:B, 6m17:B) Q3 81.2 82.0 82.0 80.5
Q8 69.9 70.8 65.2 65.1
SOV 71.2 67.5 72.3 69.7

SARS-2-S S1 (6vxx:A, 6vyb:A, 6m0j:E, 6m17:E) Q3 67.8 71.0 72.4 71.4
Q8 54.0 55.5 55.7 55.6
SOV 40.6 45.8 45.4 44.0

aPDB IDs are shown below the set names.

Table 4. P_distances between hACE2 SS and Mammalian
ACE2 SSa

SS sequence P_distance

NM_001135696_Macaca_mulatta (Macaque) 0.0286
XM_008988993_Callithrix_jacchus (Marmoset) 0.0298
GQ999936_Rhinolophus_sinicus (Chinese horseshoe bat) 0.0335
EF569964_Rhinolophus_pearsonii (Pearson’s horseshoe bat) 0.0410
AY996037_Cercopithecus_aethiops (African green monkey) 0.0435
NM_001130513_Mus_musculus (Mouse) 0.0472
AY881174_Paguma_larvata (Civet) 0.0472
XM_005074209_Mesocricetus_auratus (Hamster) 0.0497
NM_001012006_Rattus_norvegicus (Rat) 0.0509
AB211998_Procyon_lotor (Raccoon) 0.0547
NM_001310190_Mustela_putorius_furo (Ferret) 0.0584
EU024940_Nyctereutes_procyonoides (Raccoon dog) 0.0622
NM_001039456_Felis_catus (Cat) 0.0634

aACE2 SS are predicted by Mufold-SS.30
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conservative D ↔ E, D ↔ N, E ↔ N, E ↔ Q, and K ↔ R are
present at the regions boxed in yellow (Figure 3); these amino
acids have similar properties and reduced substitution effects
on predicted SS folding. On the other hand, some regions have

many SS differences but relatively conserved aa (Figure 3:
boxed in light red), one explanation for this discrepancy is that
aa substitutions may influence SS at distant loci rather than
closer ones due to complexities of hydrogen bond formation.

Figure 2. Lake94 distances measured at ACE2 aa sequences poorly correlate P_distance measured at ACE2 SS. Sequence distances in mammalian
ACE2 are calculated with respect to hACE2, and the 13 species considered are those listed in Table 4.

Figure 3. SS and aa alignments between Rhinolophus sinicus ACE2 and hACE2. Match and mismatch sites are respectively indicated by green and
red for aa alignment and by blue and yellow for SS alignment. Notable regions where conservation levels differ between aa and SS alignments are
boxed in light red and yellow. Hotspot positions boxed in light blue represent SARS-2-S contacting sites at hACE2.53,54
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Moreover, Lysine has been reported as preferred amino acids
at C-terminus of proteins for α-helix formation,56 and reduced
helix stabilization in the light red region could be caused by the
K → N substitution.

6. CONCLUSION
Here we reviewed potential applications of PSSP programs to
gain biological insights. These fast methods can be helpful to
obtain important answers as an immediate response in
pandemics research. Because some mutations, especially
substitutions, might not induce structural changes, analysis
on SS expands upon analysis of aa. In this review, we evaluated
some of the current PSSP programs and discussed PSSP
applications in pandemics research. Additionally, we offered
examples of PSSP analyses with a focus on SARS-CoV and
SARS-CoV-2. Because coronavirus infection is achieved
through binding between the viral Spike protein and the
host ACE2 receptor, mammals with similar ACE2 structures
could be potentially susceptible to these viruses. To identify
ACE2 similarities between mammals and humans, compar-
isons were made at aa and SS levels. We showed that variations
between predicted SS is not always consistent with variations
in corresponding aa sequences. Specifically, differences at aa
rarely led to different SS at ACE2 hotspot locations in
Rhinolophus sinicus. The example above, along with other
practical examples reviewed, highlight potential applications of
PSSP algorithms in pandemics research.
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