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Abstract

Many important phenotypic traits in plants are ordinal. However, relatively little is known about the methodologies for
ordinal trait association studies. In this study, we proposed a hierarchical generalized linear mixed model for mapping
quantitative trait locus (QTL) of ordinal traits in crop cultivars. In this model, all the main-effect QTL and QTL-by-environment
interaction were treated as random, while population mean, environmental effect and population structure were fixed. In
the estimation of parameters, the pseudo data normal approximation of likelihood function and empirical Bayes approach
were adopted. A series of Monte Carlo simulation experiments were performed to confirm the reliability of new method.
The result showed that new method works well with satisfactory statistical power and precision. The new method was also
adopted to dissect the genetic basis of soybean alkaline-salt tolerance in 257 soybean cultivars obtained, by stratified
random sampling, from 6 geographic ecotypes in China. As a result, 6 main-effect QTL and 3 QTL-by-environment
interactions were identified.
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Introduction

Many characters of biological interest and economic impor-

tance vary in an ordinal form, i.e. disease and tolerance, but are

not inherited in a simple Mendelian fashion. More importantly,

they cause substantial yield loss. To decrease the loss, developing

resistance cultivar is the most economic and effective way.

Therefore, there is a critical need for in-depth study of

methodology for mining elite alleles for ordinal traits.

During the past several decades, many attempts have been

made to mine elite alleles for binary and ordinal traits. The

methodologies of mapping quantitative trait loci (QTL) for

discrete traits have been well established within the framework

of threshold model. On the early stage, almost all the approaches

are based on single QTL genetic model [1–7]. Later on, several

methods have been proposed to simultaneously identify multiple

QTL for ordinal traits [8,9]. Recently, Bayesian methodology has

been used to map multi-QTL and epistatic QTL for binary and

ordinal traits [10–14]. However, all the above approaches are

based on bi-parental segregating populations.

Many commercial inbred lines are available in crops. A large

amount of elite alleles have preserved among these lines. Mining

these elite alleles is the prerequisite in the integration of genetic

analysis with crop breeding. Up to now, some approaches for

mining elite alleles in crop cultivars have been developed [15–20].

All kinds of QTL can be effectively identified, elite alleles can be

easily mined and novel parental combination can be effectively

predicted [18]. However, these approaches in crop cultivars are

for quantitative traits but not for discrete traits. As for discrete

traits, too much complication comes from seemingly simple

descriptions and unknown population structure meanwhile in fact

the underlying biological model may be complicated. Accordingly,

genetic analyses may be more challenging for discrete traits than

for continuous traits. If pedigree information among these lines is

known, Bayesian linkage analysis [21] and variance-components

approach [22] have been presented. If the pedigree information is

not known, relatively little has been known, except for Iwata et al.

[23] and Hoggart et al. [24]. Although Iwata et al. [23] have

developed Bayesian multilocus association analysis, the method is

implemented via Markov chain Monte Carlo, and computing time

becomes a major concern. Although Hoggart et al. [24] proposed

simultaneous analysis of all SNPs in genome-wide association

study, the method is for case-control dataset.

Multi-QTL mapping for discrete and quantitative traits is now

the state-of-the-art method [18–20,24,25]. However, it is difficult

to implement under the maximum-likelihood framework. At

present the Bayesian method implemented via expectation-

maximization algorithm [26] is specialized to handle complicated

models and thus it is the ideal tool for mapping multiple QTL for

ordinal trait in crop cultivars. Accordingly, in this study empirical

Bayes approach of Xu [26] and the computational algorithm of Yi

et al [27] were incorporated into the hierarchical generalized

linear model of Yi et al [12] to map main-effect QTL (M-QTL)

and QTL-by-environment (QE) interaction for ordinal traits in

PLOS ONE | www.plosone.org 1 April 2013 | Volume 8 | Issue 4 | e59541



crop cultivars. The new method was validated by a series of Monte

Carlo simulation experiments and real data analysis in soybean.

Results

Phenotypic variation for soybean alkaline-salt tolerance
We measured lengths of main root (LR) of 257 soybean cultivars

under the cases of control (CK), 100 mM NaCl and 10 mM

Na2CO3. These original trait observations might be transferred

into alkaline tolerance index (ATI) and salt tolerance index (STI).

To measure the degree of salt-alkaline tolerance, these indexes

were partitioned into five grades: high tolerance, tolerance, middle

tolerance, sensitivity, and high sensitivity. In other words, this data

is ordinal. The phenotypic distributions were shown in Fig. 1 and

Table S1. All the two discrete indexes almost exhibited skewed

distribution, indicating the existence of genetic variation. Results

from x2 test showed that there is significant relationship between

the tolerance and environment (x2 = 44.83 and P,1e-4 for ATI,

and x2 = 13.29 and P = 0.004 for STI), indicating the existence of

environmental interaction.

Mapping M-QTL and QE interaction for ATI and STI
A total of 6 M-QTL (3 for ATI, and 3 for STI) and 3 QE

interactions (one for ATI, and 2 for STI) for soybean alkaline-salt

tolerance are detected by new method, and mapped to chromo-

somes A1, B2, I, L, N and O. Among them, one QTL, associated

with marker sat_274, is responsible simultaneously for the above

two traits; seven QTL are consistent with those of continuous ATI

and STI using enriched compression mixed linear model

(ECMLM) [28] and epistatic association mapping (EAM) [18]

methods, and the other two were also confirmed by test of

independence (x2 test); and one M-QTL and one QE interaction

are associated simultaneously with marker satt270. A summary of

all detected QTL is shown in Table 1.

4 ATI QTL, with proportion of phenotypic variance explained

by single QTL (PVE) of 3.29–11.04%, are detected and mapped

to chromosomes A1, B2 and O. Of these QTL, there are three M-

QTL (18.96%) and one QE interaction (11.04%); and three QTL

are further identified by ECMLM (or EAM) and x2 test. It should

be noted that the PVE by qAT10-2 and qATI5e, associated

respectively with sat_274 and sat_344, are greater than 10%.

5 STI QTL, with PVE of 4.21–9.17%, are detected and

mapped to chromosomes I, L, N and O. Of these QTL, there are

three M-QTL (21.06%) and two QE interactions (13.48%); and all

the QTL, except for qSTI10, are further identified by ECMLM (or

EAM) and x2 test. It should be noted that the PVE of all the QTL

are less than 10%.

Mining elite alleles
The summaries of elite allele and its representative carrier are

shown in Table 1. As for the qATI14 associated with Sat_342,

there are 12 alleles and one unknown allele. The effects for all

these alleles can be estimated by maximum likelihood method. Of

these effects, the 260 bp allele has the smallest effect 20.73, being

an elite allele, which can be found in soybean cultivar

Zunyizongzidou. Similarly, as for the qSTI3e associated with

satt270, the 223 bp allele shows the smallest effect in 2010, elite

allele combination is the 223 bp allele62010 with an effect of

20.90.

Predicting novel parental combination
In a hypothetical cross of two cultivars, all the recombinant

inbred lines (RILs) from the cross may be produced. In these RILs,

the trait values can be predicted by the effects of all the detected

loci. The best RIL with minimum value would represent the cross.

Therefore, the best cross could be selected from all the crosses. It

was found that any cultivar-pair does not pyramid all the elite

alleles of the detected QTL. However, some four-cultivar

combinations might pyramid all the elite alleles of salt-alkaline

tolerances in this study, for example, the best two combinations

were Zunyizongzidou 6 Hunanqiudou 16Ludou 16Qi 588-8,

and Zunyizongzidou6Hunanqiudou 16Ludou 26Qi 588-8,

which are used to simultaneously improve the two traits.

Prediction for potential candidate genes
The summary of potential candidate genes for alkaline-salt

tolerance in soybean is shown in Table 2. A total of 7 soybean

genes homologous to Arabidopsis are linked to 7 markers detected in

this study, with physical distances of 206.21–129132.42 kb; and

one gene (Glyma03g38040) is closely linked to the associated

markers (satt022) in this study, within 210 kb in physical distance.

Figure 1. Frequency distribution for soybean alkaline-salt tolerance grade in 2009 (left) and 2010 (right).
doi:10.1371/journal.pone.0059541.g001
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Monte Carlo simulation studies
Comparison of new method with both single-QTL method

and test of independence. In the first simulation experiment,

each simulated sample was analyzed by three methods. One is

multi-QTL-based method in this study (new method), one is to use

the new method under the condition of single-QTL model and

one is test of independence. All the results are shown in Fig. 2.

Among the three methods, the statistical power of the new method

is the maximum, and the false positive rate (FPR) of the new

method is the minimum. The estimates of QTL effects and

threshold values from the new method are closer to the

corresponding true values than those from single-QTL method,

although all the estimates were slightly biased. Relatively small

variations were observed in the new method for the estimates of

position and effects of QTL as well as the threshold values.

Therefore, the new method works relatively well.

Effect of phenotypic distribution on QTL mapping. In

the second simulation experiment, the effect of the shape of

phenotypic distribution on the new method was assessed by letting

the phenotypic distribution of five ordinal categories be set as

1:1:1:1:1 (uniform distribution), 1:2:4:2:1 (symmetrical distribu-

tion) and 8:5:3:1:1 (skewed distribution). Other parameters were

the same as those in the first simulation experiment. The results

are given in Fig. 3. We found that skewed distribution has

decreased the statistical power. The optimal power occurred in the

situation where the phenotypic distribution is bell-shaped.

Relatively small variations were also observed in the three

situations for the estimates of position and effects of QTL as well

as the threshold values.

Effect of the number of categories on QTL mapping. In

the third simulation experiment, we evaluated the effect of the

number of categories on the new method. The design of the

simulation was similar to that described in the first simulation

experiment, except for the number of phenotypic categories. We

simulated three levels for the number of categories: 2, 6 and 9. The

corresponding phenotypic distributions were 1:1, 1:3:6:6:3:1 and

1:2:4:6:9:6:4:2:1, respectively. The results are given in Fig. 4,

which shows that the estimate of QTL position is very close to its

true value in the three cases, and the power for QTL detection

increases as the number of categories increases. The reason is that

increasing the number of categories has increased the information

of predicting the liability from the observed categorical phenotype.

In addition, relatively small variations were also observed in the

three situations for the estimates of QTL effects and the threshold

values.

Effect of sample size on QTL mapping. In the fourth

simulation experiment, we assumed the pedigree to have the

numbers of non-founders of 100, 200, 300 and 500, and the

number of founders of 50. One hundred and one equally spaced

markers, each with three alleles, were placed on each of three

1000 cM chromosome segments; and eighteen QTL, each with

three alleles, were simulated with heritabilities of 0.01–0.15. Other

parameters were given in Table 3. The results of five QTL are

shown in Fig. 5. As expected, the QTL detection power increases

and the variations for the estimates of QTL parameters and the

threshold values decreases as sample size or QTL heritability

increases.

Effect of the number of founders on QTL mapping. In

the last simulation experiment, we assumed the pedigree to have

the number of non-founders of 200, and the numbers of founders

of 25, 50 and 75. Other parameters were the same as those in the

fourth simulation experiment. The results of five QTL are shown

in Fig. 6. As expected, the QTL detection power increases as the

founder number increases and relatively small variations and
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biasedness for the estimates of QTL parameters and the threshold

values were observed.

Discussion

In this study the probability of yj , Pr yj j.
� �

, is viewed as an

approximate normal distribution so that empirical Bayes approach

could be adopted to estimate genetic effects in the hierarchical

generalized linear model for ordinal trait association studies. As a

result, M-QTL and QE interaction for ordinal traits in crop

cultivars can be identified, elite alleles can be mined and novel

parental combinations can be predicted. Clearly, it integrates

genetic analyses with crop breeding design. More importantly, the

mapping results in this study are reliable because they have been

validated in four aspects. First, seven QTL detected by new

method are consistent with those by at least one of three

approaches: ECMLM, EAM and single marker analysis

(Table 1). Second, a total of 7 potential candidate genes

homologous to Arabidopsis are found to be around 7 associated

markers (Table 2). Third, some QTL were simultaneously

identified among alkaline-salt tolerance index, original and ordinal

traits, for example, Sat_342 and Satt348 were associated with

alkaline tolerance, and Satt270 was associated with salt tolerance.

Finally, the results from Monte Carlo simulation studies show that

new method improves statistical power and precision, and reduces

FPR.

The major contribution of this study is the pseudo data normal

approximation of the likelihood function for ordinal trait

association studies. The normal likelihood approximation was

first developed by Wolfinger and O’Connell [29] and continued by

Gelman et al [30]. McGilchrist [31] used a different approach for

the same problem, but much easier to understand. Although the

method has been explored for binary and binomial traits in linkage

studies [32], this study is the first report of the pseudo data

approximation for ordinal trait association studies.

We compared the new method with that of Lü et al. [18]. There

are some commons between the two approaches. For example, the

similar effects of phenotypic distribution (the number of categories,

sample size and heritability) on QTL mapping in homozygous

cultivars are observed. However, the differences exist as well. For

example, the trait is quantitative in Lü et al. [18] and ordinal in

this study; and the power for the detection of QTL is lower for this

study than for Lü et al. [18], because limited information is

observed for ordinal traits. As the number of categories increases,

it is better to use the normal trait hierarchical linear mixed model.

Note that the main benefit of this study comes from small number

of categories. Although Iwata et al. [23] and Hoggart et al. [24]

are for ordinal traits, in this study main-QTL, environmental effect

and QTL-by-environment interactions were simultaneously con-

sidered in our full genetic model, improving the statistical power

and estimation precision.

As compared with genome-wide association studies in Yu et al.

[16] and Zhang et al. [17], kinship matrix was not considered in

this study. In fact, this term is related to background control,

which is similar to co-variable markers in composite interval

mapping. Note that all the main-effect QTL and QTL-by-

environment interactions are included in the full genetic model of

this study. Thus, it is unnecessary to consider this term in the

current study. In addition, in real data analysis we also consider

the effect of population structure on association studies. As a result,

a slightly different result is observed while Q matrix is deleted from

the above full model.

Epistasis, the interaction between QTL, plays an important role

in the dissection of genetic architecture for complex traits. To date,
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several approaches have been developed, including multiple

interval mapping, Bayesian approach, and penalized maximum

likelihood method. Most of these methods are for quantitative

traits in bi-parental segregating populations. In homozygous

cultivars, it is relatively difficult. Because of its complexity, it will

be investigated separately in a future project.

Materials and Methods

Soybean samples
257 soybean cultivars used in this study were mainly provided

by the National Center for Soybean Improvement, China. All the

cultivars were obtained by stratified random sampling from six

geographic ecotypes in China, planted in three-row plots in a

completely randomized design and evaluated at the Jiangpu

experimental station at Nanjing Agricultural University in 2009

and 2010. The plots were 1.5 m wide and 2 m long. Twelve seeds

for each cultivar were sown in a 30620615 cm plastic container

with the 3.5 cm height sand and then treated with control (CK),

100 mM NaCl and 10 mM Na2CO3, and each with two

replications. They were grown in a growth chamber under white

fluorescent light (600 mmol m22 s21; 14 h light/10 h dark) at

2561uC. Length of main root (LR, centimetre) for healthy

seedlings were measured from 5 plants 7 days after sowing. To

measure the degree of salt-alkaline tolerance, original trait

observations might be transferred into salt-alkaline tolerance

index for each trait using the below equations

salt tolerance index STIð Þ~ xCK{xNaClð Þ=xCK|100%

alkaline tolerance index ATIð Þ~ xCK{xNa2CO3

� �.
xCK|100%

where xCK,xNaCl and xNa2CO3
stand for phenotypic values in

control, saline and alkaline treatments, respectively [33]. The

tolerance grades 1 to 5, used in this study, were indicated by 0–

20%, 20–40%, 40–60%, 60–80% and 80–100%, respectively.

Approximately 0.3 g of fresh leaves obtained in 2008 from each

cultivar was used to extract genomic DNA using the cetyltri-

methylammonium bromide method as described by Lipp et al.

[34]. To screen for polymorphisms among all the cultivars,

polymerase chain reaction (PCR) was performed with 135 simple

sequence repeat (SSR) primer pairs. The primer sequences were

obtained from the soybean database Soybase (http://www.ncbi.

nlm.nih.gov). PCR was performed as described by Xu et al. [35]

and Wei et al. [36].

Figure 2. Comparison of new method with single-QTL-based method and Chi-squared test.
doi:10.1371/journal.pone.0059541.g002

GWAS for Ordinal Traits

PLOS ONE | www.plosone.org 5 April 2013 | Volume 8 | Issue 4 | e59541



Population structure
For the soybean sample, the STRUCTURE software [37] was

used to investigate the population structures of all selected

cultivars. The number of subpopulations (K) was set from 2 to

10. In the Markov chain Monte Carlo (MCMC) Bayesian analysis

for each K, the length of a Markov chain consisted of 110,000

sweeps. The first 10,000 sweeps (the burn-in period) were deleted,

and thereafter, the chain was used to calculate the mean of log-

likelihood. This process was repeated 20 times, and the total

average for mean log-likelihood at fixed K was used. STRUC-

TURE analysis with 135 SSR molecular markers showed that the

log-likelihood increased with the increase of the model parameter

K, so a suitable number of K could not be determined. In this

situation, using the ad hoc statistic DK, based on the rate of change

in the log-probability of data between successive K values [38],

STRUCTURE accurately detected the uppermost hierarchical

level of structure. Here, the DK value was much higher for the

model parameter K = 4 than for other values of K [33]. By

combining this high DK value with knowledge of the breeding

history of these cultivars, we chose a value of 4 for K. The Q matrix

was calculated based on SSR markers and incorporated into the

hierarchical generalized linear mixed model in this study.

Generalized linear mixed Model
Let lj (j~1,2, � � � ,n) be the vector of underlying latent variable

or liability of cultivar j. For the jth cultivar, it is postulated that

lj~
Xq

m~1

xjmbmz
Xv

k~1

ujkckz
Xq

m~2

Xv

k~1

xjmujkc(m{1)vzkzej ð1Þ

where b~(b1, � � � ,bq)0 is non-genetic effects, i.e., population mean

(b1) and environmental effect (b2, � � � ,bq)0; ck is allelic effect for

k~1, � � � ,v and allele-by-environment interaction effect for

k~vz1, � � � ,vq, n~
Pp

i~1 gi{1ð Þ, and gi is the number of

alleles for locus i i~1, � � � ,pð Þ; xjm and ujk are dummy variables of

bm and ck for cultivar j, respectively; and ej is the random residual

error with anN 0,s2
� �

distribution. s2~1 will be adopted here

because the liabilities are unobservable.

Methods of estimating allelic effects and allele-by-environment

interaction effects are the same. For the sake of clarity of notation,

we redefine the design matrix and the regression coefficients as

follows. Let zjk~ujk(k~1, � � � ,v) and

zjk~xjmujr(k~vz1, � � � ,vq; m~2, � � � ,q; r~1, � � � ,v). The above

model is now rewritten as

Figure 3. Effect of phenotypic distribution on association mapping for ordinal traits.
doi:10.1371/journal.pone.0059541.g003
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lj~XjbzZjczej (j~1, � � � ,n) ð2Þ

where c~(c1, � � � ,cvq)0.

Let Y~ yj

� �n

j~1
denote the vector of observed ordinal data.

Here each yj represents an assignment into C ordinal categories.

These classes result from the hypothetical existence of Cz1
thresholds (t0~{?vt1v � � �vtC~z?) in the latent scale.

The relationship between yj and lj is indicated by

tc{1ƒljvtc u yj~c (c~1, � � � ,C) ð3Þ

The conditional probability that yj falls in category c, given b, c
and t~ t0,t1, � � � ,tCð Þ, is given by

Pr yj~cjXj ,Zj ,t,b,c
� �

~Pr tc{1vljvtcjXj ,Zj ,t,b,c
� �

~W tc{Xjb{Zjc
� �

{W tc{1{Xjb{Zjc
� � ð4Þ

where W(.) is the cumulative distribution function of standard

normal distribution. The data are conditionally independent,

given b, c and t. Therefore, log-likelihood function can be written

as

L hjYð Þ

~
Xn

j~1

XC

c~1

Iyj~c log Pr yj~cjXj ,Zj ,t,b,c
� �

~
Xn

j~1

XC

c~1

Iyj~c log W tc{Xjb{Zjc
� �

{W tc{1{Xjb{Zjc
� �� �

ð5Þ

where h~ t1, � � � ,tC ,b1, � � � ,bq,c1, � � � ,cvq

� �
; and Iyj~c is an

indicator function taking value of 1 if yj~c and 0 otherwise.

Prior distribution and joint posterior density
The parameters b and c are treated as fixed and random effects,

respectively. The number of random effects in the above genetic

model is very large so that the model is oversaturated. Therefore,

the hierarchical generalized linear mixed model is adopted in this

study. It is assumed that each genetic effect ck has a different

variance s2
k. The following prior distributions are chosen for

building the hierarchical model

ckjs2
k*N 0,s2

k

� �
,s2

k*x{2 t,vkð Þ,vk*

Gamma a,bkð Þ,P bkð Þ!1 (k~1, � � � ,vq)

where t and a are the constants given in advance. When

Figure 4. Effect of the number of categories on association mapping for ordinal traits.
doi:10.1371/journal.pone.0059541.g004
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(t,a)~(1,1:5), the method works well. The joint posterior

distribution has a form of

P wDYð Þ

~ P
n

i~1

XC

c~1

Iyj~cPr yj~cDXj ,Zj ,t,b,c
� �n o

P
vq

k~1
N ck D0,s2

k

� �

P
vq

k~1
x{2 s2

k Dt,vk

� �
P
vq

k~1
Gamma vk Da,bkð Þ P

vq

k~1
P bkð Þ

~ P
n

j~1

XC

c~1

Iyj~c W tc{Xjb{Zjc
� �

{W tc{1{Xjb{Zjc
� �� �

| P
vq

k~1
2ps2

k

� �{1
2exp {

c2
k

2s2
k

� 	
 �

| P
vq

k~1
s2

k

� �{tz2
2 exp {

tvk

2s2
k

� 	
tvk=2ð Þt=2

C t=2ð Þ

( )

| P
vq

k~1

ba
k

� �
C að Þv

a{1
k exp {bkvkð Þ


 �
| P

vq

k~1
P bkð Þ

ð6Þ

where w~ h,s2
1, � � � ,s2

vq,v1, � � � ,vvq,b1, � � � ,bvq

n o

Parameter estimation
Genetic effect. As shown in Wolfinger and O’Connell [29],

Pr yj jXj ,Zj ,h
� �

is an approximate normal distribution

N wj jm0j ,s02j ,t
� �

, where pseudo-data wj~gj{L0j

.
L00j ,

gj~XjbzZjc; pseudo-mean m0j~XjbzZjc; pseudo-variance

s02j ~{1
.

L00j ; Lj~ log W ucð Þ{W uc{1ð Þf g, uc~tc{Xjb{Zjc;

L’j~
dL

dgj

~
Q uc{1ð Þ{Q ucð Þ
W ucð Þ{W uc{1ð Þ;

L’’j ~
d2L

dgj
2
~

W ucð Þ{W uc{1ð Þ½ � uc{1Q uc{1ð Þ{ucQ ucð Þ½ �{ Q uc{1ð Þ{Q ucð Þ½ �2

W ucð Þ{W uc{1ð Þ½ �2

where w(.) is the probability density function of standard normal

distribution. The conditional log-posterior distribution, related to

c, is indicated by

Figure 5. Effect of sample size on association mapping for ordinal traits.
doi:10.1371/journal.pone.0059541.g005
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Xn

j~1

log
XC

c~1

Iyj~cN(wj jm0j ,s02j ,t)

 !
z
Xvq

k~1

logPr ckj0,s2
k

� �

Using expectation-maximization empirical Bayes approach of

Xu [26], the expectation of the quadratic term required in the

maximization step is expressed as

E c2
k

� �
~ E ckð Þ½ �2zVar ckð Þ ð7Þ

where E ckjYð Þ~s2
kZT

k V{1 W{Xbð Þ,
Var ckjyð Þ~s2

k{s2
kZT

k V{1Zks2
k, W~ w1 w2 � � � wnð Þ’,

X~ X1 X2 � � � Xnð Þ’, and

V~
Pqv

k~1

ZkZ0ks2
kzdiag s021 s022 � � � s02n

� �
. Once a certain

criterion of convergence is satisfied, the converged E ckjYð Þ is

the estimate for ck.

Genetic effect variances and related

hyperparameters. According to joint posterior density in

equation (6), conditional posterior distribution is

s2
k Dck,vk*x{2 tz1,(tvkzc2

k)
�

tz1ð Þ
� �

for s2
k, vkjs2

k,bk~

Gamma t
�

2za,bkzt
�

2s2
k

� �� �
for vk and

bk Dvk*Gamma a,vkð Þ for bk. Here the mode is used to estimate

the corresponding parameter, such as,

s2
k~

tvkzc2
k

tz1z2
vk~

t=2za{1

bkzt
�

2s2
k

� � bk~
a{1

vk

ð8Þ

Non-genetic effect b. Formula for the fixed effect follows the

standard procedure of mixed model methodology, we have

b~ X0V
{1

X
� �{1

X0V
{1

W
� �

ð9Þ

Thresholds. Using the Newton–Raphson method, the

thresholdt are estimated by

t sz1ð Þ
c ~t sð Þ

c {L0tc hð Þ
.

L00tc hð Þ ð10Þ

where t
sð Þ

c is the estimate of parametertc at the sth iteration,

L’tc hð Þ~
Xn

j~1

Q ucð Þ
W ucð Þ{W uc{1ð Þ Iyj~cz

{Q ucð Þ
W ucz1ð Þ{W ucð Þ

Iyj~cz1


 �

L’’tc hð Þ~
Xn

j~1

{ucQ ucð Þ W ucð Þ{W uc{1ð Þ½ �{Q2 ucð Þ
W ucð Þ{W uc{1ð Þ½ �2

Iyj~c

(

z
ucQ ucð Þ W ucz1ð Þ{W ucð Þ½ �{Q2 ucð Þ

W ucz1ð Þ{W ucð Þ½ �2
Iyj~cz1

)
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Summary of iterations
1. Let t~1 and a~1:5, and provide initial values for Q, for

example, let c
0ð Þ

k be an uniform random number, Var c
0ð Þ

k

� �
~0,

t
0ð Þ

c be the quantile of the standard normal distribution based on

the phenotypic distribution of y, v
0ð Þ

k be a gamma random

number. s
2 0ð Þ
k and b

0ð Þ
k can be obtained by equation (8).

2. Update s2
k, vk and bk using equation (8);

3. Update ck using the estimate of E ckjYð Þ;
4. Update tc using equation (10);

5. Update b using equation (9);

6. Repeat step 2 to step 5 until predetermined criterion of

convergence is satisfied.

Statistical test
A two-stage selection process in Lü et al. [18] was used to

conduct likelihood ratio test (LRT) for all the QTL. In the first

stage, all the markers were included in the model. If the estimate of

an absolutely allelic effect (environmental interaction effect) at the

kth locus k~1, � � � ,pð Þ is greater than 10{4, the kth locus is picked

up. In the second stage, we modified the full model only to contain

the effects passing the first round of selection. If doing so, we can

use the maximum likelihood method to perform the LRT.

The overall null hypothesis is no effect of the oth QTL (or

interacted QTL), denoted by H0 : c1~c2~ � � �~cT~0, where ca

is the ath effect for the QTL. If we solve the maximum likelihood

estimation of the parameters under the restriction of the H0 and

calculate the log-likelihood value using the solutions with this

restriction, we obtain L(ĥh0jH0). We can also evaluate the log-

likelihood value of the solutions without restrictions and obtain

L(ĥh0). Therefore, the LRT statistic is LOD~

L ĥh
� �

{L ĥhjH0

� �h i.
2:30 and the significance threshold of the

LOD score was set at 2.0.

Simulation design
We performed six simulation experiments in this study. In the

first, the simulated pedigree was similar to the maize pedigree

described by Zhang et al. [15]. In current pedigree, the numbers of

founders and non-founders were 100 and 200, respectively. Of

these, founder lines were in linkage equilibrium so that the

genotypes for markers and QTL with three alleles could be

simulated. In other words, three alleles for each locus were

assigned in equal proportions to each founder. Non-founders were

bred via repeated self-pollination of a hybrid between two inbred

lines. Thus, each non-founder line represents a RIL with respect to

a known pair of parents. The genotypes of all the non-founders

could be generated from the genotypes of their parents, analogous

to simulating the genotypes of RIL from their parents. All of the

non-founder lines could be used to detect QTL. Thirty-three

equally spaced markers were simulated on three-chromosome

segments 300 cM long. A total of 3 QTL, all of which overlapped

with the markers, were placed at 50 cM of each chromosome; the

Figure 6. Effect of the number of founders on association mapping for ordinal traits.
doi:10.1371/journal.pone.0059541.g006
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QTL size, being the proportion of total phenotypic variance

explained by the QTL, is 0.05, 0.10 and 0.15, respectively. The

allelic effects were calculated by relating the genetic variance of the

QTL to the allelic frequencies and effects. The phenotypic value of

each line was the sum of the corresponding QTL genotypic values

and the residual error, with an assumed normal distribution.

These phenotypic values could be transferred into five ordinal

categories with four threshold values: 21.2816, 20.5244, 0.5244

and 1.2816. Therefore, the frequencies of the five ordinal

categories occurring in all the inbred lines have a ratio of

1:2:4:2:1. Each simulation run consisted of 100 replicates. For

each simulated QTL, we counted the samples in which the LOD

statistic surpassed 2.0. The ratio of the number of such samples (m)

to the total number of replicates (100) represented the empirical

power of this QTL. The FPR was calculated as the ratio of the

number of false positive effects to the total number of zero effects

considered in the full model. The other simulation experiments

were performed similarly. All simulated parameters are given in

Table 3.

A SAS program is available from the authors on request.
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18. Lü HY, Liu XF, Wei SP, Zhang YM (2011) Epistatic association mapping in

homozygous crop cultivars. PLoS ONE 6(3): e17773

19. Zhou X, Stephens M (2012) Genome-wide efficient mixed-model analysis for
association studies. Nat Genet 44: 821–824.
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