

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

(E)-N'-Hydroxy-1,3-diphenyl-4,5-dihydro-1H-pyrazole-5-carboximidamide

Chandra,^a N. Srikantamurthy,^b K. B. Umesha,^b S. Jeyaseelan^c and M. Mahendra^a*

^aDepartment of Studies in Physics, Manasagangotri, University of Mysore, Mysore 570 006, India, ^bDepartment of Chemistry, Yuvaraja's College, University of Mysore, Mysore 570 005, India, and ^cDepartment of Physics, St Philomena's College, Mysore, India

Correspondence e-mail: mahendra@physics.uni-mysore.ac.in

Received 5 March 2012; accepted 2 May 2012

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.004 Å; R factor = 0.053; wR factor = 0.172; data-to-parameter ratio = 12.9.

In the molecule of the title compound, $C_{16}H_{16}N_4O$, the pyrazole ring makes dihedral angles of 8.52 (13) and 9.26 (12)° with the phenyl rings. The dihedral angle between the benzene rings is 1.86 (13)°. In the crystal, molecules are linked into centrosymmetric dimers via pairs of O-H···N hydrogen bonds. Weak $N-H \cdot \cdot \cdot N$ interactions connect the dimers into a chain along the [100] direction. The pyrazole ring adopts a highly flattened envelope conformation.

Related literature

For the biological activity of pyrazoles, see: Da Sliva et al. (2010); Farag et al. (2010); Khode et al. (2009); Boschi et al. (2011); Ghorab et al. (2010); Husain et al. (2008); Taj et al. (2011); Mikhavlichenko et al. (2009). For bond-length data, see: Allen et al. (1987). For puckering parameters, see: Cremer & Pople (1975). For a related structure, see: Fun et al. (2011).

with $I > 2\sigma(I)$

Experimental

Crystal data

$C_{16}H_{16}N_4O$	$\gamma = 106.70 \ (2)^{\circ}$
$M_r = 280.33$	$V = 716.8 (17) \text{ Å}^3$
Triclinic, P1	Z = 2
a = 7.845 (11) Å	Mo $K\alpha$ radiation
b = 8.940 (12) Å	$\mu = 0.09 \text{ mm}^{-1}$
c = 11.116 (15) Å	T = 293 K
$\alpha = 99.50 \ (2)^{\circ}$	$0.30 \times 0.22 \times 0.15 \text{ mm}$
$\beta = 99.76 \ (2)^{\circ}$	

Data collection

Bruker APEXII CCD area-detector diffractometer	2480 independent reflections 1912 reflections with $I > 2\sigma(I)$
6110 measured reflections	$R_{\rm int} = 0.031$
Refinement	

$R[F^2 > 2\sigma(F^2)] = 0.053$	192 parameters
$wR(F^2) = 0.172$	H-atom parameters constrained
S = 1.09	$\Delta \rho_{\rm max} = 0.22 \text{ e} \text{ Å}^{-3}$
2480 reflections	$\Delta \rho_{\rm min} = -0.29 \text{ e } \text{\AA}^{-3}$

Table 1

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N7 - H7B \cdots N3^{i}$ $O9 - H9 \cdots N8^{ii}$	0.86 0.82	2.62 2.12	3.449 (5) 2.829 (5)	164 145
Symmetry codes: (i) $-x, -y + 2, -z$; (ii) $-x - 1, -y + 1, -z - 1$.				

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97.

MM would like to thank the University of Mysore for awarding a project under the head DV3/136/2007-2008/ 24.09.09.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: DS2183).

References

- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.
- Boschi, D., Guglielmo, S., Aiello, S., Morace, G., Borghi, E. & Fruttero, R. (2011). Bioorg. Med. Chem. Lett. 21, 3431-3434.
- Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.
- Da Sliva, Y. K. C., Augusto, C. V., Barbosa, M. L. C., Melo, G. M. A., de Queiroz, A. C., Dias, T. L. M. F., Junior, W. B., Barreiro, E. J., Lima, L. M. & Alexandre-Moreira, M. S. (2010). Bioorg. Med. Chem. 18, 5007-5015.
- Farag, A. M., Ali, K. A. K., Ei-Debss, T. M. A., Mayhoub, A. S., Amr, A. E., Abdel-Hafez, N. A. & Abdulla, M. M. (2010). Eur. J. Med. Chem. 45, 5887-5898
- Fun, H.-K., Quah, C. K., Malladi, S., Isloor, A. M. & Shivananda, K. N. (2011). Acta Cryst. E67, 03102-03103.
- Ghorab, M. M., Ragab, F. A., Alqasoumi, S. I., Alafeefy, A. M. & Aboulmagd, S. A. (2010). Eur. J. Med. Chem. 45, 171-178.
- Husain, K., Abid, M. & Azam, A. (2008). Eur. J. Med. Chem. 43, 393-403.

- Khode, S., Maddi, V., Aragade, P., Palkar, M., Ronad, P. K., Mamledesai, S., Thippeswamy, A. H. M. & Satyanarayana, D. (2009). *Eur. J. Med. Chem.* 44, 1682–1688.
- Nikhaylichenko, S. N., Patel, S. M., Dalili, S., Chesnyuk, A. A. & Zaplishny, V. N. (2009). *Tetrahedron Lett.* 50, 2502–2508.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Taj, T., Kamble, R. R., Gireesh, T. M., Hunnur, R. K. & Margankop, S. B. (2011). *Eur. J. Med. Chem.* 46, 4366–4373.

supplementary materials

Acta Cryst. (2012). E68, o1661-o1662 [doi:10.1107/S1600536812019630]

(E)-N'-Hydroxy-1,3-diphenyl-4,5-dihydro-1H-pyrazole-5-carboximidamide

Chandra, N. Srikantamurthy, K. B. Umesha, S. Jeyaseelan and M. Mahendra

Comment

Pyrazole and its derivatives are a class of five-membered heterocyclic structure with two adjacent nitrogen atoms. These derivatives have drawn more attention in the field of current medicinal and pharmacological research; and reported to have a broad spectrum of biological activities, such as anti-inflammatory (Da Sliva *et al.*, 2010), antitumor (Farag *et al.*, 2010), analgesic (Khode *et al.*, 2009), antimicrobial (Boschi *et al.*, 2011), anticancer, radioprotective (Ghorab *et al.*, 2010), antiamoebic (Husain *et al.*, 2008), antioxidant (Taj *et al.*, 2011) and antihypertensive (Mikhaylichenko *et al.*, 2009). In addition, pyrazoles have gained prominent role in developing the theory of heterocyclic chemistry. With this potential and diverse background of pyrazole derivatives, we have synthesized the title compound to study its crystal structure.

In the molecule of the title compound (Fig. 1), the dihedral angles between the benzene at the N-(C10—C15) and α -position (C16—C21) of the pyrazole ring (C1/N1/N2/C4/C5) are 8.52 (13) and 9.26 (12)°, respectively. The dihedral angle between the two benzene rings is 1.86 (13)°. The central pyrazole moiety adopts a highly flattened envelope conformation with puckering parameter Q = 0.128 (2) Å and φ = 325.4 (10)° (Cremer & Pople, 1975), and the maximum deviation found on the puckered atom at C1 is 0.078 (8) Å. The carboximidamide unit is in *syn-clinal* conformation with respect to the pyrazole moiety, as indicated by the torsion angle value of 78.0 (2)°. Bond lengths (Allen *et al.*, 1987) and bond angles agree with the observed values and are comparable to a related structure (Fun *et al.*, 2011). The molecules are linked into centrosymetric dimers *via* O9–H9···N8 hydrogen bonds (Table 1) and further weak N—H···N interactions make these centrosymmetric dimer to form one-dimensional chain. The molecular packing exhibits layered stacking when viewd down the 'a' axis as shown in Fig. 2.

Experimental

A mixture of 1,3-diphenyl-4,5-dihydro-1*H*-pyrazole-5-carbonitrile (1.0 g,4.04 mmol), NH₂OH.HCl (0.3 g, 4.04 mmol) and sodium carbonate (0.43 g, 4.04 mmol) in 50% ethanol and water (20 ml) was warmed on a water bath for 4–5 h. The progress of the reaction was monitored by TLC. After completion of the reaction the solvent was evaporated in vacuum. Then the reaction mass was quenched into crushed ice and left over night. The solid obtained was filtered, washed with water, dried and recrystallized from ethanol(m.p=204–206°C).

Refinement

H atoms were placed at idealized positions and allowed to ride on their parent atoms with C–H distances in the range of 0.93 to 0.98 Å, and N–H distance of 0.86 Å; $U_{iso}(H) = 1.2U_{eq}(\text{carrier atom})$ for all H atoms.

Computing details

Data collection: *APEX2* (Bruker, 2009); cell refinement: *SAINT* (Bruker, 2009); data reduction: *SAINT* (Bruker, 2009); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97*

(Sheldrick, 2008); molecular graphics: *PLATON* (Spek, 2009); software used to prepare material for publication: *SHELXL97* (Sheldrick, 2008).

Figure 1

Perspective diagram of the molecule with 50% probability displacement ellipsoids.

Figure 2

Packing diagram of the molecule viewed down the 'a' axis. The dotted lines represents the hydrogen bonds.

(E)-N'-Hydroxy-1,3-diphenyl-4,5-dihydro-1H-pyrazole-5- carboximidamide

Crystal data	
$\begin{aligned} C_{16}H_{16}N_{4}O \\ M_{r} &= 280.33 \\ \text{Triclinic, } P\overline{1} \\ \text{Hall symbol: -P 1} \\ a &= 7.845 (11) \text{ Å} \\ b &= 8.940 (12) \text{ Å} \\ c &= 11.116 (15) \text{ Å} \\ a &= 99.50 (2)^{\circ} \\ \beta &= 99.76 (2)^{\circ} \\ \gamma &= 106.70 (2)^{\circ} \\ V &= 716.8 (17) \text{ Å}^{3} \end{aligned}$	Z = 2 F(000) = 296 $D_x = 1.299 \text{ Mg m}^{-3}$ Melting point: 481 K Mo Ka radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 2480 reflections $\theta = 1.9-25.0^{\circ}$ $\mu = 0.09 \text{ mm}^{-1}$ T = 293 K Block, yellow $0.30 \times 0.22 \times 0.15 \text{ mm}$
Data collectionBruker APEXII CCD area-detector diffractometer ω and φ scans6110 measured reflections2480 independent reflections1912 reflections with $I > 2\sigma(I)$	$R_{int} = 0.031$ $\theta_{max} = 25.0^{\circ}, \ \theta_{min} = 1.9^{\circ}$ $h = -9 \rightarrow 9$ $k = -10 \rightarrow 10$ $l = -13 \rightarrow 13$

Refinement

Refinement on F^2	Hydrogen site location: inferred from
Least-squares matrix: full	neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.053$	H-atom parameters constrained
$wR(F^2) = 0.172$	$w = 1/[\sigma^2(F_o^2) + (0.1095P)^2 + 0.0579P]$
S = 1.09	where $P = (F_o^2 + 2F_c^2)/3$
2480 reflections	$(\Delta/\sigma)_{\rm max} = 0.001$
192 parameters	$\Delta ho_{ m max} = 0.22 \ { m e} \ { m \AA}^{-3}$
0 restraints	$\Delta ho_{ m min} = -0.29 \ { m e} \ { m \AA}^{-3}$
Primary atom site location: structure-invariant direct methods	Extinction correction: <i>SHELXL97</i> (Sheldrick, 2008), FC [*] =KFC[1+0.001XFC ² Λ^3 /SIN(2 Θ)] ^{-1/4}
Secondary atom site location: difference Fourier	Extinction coefficient: 0.039 (10)
map	

Special details

Geometry. Bond distances, angles *etc*. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F^2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted *R*-factors *wR* and all goodnesses of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The observed criterion of $F^2 > \sigma(F^2)$ is used only for calculating *-R*-factor-obs *etc*. and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
09	-0.5121 (2)	0.68205 (19)	-0.45801 (14)	0.0562 (5)
N2	0.0152 (2)	0.8338 (2)	-0.12879 (14)	0.0424 (5)
N3	0.0582 (2)	0.81960 (19)	-0.00444 (14)	0.0404 (5)
N7	-0.3248 (3)	0.8676 (2)	-0.24261 (16)	0.0516 (6)
N8	-0.3688 (2)	0.6340 (2)	-0.39332 (14)	0.0444 (5)
C1	-0.1393 (3)	0.6924 (2)	-0.20673 (17)	0.0396 (6)
C4	-0.0671 (3)	0.6971 (2)	0.01121 (17)	0.0383 (6)
C5	-0.2139 (3)	0.6106 (3)	-0.10645 (18)	0.0447 (6)
C6	-0.2839 (3)	0.7360 (2)	-0.28863 (16)	0.0376 (6)
C10	0.1498 (3)	0.9301 (2)	-0.17755 (17)	0.0386 (6)
C11	0.3162 (3)	1.0346 (3)	-0.09989 (18)	0.0443 (6)
C12	0.4414 (3)	1.1360 (3)	-0.1493 (2)	0.0549 (8)
C13	0.4073 (3)	1.1382 (3)	-0.2751 (2)	0.0559 (8)
C14	0.2440 (3)	1.0334 (3)	-0.3529 (2)	0.0570 (8)
C15	0.1173 (3)	0.9290 (3)	-0.30604 (19)	0.0531 (7)
C16	-0.0716 (3)	0.6542 (2)	0.13341 (18)	0.0405 (6)
C17	0.0704 (3)	0.7310 (3)	0.24058 (19)	0.0503 (7)
C18	0.0566 (4)	0.6911 (3)	0.3551 (2)	0.0619 (9)
C19	-0.1001 (4)	0.5748 (4)	0.3648 (2)	0.0660 (10)
C20	-0.2370 (4)	0.4957 (4)	0.2606 (3)	0.0725 (10)
C21	-0.2240 (3)	0.5340 (3)	0.1455 (2)	0.0592 (8)
H1	-0.09220	0.62150	-0.25880	0.0480*
H5A	-0.32990	0.62440	-0.09850	0.0540*
H5B	-0.22930	0.49700	-0.12590	0.0540*

supplementary materials

H7A	-0.41430	0.88920	-0.28410	0.0620*	
H7B	-0.26140	0.92980	-0.17180	0.0620*	
H9	-0.57860	0.60770	-0.51580	0.0840*	
H11	0.34250	1.03590	-0.01490	0.0530*	
H12	0.55100	1.20410	-0.09660	0.0660*	
H13	0.49130	1.20810	-0.30680	0.0670*	
H14	0.21920	1.03300	-0.43780	0.0680*	
H15	0.01040	0.85810	-0.36010	0.0640*	
H17	0.17460	0.80920	0.23490	0.0600*	
H18	0.15190	0.74200	0.42530	0.0740*	
H19	-0.11120	0.55120	0.44210	0.0790*	
H20	-0.33940	0.41570	0.26670	0.0870*	
H21	-0.31800	0.47900	0.07530	0.0710*	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
09	0.0510 (10)	0.0600 (10)	0.0460 (8)	0.0137 (8)	-0.0075 (7)	0.0075 (7)
N2	0.0361 (9)	0.0490 (10)	0.0306 (8)	0.0011 (8)	0.0024 (7)	0.0059 (7)
N3	0.0362 (9)	0.0463 (10)	0.0330 (8)	0.0083 (8)	0.0051 (7)	0.0059 (7)
N7	0.0511 (11)	0.0484 (11)	0.0476 (10)	0.0179 (9)	-0.0011 (8)	-0.0001 (8)
N8	0.0403 (10)	0.0487 (10)	0.0347 (8)	0.0086 (8)	-0.0013 (7)	0.0042 (7)
C1	0.0330 (11)	0.0389 (11)	0.0370 (10)	0.0049 (8)	0.0030 (8)	-0.0012 (8)
C4	0.0315 (10)	0.0405 (11)	0.0400 (10)	0.0096 (8)	0.0065 (8)	0.0070 (8)
C5	0.0380 (11)	0.0414 (11)	0.0458 (11)	0.0049 (9)	0.0019 (9)	0.0084 (9)
C6	0.0333 (10)	0.0372 (10)	0.0351 (9)	0.0037 (8)	0.0074 (8)	0.0034 (8)
C10	0.0338 (11)	0.0416 (11)	0.0392 (10)	0.0114 (9)	0.0088 (8)	0.0072 (8)
C11	0.0379 (11)	0.0495 (12)	0.0384 (10)	0.0070 (9)	0.0056 (9)	0.0072 (9)
C12	0.0411 (12)	0.0530 (14)	0.0594 (13)	0.0007 (10)	0.0082 (10)	0.0116 (11)
C13	0.0506 (14)	0.0582 (14)	0.0635 (14)	0.0130 (11)	0.0223 (11)	0.0254 (11)
C14	0.0554 (14)	0.0746 (16)	0.0449 (12)	0.0188 (12)	0.0157 (10)	0.0237 (11)
C15	0.0420 (12)	0.0675 (15)	0.0394 (11)	0.0071 (11)	0.0041 (9)	0.0082 (10)
C16	0.0393 (11)	0.0427 (11)	0.0425 (11)	0.0169 (9)	0.0105 (9)	0.0104 (9)
C17	0.0548 (14)	0.0448 (12)	0.0452 (11)	0.0096 (10)	0.0089 (10)	0.0083 (9)
C18	0.0827 (18)	0.0666 (16)	0.0392 (12)	0.0324 (14)	0.0080 (12)	0.0109 (11)
C19	0.0746 (19)	0.092 (2)	0.0582 (14)	0.0453 (17)	0.0318 (14)	0.0400 (14)
C20	0.0482 (15)	0.100 (2)	0.0864 (19)	0.0244 (15)	0.0253 (14)	0.0567 (17)
C21	0.0396 (13)	0.0733 (16)	0.0640 (14)	0.0105 (11)	0.0085 (11)	0.0311 (12)

Geometric parameters (Å, °)

09—N8	1.439 (3)	C16—C21	1.402 (4)
О9—Н9	0.8200	C16—C17	1.404 (4)
N2C1	1.490 (3)	C17—C18	1.391 (4)
N2-C10	1.406 (3)	C18—C19	1.397 (5)
N2—N3	1.402 (3)	C19—C20	1.366 (5)
N3—C4	1.303 (3)	C20—C21	1.391 (4)
N7—C6	1.350 (3)	C1—H1	0.9800
N8—C6	1.291 (3)	C5—H5A	0.9700
N7—H7B	0.8600	C5—H5B	0.9700

N7—H7A	0 8600	C11—H11	0 9300
C1-C5	1 538 (4)	C12—H12	0.9300
C1 - C6	1 513 (4)	C13—H13	0.9300
C4—C16	1 474 (3)	C14—H14	0.9300
C4—C5	1 510 (4)	C15—H15	0.9300
C10-C15	1.010(1) 1 406(3)	C17—H17	0.9300
C10-C11	1405(4)	C18—H18	0.9300
C11-C12	1 387 (4)	C19—H19	0.9300
C12—C13	1 383 (4)	C20—H20	0.9300
C13—C14	1 391 (4)	C21—H21	0.9300
C14—C15	1 390 (4)		0.9500
	1.590 (1)		
09…N7	2.596 (4)	H1…H15	2.5500
09N8 ⁱ	2.829 (5)	$H1\cdots C18^{vii}$	2.9300
09···H7A	2.2900	H1···C19 ^{vii}	2.8600
09H9 ⁱ	2.8600	$H1\cdots C20^{vii}$	3 0600
09···H20 ⁱⁱ	2 7400	H5AN7	2 9000
N2…N7	2.873 (5)	H5AC21	3 0100
N7…O9	2 596 (4)	H5A···H21	2 5000
N7…N2	2.370(1) 2.873(5)	H5BC21	2.9000
N8N8 ⁱ	3,039(5)	H5B H21	2.9700
N8····O9 ⁱ	2 829 (5)	H5B···C16 ^{vii}	3 0400
N2···H7B	2.5500	H5B···C17 ^{vii}	2 9100
N3H11	2.5300	H7409	2.9100
N3…H17	2.5500	$H7A \cdots C12^{ix}$	3 0500
N3…H7B ⁱⁱⁱ	2.6200	$H7A\cdots C13^{ix}$	2 9500
N7···H17 ⁱⁱⁱ	2.0200	H7BN2	2.5500
N7…H5A	2.9700	H7B ···N3 ⁱⁱⁱ	2.5500
N7…H11 ⁱⁱⁱ	2.9000	$H7B \cdots C11^{iii}$	3 1000
N8H9 ⁱ	2.3900		2 2700
N8···H20 ⁱⁱ	2.1200		2.2700
C6…C15	3 181 (6)	$H9O9^{i}$	2.4500
C11···C11 ^{iv}	3 597 (6)	H9N8 ⁱ	2.0000
C15····C6	3 181 (6)	H11N3	2.1200
C1H15	2 6400	H11···N7 ⁱⁱⁱ	2.5500
C5H21	2.6300	$H11\cdots C11^{iv}$	3 0400
C6H15	2.5700	H11H7B ⁱⁱⁱ	2 2700
C6H20 ⁱⁱ	2.9700	H15C1	2.2700
C11H7B ⁱⁱⁱ	3 1000	H15···C6	2.0400
C11····H11 ^{iv}	3.0400	H15H1	2.5700
$C12\cdots H7A^{v}$	3.0500	H17N3	2.5500
$C12 \cdot H7A^{v}$	2 9500	$H17 \cdots N7^{iii}$	2.000
C14···H18 ^{vi}	3 1000	H17 H7 H17 H7	2.1700
C15H1	2 9500	$H18\cdots C14^{x}$	3 1000
C16···H5B ^{vii}	3 0400	H19C19 ^{viii}	3 0500
C17···H5B ^{vii}	2 9100	H19H10 ^{viii}	2 4700
C18···H1 ^{vii}	2.9100		2.4700
C19····H1 ^{vii}	2.9500	H20····N8 ⁱⁱ	2.7400
C19H19 ^{viii}	3.0500	H20····C6 ⁱⁱ	2.0500
~.//	2.0200		2.7500

C20····H1 ^{vii}	3.0600	H21…C5	2.6300
C21…H5A	3.0100	H21…H5A	2.5000
C21…H5B	2.9700	H21…H5B	2.4700
H1…C15	2.9500		
N8—O9—H9	109.00	C18—C19—C20	119.9 (2)
N3—N2—C10	119.54 (16)	C19—C20—C21	120.4 (3)
C1—N2—C10	123.69 (15)	C16—C21—C20	121.2 (2)
N3—N2—C1	111.45 (15)	N2—C1—H1	110.00
N2—N3—C4	108.91 (15)	C5—C1—H1	110.00
O9—N8—C6	110.57 (17)	C6—C1—H1	110.00
H7A—N7—H7B	120.00	C1—C5—H5A	111.00
C6—N7—H7A	120.00	C1—C5—H5B	111.00
C6—N7—H7B	120.00	C4—C5—H5A	111.00
N2—C1—C6	113.72 (15)	C4—C5—H5B	111.00
C5—C1—C6	111.87 (19)	Н5А—С5—Н5В	109.00
N2-C1-C5	101.89 (15)	C10-C11-H11	120.00
N3—C4—C5	113.12 (17)	C12—C11—H11	120.00
N3-C4-C16	123.32 (18)	С11—С12—Н12	119.00
C5—C4—C16	123.43 (19)	C13-C12-H12	119.00
C1C5C4	102.90 (18)	C12-C13-H13	121.00
N7-C6-C1	118 32 (16)	C14-C13-H13	121.00
N8-C6-C1	115.74 (17)	C_{13} C_{14} H_{14}	119.00
N7-C6-N8	125.7(2)	C_{15} C_{14} H_{14}	119.00
N_{2} - C10 - C11	123.7(2) 121.61(17)	C10-C15-H15	120.00
$N_2 - C_{10} - C_{15}$	121.01(17) 120.30(19)	C_{14} C_{15} H_{15}	120.00
$C_{11} - C_{10} - C_{15}$	120.50(1)	C_{16} $-C_{17}$ $-H_{17}$	120.00
C10-C11-C12	120.36(18)	C_{18} C_{17} H_{17}	120.00
$C_{11} - C_{12} - C_{13}$	120.50(10) 121.6(2)	C_{17} C_{18} H_{18}	120.00
C_{12} C_{12} C_{13} C_{14}	121.0(2) 1183(2)	C_{19} C_{18} H_{18}	120.00
$C_{12} = C_{13} = C_{14}$	110.5(2) 121.2(2)	C_{18} C_{19} H_{19}	120.00
C10-C15-C14	121.2(2) 120.4(2)	$C_{10} - C_{10} - H_{10}$	120.00
CA = C16 = C17	120.4(2)	C_{20} C_{20} H_{20}	120.00
$C_{4} = C_{10} = C_{17}$	122.00(19) 110.56(10)	$C_{19} = C_{20} = H_{20}$	120.00
$C_{4} = C_{10} = C_{21}$	119.50(19) 117.78(10)	$C_{21} = C_{20} = H_{20}$	120.00
$C_{1} = C_{10} = C_{21}$	117.70(19)	C_{10} C_{21} H_{21} C_{20} C_{21} H_{21}	119.00
$C_{10} - C_{17} - C_{18}$	120.0(2)	C20—C21—H21	119.00
01/018019	120.1 (2)		
C1 N2 N3 $C4$	-0.1(2)	C16 C4 C5 C1	-176 A(2)
$C_1 = N_2 = N_3 = C_4$	-164.28(18)	C10-C4-C5-C1	-7.4(2)
$N_2 N_2 C_1 C_5$	104.20(10)	$N_{3} = C_{4} = C_{10} = C_{17}$	1715(2)
$N_{2} = N_{2} = C_{1} = C_{3}$	13.1(2) 132.67(17)	$C_{5} = C_{4} = C_{16} = C_{21}$	171.3(2) 176.0(2)
$N_{3} = N_{2} = C_{1} = C_{0}$	155.07(17) 167.10(10)	$C_{5} = C_{4} = C_{16} = C_{17}$	1/0.9(2) -4.2(3)
$C_{10} = N_2 = C_1 = C_5$	-724(3)	C_{3} C_{4} C_{10} C_{21} C_{12}	-4.2(3) -1757(2)
10 - 10 - 10 - 10	/2.4(3) -11.2(2)	112 - 010 - 011 - 012	-1/3.7(2)
$\frac{1}{1} \frac{1}{2} \frac{1}{1} \frac{1}{2} \frac{1}$	(11.3)	C_{13} $-C_{10}$ $-C_{11}$ $-C_{12}$	1.0 (4)
$\frac{1}{1} \frac{1}{2} \frac{1}$	1/1.43(19) -162.2(2)	112 - 0.10 - 0.13 - 0.14	1/4.0(2) -2.5(4)
C1 = N2 = C10 = C11	(2)	$C_{11} = C_{10} = C_{13} = C_{14}$	-2.3(4)
$\begin{array}{c} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 $	19.4(3)	C_{10} $-C_{11}$ $-C_{12}$ $-C_{13}$ C_{14}	0.2(4)
IN2-IN3-U4-U3	0.3(2)	UII-UI2-UI3-UI4	-1.1 (4)

N2—N3—C4—C16	-175.53 (19)	C12—C13—C14—C15	0.2 (4)
O9—N8—C6—N7	1.8 (3)	C13—C14—C15—C10	1.6 (4)
O9—N8—C6—C1	175.42 (16)	C4—C16—C17—C18	177.3 (2)
N2—C1—C5—C4	-11.6 (2)	C21—C16—C17—C18	-1.7 (4)
C6—C1—C5—C4	-133.48 (17)	C4—C16—C21—C20	-176.9 (2)
N2—C1—C6—N7	-36.7 (3)	C17—C16—C21—C20	2.1 (4)
N2-C1-C6-N8	149.19 (18)	C16—C17—C18—C19	-0.6 (4)
C5—C1—C6—N7	78.0 (2)	C17—C18—C19—C20	2.5 (5)
C5—C1—C6—N8	-96.1 (2)	C18—C19—C20—C21	-2.1 (5)
N3—C4—C5—C1	7.6 (3)	C19—C20—C21—C16	-0.2 (5)

Symmetry codes: (i) -*x*-1, -*y*+1, -*z*-1; (ii) -*x*-1, -*y*+1, -*z*; (iii) -*x*, -*y*+2, -*z*; (iv) -*x*+1, -*y*+2, -*z*; (v) *x*+1, *y*, *z*; (vi) *x*, *y*, *z*-1; (vii) -*x*, -*y*+1, -*z*; (viii) -*x*, -*y*

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	<i>D</i> —H…A
N7—H7 <i>A</i> ···O9	0.86	2.29	2.596 (4)	101
N7—H7 <i>B</i> …N2	0.86	2.55	2.873 (5)	103
N7—H7 <i>B</i> ····N3 ⁱⁱⁱ	0.86	2.62	3.449 (5)	164
O9—H9····N8 ⁱ	0.82	2.12	2.829 (5)	145
C11—H11…N3	0.93	2.53	2.843 (5)	100

Symmetry codes: (i) -x-1, -y+1, -z-1; (iii) -x, -y+2, -z.