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Autoimmune diseases (AIDs) refer to connective tissue inflammation caused by aberrant
autoantibodies resulting from dysfunctional immune surveillance. Most of the current
treatments for AIDs use non-selective immunosuppressive agents. Although these
therapies successfully control the disease process, patients experience significant side
effects, particularly an increased risk of infection. There is a great need to study the
pathogenesis of AIDs to facilitate the development of selective inhibitors for inflammatory
signaling to overcome the limitations of traditional therapies. Immune cells alter their
predominant metabolic profile from mitochondrial respiration to glycolysis in AIDs. This
metabolic reprogramming, known to occur in adaptive immune cells, i.e., B and T
lymphocytes, is critical to the pathogenesis of connective tissue inflammation. At the
cellular level, this metabolic switch involves multiple signaling molecules, including serine–
threonine protein kinase, mammalian target of rapamycin, and phosphoinositide 3-kinase.
Although glycolysis is less efficient than mitochondrial respiration in terms of ATP
production, immune cells can promote disease progression by enhancing glycolysis to
satisfy cellular functions. Recent studies have shown that active glycolytic metabolism
may also account for the cellular physiology of innate immune cells in AIDs. However, the
mechanism by which glycolysis affects innate immunity and participates in the
pathogenesis of AIDs remains to be elucidated. Therefore, we reviewed the molecular
mechanisms, including key enzymes, signaling pathways, and inflammatory factors, that
could explain the relationship between glycolysis and the pro-inflammatory phenotype of
innate immune cells such as neutrophils, macrophages, and dendritic cells. Additionally,
we summarize the impact of glycolysis on the pathophysiological processes of AIDs,
including systemic lupus erythematosus, rheumatoid arthritis, vasculitis, and ankylosing
spondylitis, and discuss potential therapeutic targets. The discovery that immune cell
metabolism characterized by glycolysis may regulate inflammation broadens the avenues
for treating AIDs by modulating immune cell metabolism.
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INTRODUCTION

Autoimmune diseases (AIDs) encompass various chronic
disorders involving multiple organs and have various clinical
manifestations caused by connective tissue inflammation (1).
Most of the current treatments for AIDs use non-selective
immunosuppressive agents. Although these therapies
successfully control the disease process, patients inevitably
suffer from various side effects, particularly an increased risk of
infection (2). Investigating the pathogenesis of AIDs is crucial for
developing novel selective immunotherapies.

Immune tolerance is established during the maturation of
immune cells in the bone marrow and peripheral lymphoid
organs (3). Aberrant antigen presentation and differentiation of
B cells into autoantibody-secreting plasma cells lead to the
development of AIDs (3). Multiple signals that activate the
differentiation of CD4+ T lymphocytes are destroyed in AIDs,
leading to the breakdown of immune tolerance (4, 5).
Hyperactive immune responses triggered by pathogenic
autoantibodies are responsible for uncontrolled inflammation
in connective tissue (6). Increasing lymphocytes accumulate in
lesion locations and even form ectopic germinal centers as the
disease progresses (6). However, abnormalities in cell
development and function are not limited to T and B cells (7).
Recently, it has been suggested that metabolic abnormalities in
innate immune cells play a critical role in the pathogenesis of
AIDs, such as rheumatoid arthritis (RA) and systemic lupus
erythematosus (SLE) (8, 9). However, the comprehensive
mechanism of innate immunity involvement in AIDs remains
to be elaborated.

Glucose metabolism is an important metabolic pathway that
provides energy to cells and consists of multiple enzymes that
catalyze the conversion of glucose into metabolized products and
energy in the form of ATP (10). As shown in Figure 1, glucose
transported into the cytoplasm undergoes glycolysis, and the
produced pyruvate is used mainly in oxidative phosphorylation
(OXPHOS) after the tricarboxylic acid (TCA) cycle to generate
more ATP. Glycolytic intermediates glucose-6-phosphate (G6P)
and 3-phosphoglycerate are involved in the pentose phosphate
pathway (PPP) and amino acid synthesis, respectively. In
addition to providing energy, glycolytic intermediates support
immune cells in reprogramming their phenotypes in response to
external stimuli (11, 12). Thus, although glycolysis is less efficient
than the TCA cycle or OXPHOS in producing ATP, it serves as
an important metabolic pathway for activated immune cells (13).
During active inflammation, immune cells use glycolysis as the
major metabolic pathway to meet the demands of inflammatory
activity whereas, they restore OXPHOS during the resolution of
inflammation (14). Recently, it has become evident that the
glycolytic switch in AIDs determines the fate of immune cells
and affects the inflammatory response. More importantly,
increasing metabolism has been well characterized in innate
immune cells involved in AIDs (15, 16). However, the
mechanism by which glycolytic activity in innate immune cells
is involved in the pathogenesis of AIDs remains unclear.

In this review, we discuss the mechanisms through which
glycolysis alters innate immune cells and how metabolic
Frontiers in Immunology | www.frontiersin.org 2
pathways control inflammatory responses in AIDs, thus
providing insights for developing new therapeutic targets.
ROLE OF GLYCOLYSIS IN INNATE
IMMUNE CELLS

The Warburg effect is important for understanding metabolic
changes that occur in innate immune cells upon activation
(Figure 2). In resting immune cells, pyruvate can enter the TCA
cycle for complete oxidation to CO2, generating reduced
nicotinamide adenine dinucleotide and reduced flavin adenine
dinucleotide (17). This process produces energy efficiently. In
contrast, in an inflammatory microenvironment, pyruvate in
immune cells undergoes aerobic glycolysis and regenerates
nicotinamide adenine dinucleotide (NAD+) to rapidly meet the
demands of a pro-inflammatory phenotype (17). The upregulation
of glycolytic activity is caused by multiple processes, including the
transfer of extracellular glucose into the cell (glucose transporter,
GLUT), the breakdown of glucose (hexokinase, HK), and the
conversion of glucose-6P to pyruvate (glyceraldehyde-3-
phosphate dehydrogenase, GAPDH; pyruvate kinase isoenzyme
M2, PKM2) (Figure 1) (18, 19). Besides, G6P undergoes oxidative
decomposition in the PPP to generate nicotinamide adenine
dinucleotide phosphate (NADPH) and ribose 5-phosphate. This
metabolic branch provides the essential metabolite ribose 5-
phosphate for nucleotide biosynthesis and cell proliferation (20).
The abundantly produced NADPH in PPP supplies reducing
power for synthetic reactions, providing antioxidant defenses for
cells (20). Thus, those highly NADPH-dependent hydroxylases are
manipulated by PPP activity, such as kynurenine 3-hydroxylase
(21) (Figure 1). Immune receptors on the cell surface induce a
phenotypic switch in immunometabolism. Immune receptors
activate various transcription factors to induce the expression of
glycolytic genes via kinase signaling pathways, including
phosphatidylinositol 3 kinase (PI3K)/serine-threonine protein
kinase (Akt), mammalian target of rapamycin (mTOR), and
mitogen-activated protein kinase (MAPK) (22, 23). Hypoxia-
inducible factor 1a (HIF-1a) nuclear factor kappa B (NF-kB)
are major transcription factors mediating immunometabolic and
inflammatory activities, inducing glucose uptake, glycolysis, and
lipid synthesis (24, 25). mTOR can form different protein
complexes, mTOR complexes 1 and 2 (mTORC1 and
mTORC2). mTORC2 is responsible for controlling Akt
activation through phosphorylation, while PI3K/Akt activates
mTORC1 (17). mTORC2 enhances GLUT1 expression and
aerobic glycolytic activity. mTORC1 is not only involved in the
signaling of glycolysis but also promotes the synthesis of proteins
and lipids (17). mTOR signaling is an important regulator of
intracellular metabolic activity.

Neutrophils
Glycolysis is the main energy production pathway for neutrophils,
although glucose is also metabolized via the hexose monophosphate
pathway. Mitochondria in neutrophils are not the main source of
ATP. The mitochondria in neutrophils are primarily involved in the
July 2022 | Volume 13 | Article 920029
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initiation of cell death. Therefore, the energy required for
inflammatory functions and phagocytic activity originates from
glycolysis in these cells (26). Phagocytosis by neutrophils involves
the uptake of pathogens into plasma membrane-derived vacuoles
and subsequent fusion of lysosomes with pathogen-containing
phagosomes. Sodium iodoacetate, which selectively inhibits
glycolysis by irreversibly inhibiting GAPDH, and 2-deoxyglucose
Frontiers in Immunology | www.frontiersin.org 3
(2-DG), which inhibits both glycolysis and PPP by competitively
inhibiting G6P production, is reported to inhibit neutrophil
phagocytosis (27, 28).

Neutrophils that migrate to inflammatory tissues can kill
pathogens through phagocytosis, proteolytic enzymes, and
reactive oxygen species (29). Neutrophils also function by
releasing antimicrobial granules extracellularly (29). Antimicrobial
FIGURE 1 | Simplified flowchart of glycolysis. Glucose entering cells is metabolized by HK to G6P, which provides a substrate for PPP. PPP generates ribose 5-
phosphate and abundant NADPH. Those NADPH-dependent hydroxylases are manipulated by PPP activity, such as K3H. G6P undergoes a series of oxidative
decompositions to generate 3-phosphoglycerate, providing raw materials for serine/glycine biosynthesis. PKM2 controls the final step of glycolysis and generates
pyruvate. The produced pyruvate is used mainly in OXPHOS and the tricarboxylic acid TCA cycle to generate more ATP. Monocarboxylate transporter 4, MCT4;
Lactic dehydrogenase A, LDHA; Phosphofructokinase-1, PFK-1; Fructose-2,6-bisphosphate, F2,6BP; Kynurenine 3-hydroxylase, K3H.
FIGURE 2 | Schematic illustration of glycolysis regulating innate immune cell function. Glycolysis is the main energy production pathway for neutrophils. Impairing
glycolysis and PPP can destroy neutrophil function, including chemotaxis and ROS production, even phagocytosis. NETs formation is dependent on adequate
glucose flux, G6P, NOX2, and NAD+/NADPH. The TLR/AMPK/mTORC1 regulates glycolysis-dependent antimicrobial activity in monocytes. TLR/AMPK/mTORC1
axis is also responsible for M1-type macrophage induction, expression of glycolytic enzymes (GLUT1 and PKM2) in these cells and their IL-12 secretion. Solute
carrier family 15 member A4 (SLC15A4) is likely to maintain the interaction of AMPK and mTORC1 by acting as a scaffold. PKM2 in M1 macrophages contributes to
IL-1b transcription via STAT3 signaling. Both enhanced PPP and IDO-1 in M1 macrophages facilitate kynurenine accumulation, stimulating mTORC1 activity in T
cells. Akt/mTORC1-mediated glycolysis also affects M2-like macrophage differentiation and gene profile expression (Arg1, Cdh1, YM-1, Mrc1, and resistin-like b)
when OXPHOS in macrophages is inhibited. The interferon regulatory factor 4 (IRF4), which is downstream of the IL-4 receptor a/STAT6 and colony-stimulating
factor 1 receptor (CSF1R)/mTORC2 signaling axis, promotes glycolysis (enhanced expression of LDHA, GAPDH and HK2) during M2 activation. DCs activated by
TLRs depend on glycolysis flux to fulfill metabolic and functional requirements, including secretion of TNF-a, IL-6 and IL-12. TBK1/Ikkϵ-mediated Akt phosphorylation
responds to lipopolysaccharide stimulation of TLRs on DCs. p-Akt/mTORC1 immediately promotes the transcription of HK2 and LDHA via HIF-1a. Cxc chemokine
receptor 7 (CCR7)-mediated HIF-1a induction contributes to DC migration.
July 2022 | Volume 13 | Article 920029
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peptides and chromatin released by neutrophils form an
extracellular network that binds pathogenic microorganisms and
limits the progress of infection. These extracellular fiber-structures
are called neutrophil extracellular traps (NETs) (29). Scientists
believe that neither NETs nor the chromatin within them
originate from cell disintegration. However, mature neutrophils
die within a short time after entering the circulation. The
formation of NETs is likely an early event in neutrophil death
(29). Various microorganisms, bacterial products, and
pharmacological stimuli, such as 2-acetoxy-1-methoxypropane,
induce NETs formation (30). Stimulation with 2-acetoxy-1-
methoxypropane results in increased GLUT levels, glucose uptake,
and glycolysis rates. However, when neutrophils are exposed to 2-
acetoxy-1-methoxypropane under low glucose conditions,
polymorphic nuclei are not maintained, and NETs are not
formed (30). This suggests that NETs formation is strictly
dependent on glucose levels. G6P, a glycolytic intermediate, enters
the PPP. Nicotinamide adenine dinucleotide phosphate (NADPH)
is produced during the oxidative phase of the PPP, which maintains
NADPH oxidase 2 activity and reactive oxygen species (ROS)
production. Both G6P and NADPH are involved in chromatin
depolymerization, NADPH oxidase 2-dependent NET formation
and NET release (31). NADPH appears to be the core metabolite
supporting NETs. The glycolysis inhibitor 2-deoxyglucose (2-DG)
affects NET formation (30). Mechanistically, after HK2 is blocked
by 2-DG, G6P as the substrate for HK2 decreases immediately.
Additionally, the metabolism of glucose to pyruvate in the
cytoplasm generates relatively low levels of ATP and NADPH.
Neutrophils use aerobic glycolysis to reduce pyruvate to lactate
(which is processed by lactic dehydrogenase A, LDHA) and recycle
the resultant NAD+ in glycolysis. Therefore, impairing LDHA also
restrains the induction of NETs (32). The glucose-6-phosphate
transporter/G6Pase-b complex regulates energy metabolism,
glycolysis, and the PPP, in neutrophils by controlling G6P levels
in the cytoplasm (31). Disturbances in glucose metabolism caused
by defective glucose-6-phosphate transporter activity impair
neutrophil function, including chemotaxis and ROS production
(33). Moreover, NETs formation is, to some extent, dependent on
glutamine and, to a lesser extent, affected by the ATP synthase
inhibitor oligomycin (30).

Optic atrophy 1 (OPA1) is a mitochondrial structural protein
that is essential formitochondrial integrity and plasticity.Meanwhile,
OPA1-dependent ATP is required for the formation and
maintenance of NETs (34). Mechanistically, OPA1 in neutrophils
can ensure the generation of NAD+ by maintaining the activity of
electron transport complex I. Dysfunctional OPA1 reduces the
NAD+ levels, which results in a consequent decrease in ATP from
glycolysis. This suggests that glycolytic ATP plays an important role
in the formation of NETs (34). Additionally, dimethyl malonate acts
as a neutrophil succinate dehydrogenase inhibitor and reduces NETs
release (35). These results suggest that glycolysis may be involved in
NET formation through various biological mechanisms.

Macrophages
The plasticity of macrophages enables them to switch from one
phenotype to another in response to stimuli from the
Frontiers in Immunology | www.frontiersin.org 4
microenvironment (36, 37). The balance between different
macrophage subtypes maintains health, while phenotype
dysregulation of macrophages contributes to the development
of diseases, including AIDs (38). Although the M1/M2
classification has been found insufficient to represent the
diversity and complexity of macrophage subtypes as two
distinct phenotypes with distinct functions, M1/M2 typing can
reflect the plasticity of phenotypic transition. Interferon gamma
(IFN-g ) sec re ted by he lper T ce l l s and bac te r ia l
lipopolysaccharide can induce macrophage differentiation to
classically activated M1 (inflammatory). They produce
inflammatory cytokines that are involved in pathogen
elimination activities and interfere with wound healing and
tissue repair (39, 40). These cytokines underlie the pathology
of M1 macrophage-mediated AIDs (41). Indoleamine (2,3)-
dioxygenase (IDO) is highly expressed in M1 macrophages and
orchestrates tryptophan-kynurenine metabolism (42).
Kynurenine stimulation alters the phenotype of human T cells
via the eukaryotic translation initiation factor 4E binding protein
1/mTORC1 axis (43). Microenvironment-derived interleukin
(IL)-21, IL-33, IL-10, and Th2-cell-derived IL-13 and IL-4 all
boost macrophage polarization to the M2 type (39). This
polarization appears to be a negative feedback regulation of
inflammatory responses in the microenvironment, as M2-like
macrophages facilitate inflammation resolution and wound
healing (38) via secretion of the vascular endothelial growth
factor and transforming growth factor-beta.

Alterations in metabolic signature support functional
switching. Macrophages use OXPHOS in the resting state. M1
macrophages overexpress GLUT1 and catabolize arginine to
produce nitric oxide and ROS (44). PKM2 in these cells is
mobilized and phosphorylated (45), contributing to IL-1b
transcription via signal transducer and activator of
transcription (STAT) 3 signaling (46). M1 macrophages are
heavily dependent on glycolysis and undergo two disruptions
in the TCA cycle, resulting in an accumulation of citrate acid,
succinic acid, and lactate (47) . Mechanistical ly, 1)
Downregulated isocitrate dehydrogenase caused by metabolic
reprogramming inefficiently converts isocitrate to a-
ketoglutarate; and 2) A large amount of itaconic acid in M1
macrophages not only limits the function of succinate
dehydrogenase, resulting in substrate accumulation, but also
enhances the activity of lactate dehydrogenase. As a signaling
hub for toll-like receptors (TLRs), solute carrier family 15
member A4 is likely to maintain the interaction of adenosine
monophosphate-activated protein kinase (AMPK) and
mTORC1 by acting as a scaffold (48). Activation of TLR/
AMPK/mTORC1 signaling is critical for the induction of M1-
like metabolic phenotype and IL-12 secretion (48).

In contrast, M2 macrophages, which have an intact TCA cycle
that provides substrates for the electron transport chain, are
involved in tissue repair and wound healing and use oxidative
metabolism to fuel their long-term functions (47). The
inflammasome activity in M1 macrophages is regulated by NETs
and ATP-binding cassette transporter A1/G1/cholesterol crystal
dual signaling in tissues (49–51), followed by upregulation of
July 2022 | Volume 13 | Article 920029
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several glycolytic signals such as Eno3, Aldoc, Bpgm, Pgam1,
Pgam2, Pkm, and Hk3 (52). Conversely, M2 macrophages exhibit
a similar level of glycolysis as unstimulated cells (53, 54). This may
result from the upregulated gene expression of 6-phosphofructo-2-
kinase/fructose-2,6-biphosphatase (PFKFB) 1 induced by M2-type
activating signals. Phospho-fructokinase 2 encoded by PFKFB1
exhibits lower activity than that encoded by PFKFB3, thereby
reducing glycolytic flux (53). Inhibiting glycolysis does not affect
IL-4-induced macrophage activation without blocking OXPHOS.
When OXPHOS and glycolysis were simultaneously inhibited (high
doses of 2-DG, 10 mM), M2 differentiation was hindered (55).
Based on the results of several recent studies, investigators suggest
that glycolysis is also involved in M2 activation. Low doses of 2-DG
(1 mM) can downregulate the expression of a series of M2-like gene
profiles, including Arg1, Cdh1, YM-1, Mrc1, and resistin-like b
through the Akt/mTORC1 signaling pathway (56–58). The IFN
regulatory factor 4, which is downstream of the IL-4 receptor a/
STAT6 and colony-stimulating factor 1 receptor/mTORC2
signaling axis, promotes glycolysis (enhanced expression of
LDHA, GAPDH and HK2) and M2 activation (59). These results
suggest that M2 activation is preferentially dependent on OXPHOS,
but glycolysis is required if OXPHOS is impaired. Additional studies
must elucidate the role of glycolysis in M2 activation.

Recruited by apoptotic cells, the process by which
macrophages recognize, engulf, and degrade dying cells is
called efferocytosis (60). Macrophages in the injured tissue
exhibit exocytosis, and their metabolite load becomes
equivalent to that of phagocytes (61). However, the rise in IL-
10 levels observed during efferocytosis is regulated by
mitochondrial b-oxidation and the electron transport chain
and is not dependent on glycolysis (62). Conversely, the
chemotactic behavior of macrophages in the inflammatory
microenvironment relies on glycolysis, both in vivo and in
vitro (63). ATP generated by glycolysis can rapidly replenish
the energy required for actin synthesis and pseudopodia
extension under mild hypoxia in the inflamed area (63).

Activation of myeloid-derived cells by microbial b-glucan is
mediated through metabolic pathways that induce epigenetic
reprogramming, also known as “trained immunity” (64).
Metabolomic and transcriptomic data suggest that glutaminolysis
and glycolysis are involved in b-glucan-induced immune
reprogramming of monocytes. Glutamine-induced accumulation
of fumarate in the TCA cycle can inhibit histone demethylase lysine-
specific demethylase 5A to initiate epigenetic reprogramming in
monocytes (65). This is consistent with metabolic changes in
glucose mass consumption, lactate production, and inversion of
the NAD+/NADH ratio observed in trained monocytes (52).

The Akt/mTOR/HIF-1a signaling axis regulates glycolysis in
monocytes (66). Metformin activates AMPK and inhibits the
antibacterial activity of monocytes that is induced by mTOR. This
is also observed in the mTOR inhibitor rapamycin. Solute carrier
family 15 member A4 is an amino acid/oligopeptide transporter in
immune cells (67). Additionally, stimulation of the extracellular
immune complex (IC) can activate HIF-1a signaling via the Syk/
Erk/mTOR and Syk/PI3K/Akt/mTOR pathways, resulting in a
switch of macrophage energy metabolism to glycolysis. Fcg
Frontiers in Immunology | www.frontiersin.org 5
receptor IIb and aFcg receptor are involved in the transduction of
extracellular IC signals (68). This metabolic switch is observed in
renal Fcg receptor IIb-depleted macrophages associated with
decreased glycolytic activity, increased mitochondrial respiratory
activity, and respiratory reserves in antibody-mediated nephritis
(69). Overall, these findings suggest that inhibition of glycolysis in
macrophages reduces tissue inflammation, highlighting its potential
as a therapeutic strategy for AIDs.

Dendritic Cells (DCs)
As the primary antigen-presenting cells of the peripheral
immune system, DCs act as a bridge between innate and
adaptive immunity and are also responsible for inducing
lymphocyte activation and differentiation (70). Non-activated
DCs exhibit oxidative metabolism. Pathogen-associated
molecular patterns bind TLRs on DCs and induce chemokines
and inflammatory factors. TLRs signaling, upregulation of
glycolytic activity, and increased lactate production are within
the scope of Warburg physiology (71). Additionally,
mitochondrial activity is progressively lost following TLR
signaling. Moreover, both glucose deprivation and 2-DG
blockade reverse these effects but result in decreased OXPHOS,
and glucose restriction prevents DC activation, resulting in
premature death of DCs (72).

This reprogramming of glucose metabolism, a switch from
oxidative metabolism to glycolysis, is required for DC activation,
phenotype maintenance, and migration to lymph nodes (73–75).
DCs are rapidly activated by TLR signal heavily depends on a
surge in glycolysis flux to fulfill metabolic and functional
requirements (73), including the secretion of tumor necrosis
factor-a (TNF-a), IL-6, and IL-12. Unlike conventional PI3K-
dependent signaling, tumor necrosis receptor-associated factor
family member associated NF-kB activator binding kinase 1 (also
known as TBK1)/I-kappaB kinase ϵ-mediated Akt
phosphorylation responds to lipopolysaccharide stimulation of
TLRs in DCs (73). p-Akt/mTORC1 immediately promotes the
transcription of HK2 and LDHA via HIF-1a (76). Subsequent
HK2 upregulation and enrichment around the ion channels of
mitochondr ia ass i s t DCs to pr ime T cel l s in the
microenvironment (73). Supplementing 2-DG into the DC
culture mixture in vitro significantly weakened the ability to
alter shape and remodel the cytoskeleton (74). Even the
compensatory supply of ATP by mitochondrial OXPHOS
could not reverse the decline in overall distance traveled and
velocity (74). It has been proven that cxc chemokine receptor 7-
mediated HIF-1a induction contributes to DC migration
(74, 75).

Immature DCs exhibit a phenotype with lower cross-expression
capacity (histocompatibility complex I and II) and lower expression
of co-stimulatory molecules (CD80, CD86, and CD40) than mature
DCs, which confers tolerance characteristics (i.e., tolerant DCs) in
the peripheral immune system (77). Tolerant DCs exhibit
significantly enhanced catabolic pathways, including OXPHOS
and fatty acid oxidation, compared with the marked pro-
inflammatory activity of activated DCs (also known as
immunogenic DCs). Mitochondrial oxidative activity, ROS
July 2022 | Volume 13 | Article 920029
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production, and superoxide production are more pronounced in
tolerant DCs (78). The extracellular acidification rate (mpH/min)
analysis can indicate the rate, capacity, and reserves of glycolysis.
Although tolerant and immunogenic DCs exhibited similar rates of
glycolysis, tolerant DCs demonstrate higher glycolytic capacity and
reserves, and therefore have higher ATP reserves (78). In contrast,
tolerant DCs exhibit more active fatty acid oxidation than
immunogenic DCs. Inhibition of fatty acid oxidation inhibits the
functions of tolerant DCs and partially restores T-cell stimulation
capacity (78).
GLYCOLYSIS IN AUTOIMMUNE DISEASES

The mechanism of hyperactivated glycolysis varies for different
AIDs. Hallmark lesion sites represent not only differences in
clinical symptoms but also differences in metabolic
abnormalities. For example, expression signatures in III/IV
lupus nephritis tubulointerstitium exhibit down-regulated
glycolytic activity (79) while increased glucose uptake and
glycolysis are observed in RA-lesioned joints (80).
Additionally, glycolysis in diverse stages contributes to the
development of AIDs. In the early stage of RA, naive T cells
demonstrate reduced phosphofructokinase-1 activity, a
deficiency of glycolysis-derived ATP, and increased cell death
(81). In the late stage of RA, up-regulated GLUT1 in synovial
cells of joint tissue furthers HIF-1a function (82). Therefore,
blockade of hypermetabolic states and inhibition of glycolytic
mediators may be therapeutically useful for AIDS. In this section,
we will review the primary features of glycolysis and innate
immune cells in AIDs (as shown in Table 1), referring to the
association between glycolysis and innate immune cell function.

SLE
Neutrophils contribute to SLE pathogenesis through multiple
mechanisms, including the secretion of NETs, which are potent
stimulators of type I IFN production. In SLE, neutrophil death
and NETs formation are enhanced, leading to an increased
debris burden associated with antinuclear autoantibodies (117–
119). In healthy individuals, following uptake by macrophages,
NETs are shuttled in phagosomes to lysosomes for degradation,
and this process is promoted by DNase I and C1q (120). The
authors showed that 62% of patients with SLE were serum
positive for anti-DNase antibodies as opposed to 8% of healthy
volunteers, suggesting that defects in the clearance of aberrant
neutrophils by macrophages contribute to SLE pathogenesis
(121). Moreover, the antimicrobial peptides and self-DNA
composing the extracellular traps activate the plasmacytoid
dendritic cells and autoimmune B cells via TLR9 engagement
(122). IFN-a, a member of the type I interferon family, is majorly
generated from plasmacytoid DCs in SLE (122).

The glycolytic key enzymes and metabolites are involved in
the propensity to form NETs. Compared with that in neutrophils
from healthy volunteers, the expression of GLUT-3 and GLUT-6
is reported to be decreased in the cell membranes of neutrophils
from patients with SLE, along with a concomitant decrease in
Frontiers in Immunology | www.frontiersin.org 6
intracellular glucose concentration (83, 84). When intracellular
glucose and glycolytic fluxes are declined to levels where
neutrophil viability is difficult to maintain, B-cell lymphoma 2
apoptosis regulator-dependent apoptosis is activated and
neutrophil numbers reduce (85). Besides, Perner et al. found
that a deficiency of PPP-derived NAPDH was directly associated
with reduced NADPH oxidase 2 activity and ROS production
(86). Neutrophils may compensate for PPP-related ROS using
mitochondrial-originated ROS. But all these changes result in
reduced cellular redox capacity and oxidation of mitochondrial
DNA (87). Oxidized DNA is subsequently expelled through the
mechanism of NETs (87). Some scientists have revealed that
neutrophils suffer from a distinct form of cell death, named
NETosis, after releasing NETs (88, 89). NETosis has been
indicated as an important cause of neutropenia in SLE (89).
Although a recent study has revealed that ferroptosis (a novel
kind of cell death related to iron overload and abnormal lipid
metabolism) (123) may be the major contributor to neutropenia
in SLE (124), it is undeniable that alteration of glycolytic activity
is involved in the progression of this disease.

Similarly, single-cell RNA sequencing analysis of metabolism-
related genes revealed decreased glycolysis and TCA cycling but
increased OXPHOS in lupus nephritis renal epithelial clusters
(79). The proximal tubule cells have more mitochondria than
other renal epithelial cells and are therefore dependent on
oxidative metabolism, which prompts the renal epithelium in
lupus nephritis to develop such a metabolic switch (79).
Additionally, peroxisome biogenesis signatures were markedly
upregulated in proximal tubule cells, suggesting that disease
progression results in altered mitochondrial and peroxisomal
metabolism (79). The simultaneous administration of the
mitochondrial metabolism inhibitor metformin and glycolysis
inhibitor 2-DG significantly restored immune tolerance of lupus
mice, dampening autoimmune inflammation. These findings
indicate that immunometabolic regulation may be a practical
strategy for SLE therapy (125).

Conversely, activated glycolysis regulates the functions of T
cells involved in SLE pathogenesis. Glutaminase Gls1 promotes
HIF-1a expression and glycolytic activity, enabling the
differentiation of CD4+ T cells into T helper (Th) 17 cells to
promote SLE disease activity (126). Aberrant tryptophan
metabolites are the mediators that manipulate CD4+ T cells in
SLE (127, 128). IDO, which is activated by IFN-g, is primarily
responsible for converting tryptophan into kynurenine and
tryptamine. In an in vitro assay, kynurenine induces mTORC1
activity in double negative T cells but not in CD4+ or CD8+ T cells
derived from human (43). Interestingly, kynurenine enhances
CD4+ T cells to produce IFN-g in lupus-prone mice, whereas
tryptamine stimulates mTORC1 signaling and glycolytic activity
in CD4+ T cells (129). It has been proven that gut microbiota
predominantly growing in SLE contributes to this aberrant
tryptophan metabolism (128, 129). IDO levels are higher in SLE
patients (130) and are associated with the active phenotype in the
sunny season (131). In response to inflammation, IDO is often
highly expressed by antigen-presenting cells (such as macrophages
and DCs) that appear specialized for rapid response (132). IL-1b
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alone with IDO-1 is identified as hyperactivated in autoimmune
macrophages (42, 133). M1-like macrophages may be involved in
generating kynurenine and modulating T-cell immunity. Besides,
inhibition of kynurenine 3-hydroxylase results in decreased
intracellular catabolism of kynurenine, which is driven by
Frontiers in Immunology | www.frontiersin.org 7
enhanced PPP (43). Importantly, increased PPP transcription is
closely associated with CD68+ macrophages in the lupus kidney
and is to blame for the reduced glomerular filtration rate (134). All
of these show that oxidative stress in macrophages promotes
kynurenine accumulation.
TABLE 1 | The primary features of glycolysis and innate immune cells in AIDs.

Disease Innate
immune cell

Glycolysis
activity

Mechanism Reference

Systemic Lupus
Erythematosus

Neutrophil Down 1) The expression of GLUT-3 and GLUT-6 is decreased on the cell membranes of neutrophils in patients
with SLE.

2) Deficiency of PPP leads to reduced NOX2 activity and ROS production. Reduced cellular redox
capacity and oxidation of mitochondrial DNA initials NETs and neutrophil death.

(83–89)

Monocyte/
Macrophage

Up 1) Macrophages undergo a switch to glycolysis in response to IgG immune complex stimulation, which
is regulated by Syk/Erk/mTOR/HIF-1a and Syk/PI3K/Akt/mTOR/HIF-1a signal.

2) Glycolysis-dependent IL-1b production in macrophages leads to neutrophil recruitment and
exacerbation of lupus nephritis.

3) Hdac7 maintains PKM2 activity in macrophages via histone deacetylation. Hdac7 gene is considered
a susceptibility loci for SLE.

4) PKM2 expression is highly expressed in monocytes, DCs, and B cells derived from patients with SLE,
compared to those derived from healthy volunteers. A PKM2-MAPK/NF-kB-PKM2 feedback loop is
activated in these cells in spontaneous lupus MRL/lpr mice and imiquimod-induced lupus mice.

5) Enhanced PPP in macrophage inhibits kynurenine 3-hydroxylase, resulting in kynurenine
accumulation. Kynurenine stimulates the mTORC1 activity in human T cells.

(42, 43,
68, 90–93)

Dendritic cell Up 1) PKM2 expression is highly expressed in monocytes, DCs, and B cells derived from patients with SLE,
compared to those derived from healthy volunteers. A PKM2-MAPK/NF-kB-PKM2 feedback loop is
activated in these cells in spontaneous lupus MRL/lpr mice and imiquimod-induced lupus mice.

(90)

Rheumatoid
Arthritis

Neutrophil Up 1) NETs are triggered by the co-engagement of anti-CCP, IL-17A and TNF-a, furthering FLSs to
produce IL-6 and IL-8.

2) NETs damage the cartilage matrix using elastase, MMP2, MMP8 and MMP9.

3) FLSs induced by elastase from NETs, phagocytose modified cartilage fragments, present antigens
and induce autoimmune CD4+ T cells.

(94–101)

Monocyte
/Macrophage

Up 1) The SUCNR1 and accumulation of succinate induce HIF-1a, which is involved in the processing of IL-
1b and arthritis exacerbation.

2) Inhibitors of TLR7 and IRAK4 interrupt the HIF-1a/c-Myc signaling.

3) Upregulated Zip8 expression causes a high production of IL-1b in monocytes/macrophages in severe
arthritis via suppressing PP2A and phosphorylating mTORC1/p-S6K.

4) GSK3b expressed prevalently in the RA-injured synovium induces mitochondria in macrophages to
use oxygen inefficiently to produce sufficient ATP, promoting the production of IL-1b and IL-6.

5) Hypermetabolic macrophages in RA accumulate ROS and process the transcription of IL-1b and IL-6
via PKM2/STAT3 signaling pathway.

6) Production of tumor necrosis factor-a and IL-1b are triggered by PKM2/STAT1 in macrophages.

7) The autocrine/paracrine of PKM2 promotes the differentiation of macrophages into osteoclasts, which
are involved in joint destruction. Downregulation of COMMD1 protein expression by hypoxia
augmented RANKL-induced expression of inflammatory and E2F1 target genes and downstream
osteoclastogenesis.

(102–110)

Anti-neutrophil
cytoplasmic
antibody-
associated
vasculitis

Neutrophil Up 1) ANCA can induce NETs formation and simultaneously promote histone citrullination, which triggers
disseminated intravascular coagulation, leading to toxic damage to the endothelium.

(111)

Monocyte/
Macrophage

Up 1) Monocytes in AAV engage in glycolytic switch after ANCA stimulation.

2) Using macrophage-colony stimulating factor 1, the anti-MPO antibody stimulates monocyte
differentiation into macrophages, with downregulation of IL-10, and upregulation of M1-like cytokines
(IL-1b, IL-6, and IL-8).

(112–115)

Ankylosing
spondylitis

Unclear Up 1) Amino acid biosynthesis, glycolysis, glutaminolysis, fatty acid biosynthesis, and choline metabolism are
significantly active in patients with AS.

(116)
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Recently, the glycolytic propensity in macrophages may have
facilitated the inflammatory features of SLE. A study has found
that human and mouse macrophages undergo a glycolytic switch
in response to IgG IC stimulation, reflecting changes in
macrophage metabolism in inflamed tissues in vivo (68). This
metabolic reprogramming contributes to the production of many
pro-inflammatory mediators, including IL-1b, which is further
regulated by mTOR and HIF-1a. Inhibition of glycolysis or
knockdown of HIF-1a attenuates IgG IC-induced macrophage
activation in vitro, including in primary human kidney
macrophage cell lines (68). Additionally, inhibition of
glycolysis in a mouse model of antibody-mediated nephritis
resulted in decreased renal macrophage IL-1b levels and
decreased neutrophil recruitment (68).

PKM2 regulates the final step of glycolysis. PKM2 expression is
reported to be higher in monocytes, DCs, and B cells derived from
patients with SLE than in those derived from healthy volunteers
(90). Additionally, a PKM2-MAPK/NF-kB-PKM2 feedback loop
was reported in spontaneous lupus MRL/lpr mice and imiquimod-
induced lupus mice (90). PKM2 inhibitors suppress proline-rich
tyrosine kinase 2, preventing TLR4/TLR7/TLR9 from activating the
MAPK/NF-kB pathway (90). PKM2 and lactate levels were
reported to be abnormally increased in the hippocampus of MRL/
lpr lupus mice (91). PKM2-b-catenin signaling leads to neuronal
synapse loss by promoting microglial hyperactivation,
hypersecretion of IL-6 and IL-1b, and hyperphagocytosis. In vivo
application of AAV9-shPKM2 in a neuropsychiatric SLE mouse
model was shown to delay cognitive impairment and brain damage
(91). Hdac7, a histone deacetylase, prevents acetylation from
limiting PKM2 activity in macrophages (92). Mouse bone
marrow-specific deficient hdac7 can disrupt glycolysis-dependent
inflammatory responses (92). Hdac7 is considered a susceptibility
loci for SLE (93). These pieces of evidence reveal that, differing from
neutrophils, controlling the glycolytic mechanism in macrophages
may be a novel metabolic regulatory strategy for SLE treatment.

RA
The metabolic microenvironment of RA exhibits different
characteristics at different stages and disease sites (81). In the first
stage of RA, T cells lose self-tolerance, a critical function, and
facilitate autoantibody production by B cells (135). A switch in the
metabolic profile within immune cells is the primary mechanism at
this stage. In the second stage, autoantibodies cause metabolic
alterations in synovial cells, causing uncontrolled inflammation in
the joint (135). Adaptive autoimmunity initiates abnormal innate
immune functions in the third stage (135).

Increasing evidence suggests metabolic feature changes in
stromal and immune cells in RA (136). Recent studies have
shown that the hexokinase 2 (HK2) level is elevated in Th17, DC,
and fibroblast-like synoviocyte (FLS). By inhibiting glycolysis-
dependent DCs activation and Th17/Treg imbalance, specific
inhibition o-f HK2 (3-bromopyruvate) significantly reduced the
degree of joint swelling and histological damage in SKG mice (a
RA model) (137). Upregulation of HK2 is associated with
hypertrophy of the synovial lining, which is involved in the
bone and cartilage damage observed in RA (138). Hyperactivated
Frontiers in Immunology | www.frontiersin.org 8
HK2 promotes the proliferation and secretory function of
synovial cells by mediating AMPK to activate NF-kB signaling
(139). HK2 inhibitors effectively restrain the production of
inflammatory factors (140). Additionally, AMPK can limit the
activity of mTORC1 in immune cells. Wen et al. showed that
dysfunctional AMPK induces hyperactive glycolysis in helper T
cells by mediating aberrant activation of mTORC1, which
facilitates the exacerbation of synovitis in RA (141). Citrate
synthase levels decrease in RA synovial fluid, which suggests
that the anaerobic glycolytic activity in the joint is upregulated
under hypoxic conditions (142). Additionally, lactate levels in the
blood samples of patients with early RA correlate with the degree
of inflammation (143). Synovial fluid metabolomics in patients
with RA demonstrated decreased glucose and increased lactate
levels, which correlated with disease activity and markers, such as
C-reactive protein (143). GLUT1 is the major glucose transporter
in RA-FLSs, macrophages, and T cells. Upregulation of GLUT1
has been reported in the lining and sublining of the RA synovium
(82). GLUT1 is also associated with increased glucose uptake and
a hypoxic microenvironment in the joints with increased HIF-1a
activity (144).

A recent study provided new insights into how glycolysis in
innate immune cells contributes to RA progression. Using [18F]-
fluoro-2-deoxy-d-glucose ([18F]FDG)-positron emission
tomography-computed tomography tracing, Kubota et al.
reported that increased glucose uptake in patients with RA
correlated with disease severity and treatment response (145).
Higher levels of [18F]FDG accumulation in swollen joints are
associated with pannus rather than periarticular infiltration of
inflammatory cells and are positively associated with arthritis
progression (146). This observation suggests that activated
macrophages contribute to the accumulation of [18F]FDG in
the pannus, with hypoxia and cytokine stimulation promoting
[18F]FDG uptake by macrophages.

Depending on glucose uptake and NADPH flux, NET induction
is strongly correlated with joint damage and the pathogenesis of RA.
The formation of anti-cyclic citrullinated peptide antibodies (anti-
CCPs) and rheumatoid factor in the peripheral blood is a
characteristic phenomenon of RA (94, 95). The citrullinated self-
antigens recognized by anti-CCP are produced by peptidyl arginine
deiminase (PAD) (94, 95). Neutrophils express aberrant levels of
PAD in the synovial fluid of RA patients (94, 96). This is proved by
the evidence that the PAD alone with myeloperoxidase (MPO) is
located in the necrotic areas of synovial tissue (97). Aggrandized
NETs are detected in the neutrophils from circulating, synovial tissue
(98) and rheumatoid nodules in RA, which exhibit a correlation with
anti-CCP levels (99). NETs formation is triggered by co-engagement
of anti-CCP, IL-17A, and TNF-a (99). Subsequently, NETs induce
further pro-inflammatory activity (including secretion of IL-6 and
IL-8) in FLSs (99). Various proteins in NETs can damage the
cartilage matrix and aggravate joint damage, including elastase and
matrix metalloproteinase (2, 8, and 9) (100, 101, 147). Among them,
elastase can promote the release of PAD2 from FLSs, which can
citrullinate cartilage fragments (101). FLS phagocytose modified
cartilage fragments (autoantigens), present antigens and induce
autoimmune CD4+ T cells (101).
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Both undifferentiated monocytes and macrophages in RA are
in a hypermetabolic state (148). IL-1b, which is a consequence of
metabolic reprogramming, seems to be a vital contributor to the
pathogenesis of RA (102–108). Cinnamaldehyde inhibits the
expression of the succinate receptor 1 and the accumulation of
succinate, leading to restricted HIF-1a activation and ultimately
limiting glycolytic activity (102). Inhibitors of TLR7 and IL-1
receptor-associated kinase 4 also interrupt HIF-1a/c-Myc
signaling (103). Impairing macrophage glycolysis in RA is
associated with inflammasome disassembly, decreased IL-1b
production, and arthritis remission (102). The cellular
membrane zinc transporter Zip8 is reported to be present at
higher levels in the synovial tissue of patients with RA than in
healthy volunteers (104). Bioavailable zinc in the monocyte
cytoplasm is essential for protein phosphatase 2 phosphatase
activator inhibition and mTORC1/p-S6K phosphorylation. Zip8
expression is associated with IL-1b production in monocytes/
macrophages in severe arthritis (104). Immunostaining
confirmed that glycogen synthase kinase 3b expression is
prevalent in macrophages in the RA-injured synovium, and
glycogen synthase kinase 3b inactivation is a metabolic switch
that induces mitochondria in macrophages to use oxygen
inefficiently to produce sufficient ATP (105). The resultant
large amount of ATP maintains the activity of collagenase
cathepsin K and promotes the production of IL-1b and
IL-6 (105).

PKM2 may be a connection between glycolysis and activated
macrophages in RA. PKM2 is an active enzyme involved in
glycolysis in macrophages, and its dimerization depends on the
intracellular ROS concentration (106). Hypermetabolic
macrophages in RA accumulate ROS and activate the PKM2/
STAT3 signaling pathway and transcription of IL-1b and IL-6
(106). Production of TNF-a and IL-1b is triggered by STAT1
under PKM2 stimulation in the induced RA model (Dark Agouti
rats) (107). Although FLSs express higher levels of PKM2 than
immune cells, obviously, FLSs extracellularly secrete a small
amount. PKM2 in synovial fluid and plasma of RA patients
originates from activated macrophages rather than FLSs (108).
The released PKM2 facilitates macrophages to differentiate into
osteoclasts involved in joint destruction (108). A hypoxic
environment, active glycolysis, and massive secretion of
inflammatory factors are characteristic of the macrophage-to-
osteoclast transition in the RA synovium (109, 110). This process
also involves a deficiency of inhibitory signals, including the
copper metabolism domain-containing 1/receptor activator of
the nuclear factor kappa-B ligand (RANKL) axis (110). Lack of
regulation of NF-kB signaling and the transcription factor E2F1
are the primary drivers for the metabolic shift in
osteoclasts (110).

Anti-Neutrophil Cytoplasmic Antibody
(ANCA)-Associated Vasculitis (AAV)
AAVs are a heterogeneous group of AIDs characterized by
impaired microvasculature (149). Most of autoantibodies in
most patients with ANCA-AAV are directed against
autoantigens in the primary granules of neutrophils and
Frontiers in Immunology | www.frontiersin.org 9
lysosomes of monocytes, including MPO and protease 3.
Patients with different autoantibodies exhibit different clinical
manifestations. Patients with anti-protease 3 antibodies present
with granulomatous inflammation, while patients with anti-
MPO often present with sclerosis (149). Studies have reported
that cross-linked ANCA Fab regions may be involved in disease
progression by activating neutrophil superoxide production and
inducing respiratory bursts (150, 151). Additionally, ANCA can
induce NETs formation and simultaneously promote histone
citrullination, which triggers disseminated intravascular
coagulation, leading to toxic damage to the endothelium (111).
This can be prevented by binding recombinant thrombomodulin
to neutrophils via the macrophage 1 antigen (111). As
mentioned earlier, lactate and G6P-dependent-PPP support the
NET formation (31, 33, 34). These results indicate the crucial
role of glycolysis in AAV.

Few studies have focused on the pathogenic role of monocytes in
AAV. Recently, some evidence has found clues to how glycolysis in
monocytes contributes to AAV development. It has also been
suggested that ANCA F(ab)2, but not intact ANCA IgG, activates
the respiratory burst of monocytes involved in AAV pathogenesis
(152). The anti-MPO antibody stimulates monocyte differentiation
into macrophages through macrophage-colony stimulating factor 1
(112), downregulates IL-10 secretion (113), and upregulates the
secretion of several M1-like cytokines, such as IL-1b, IL-6, and IL-8
(114). Pro-inflammatory macrophages play a significant role in
microvascular-targeted inflammation in AAV. O’Brien et al.
reported that the metabolic transition of monocytes occurs after
ANCA stimulation (115). Anti-MPO-stimulated monocytes
exhibited massive uptake of glucose, increased glycolysis and
OXPHOS (115). Glycolysis was also activated in anti-protease 3-
stimulated monocytes, albeit for a shorter duration. Additionally,
OXPHOS induces the subsequent secretion of IL-1b (115).

Ankylosing Spondylitis (AS)
AS refers to a group of diseases called spondyloarthropathies that
present with chronic back pain predominantly affecting the spine
and sacroiliac joints, the diagnosis of which is often delayed (153,
154). Genetic factors (153) and environmental factors, including
smoking and infection (154), are the main risk factors for AS
development; however, the exact mechanisms underlying AS
pathogenesis are unclear. Ou et al. established a serum
metabolism-associated diagnostic panel and found 55
metabolites that were significantly different between patients
with AS before and after TNF inhibitor treatment (116).
Healthy volunteers and patients with AS could be
differentiated using five metabolites: L-glutamic acid,
arachidonic acid, L-phenylalanine, phosphocholine [18:1(9Z)/
18:1(9Z)], and 1-palmitoylglycerol (area under the curve 0.998,
95% confidence interval: 0.992–1.000) (116). Pathway analysis
showed that multiple pathways, including amino acid
biosynthesis, glycolysis, glutaminolysis, fatty acid biosynthesis,
and choline metabolism, were significantly active in patients with
AS (116). This study provided new insights into AS pathogenesis;
however, more mechanical studies investigating the role of
immunometabolism in AS are required.
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ANTI-GLYCOLYSIS DRUGS THAT TARGET
INNATE IMMUNE CELLS

One possible use of metabolically targeted therapy is as an
“adjuvant” to increase the effectiveness of co-administered
biological or conventional antirheumatic drugs. Multiple
pathways affect innate immune cells through different
mechanisms that alter multiple aspects of the immune system
and synergistically reduce the production and release of pro-
inflammatory cytokines. Due to their cost-effectiveness and
efficacy in metabolic reprogramming, many anti-malarial
drugs, such as hydroxychloroquine and chloroquine, are also
used to treat rheumatic diseases. While glycolysis plays a key role
in activated FLSs, lactate levels in the FLSs of patients with RA
are higher than those in the synovial fluid of patients with
osteoarthritis (155). Increasing the reliance of immune cells on
accelerated glycolysis makes them more vulnerable to apoptosis
(155). This suggests that the biological mechanisms of
metabolism-targeted drugs and their therapeutic effects deserve
attention. In the section below, we review the molecular
mechanisms of these drugs and their corresponding
clinical applications.
Rapamycin
mTOR is recognized as a central regulator of multiple metabolic
pathways that control cell differentiation, death, and
inflammatory activity. mTOR activity mediated by various
kinase signals upregulates the expression of glycolytic and
inflammatory genes, which in turn helps immune cells meet
metabolic demands (156). Given the role of mTOR signaling in
regulating inflammation, it serves as a critical link between
metabolic phenotypes and AIDs.

Notably, as an mTORC1 inhibitor, N-acetylcysteine can
safely reduce disease activity in patients with SLE by
suppressing T-cell inflammatory factors (157). Lupus nephritis
is a comorbidity in late-stage SLE. Rapamycin treatment reduced
renal tissue damage and proteinuria, improved renal function,
and prolonged survival in NZBW/F1 lupus-prone mice (158).
Aberrant elevation in antiphospholipid antibodies is thought to
be associated with liver damage in SLE (159). Rapamycin can
restore liver mitochondrial function by targeting mTORC1 and
effectively reducing anti-b2-glycoprotein I and anticardiolipin in
SLE mice (159).

Previous evidence suggests that controlling Th17-triggered
inflammation is the mechanism by which rapamycin treats SLE.
KN-93 can restrain Th17 differentiation by inhibiting the
calmodulin-dependent protein kinase IV/Akt/mTOR pathway
and reduce disease damage in SLE mice (160, 161). A recent
study found that the HIF1a-dependent glycolytic pathway in
macrophages can exacerbate IgG deposition-induced lupus
nephritis (68). PI3K- and Erk-mediated mTOR hyperactivation
increases HIF1a transcriptional activity (68). MRL-lpr mice
treated with rapamycin exhibited a decline in neutrophil
recruitment, IL-1b, prostaglandin E2, and ROS secreted from
macrophages (68). These results suggest a potential therapeutic
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application of rapamycin in targeting macrophages for
SLE therapy.

In a single-arm, open-label, phase 1/2 trial of sirolimus
(rapamycin) in patients with active SLE, both the British Isles
Lupus Assessment Group score and the SLE Disease Activity
Index decreased significantly after 12 months of treatment (162).
The drug had no adverse effects on liver function or lymphocyte
count. In another trial of pediatric patients with SLE, most
achieved durable remission with sirolimus treatment (163).
Moreover, sirolimus has greater advantages for serological
reduction and glucocorticoid tapering, compared to the classic
immunosuppressant tacrolimus, in treating SLE (164).

Everolimus is a 40-O-(2-hydroxyethyl) derivative of
rapamycin (165). By inhibiting mTOR signaling to block IL-2
activation in T cells, everolimus prevents T-cell hyperactivation
and reduces arthritis activity in patients with RA. Patients with
RA treated with everolimus for 12 weeks (36.1%) had
significantly higher rates of pain reduction and decreased
disease activity than those treated with placebo (16.7%) (165).
However, the everolimus-treated group showed more fluctuating
liver function and blood lipid levels. Another mTOR inhibitor,
sirolimus, relieves RA symptoms while it exhibits no impact on
routine blood tests and liver and renal functions (166, 167).
Additionally, an ongoing clinical trial is evaluating the efficacy of
temsirolimus (a mTORC1 inhibitor; ClinicalTrials.gov identifier:
NCT00076206) in patients with active RA on concomitant
methotrexate therapy. These data demonstrate the potential
use of rapamycin for RA treatment.

Dimethyl fumarate
Dimethyl fumarate (DMF), an electrophilic, cell-permeable
derivative of the TCA cycle metabolite fumarate, has been
clinically approved as an immunomodulatory drug for treating
multiple sclerosis (168). An increasing number of studies have
reported that DMF mitigates the progression of AIDs by exerting
effects on innate immune cells. DMF can succinylate the
glycolytic enzyme GAPDH by covalently modifying cysteine
residues. DMF can reportedly reduce GAPDH activity, inhibit
aerobic glycolysis in bone marrow-derived cells and
lymphocytes, and exert anti-inflammatory effects, both in vitro
and in vivo (169). DMF reciprocally inhibits the survival,
differentiation, and effector functions of Th1 and Th17 cells
while promoting the development of regulatory T cells.
Therefore, DMF selectively targets effector cells while sparing
regulatory and naive T cells (170).

DMF induces nuclear translocation of nuclear factor E2-related
factor 2 (Nrf2) and enhances NRF2 promoter activity while
attenuating RANKL-mediated intracellular ROS generation
(171). The latter is an osteoclast effector that inhibits RANKL-
induced bone destruction (171). Activation of Nrf2 in osteoclasts/
macrophages by DMF inhibits bone and joint destruction in
patients with RA (171). Additionally, DMF inhibits MAPK
signaling, thereby downregulating RANKL-induced expression
of c-Fos, calcineurin-dependent 1, and nuclear factor of
activated T cell cytoplasmic-1 (172). DMF disrupts actin ring
formation by inhibiting the abovementioned signaling pathways,
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ultimately inhibiting the pit-forming activity of osteoclasts (172).
DMF inhibits the extracellular release of high-mobility group box
1 by activating Nrf2. Simultaneously, DMF reduces the
phosphorylation of p38 MAPK and extracellular signal-regulated
kinase in osteoclasts (173). Additionally, DMF succinylates IL-1
receptor-associated kinase 4 in plasmacytoid DCs, preventing the
binding of IL-1 receptor-associated kinase 4 to the adaptor protein
MyD88 and decreasing the inflammatory cytokines IL-1, IL-18,
INF-a, and TNF-a (174). Plasmacytoid DCs are activated in SLE
and accumulate in the skin and produce interferons (175). DMF is
potentially an important regulator of the innate immune response
and may be a novel treatment strategy for SLE.

Hexokinase Inhibitors
Hexokinase can catalyze the phosphorylation of glucose,
initiating the glycolysis process. Owing to its structural
similarity to glucose, 2-DG can competitively bind to HK2,
inhibiting HK2 production by accumulation of phosphorylated
2-DG (176). In pre-clinical experiments, 2-DG significantly
attenuated arthritis progression and reduced adaptive and
innate immune cell activation in K/BxN mice (176). Cai et al.
reported that inducible-nitric oxide synthase expressing M1
macrophages are significantly increased in arthritic joints and
that 2-DG can effectively induce arginase 1 expressing M2
macrophages via the AMPK/NF-kB axis (177). Lonidamine, an
inhibitor of HK1 and HK2, attenuates joint destruction in
collagen-induced arthritis mice (178). The suppression of HK1
and HK2 downregulates the IL-1b and TNF-a expression and
restores the anti-inflammatory activity of macrophages in the RA
model. Currently, lonidamine and 2-DG are used in phase I/II
trials for treating advanced cancers (179). The investigators
observed only minor adverse effects, including nausea and
blood glucose reduction (179).

Metformin
Metformin was initially used in the first-line treatment of type 2
diabetes owing to its safe glucose-lowering effect (180).
Increasing studies have taken advantage of the metabolism
modulation property of metformin for treating various
diseases, including cancer, cardiovascular disease, and AIDs
(180). Metformin can modulate immunometabolism by
mediating AMPK signaling. AMPK/mTOR is involved in the
differentiation of CD4+ T cells (181). The expression of
transcription factors, especially STAT, mediates mTORC1-
dependent Th17 differentiation, which contributes to the
development of RA (182). Additionally, metformin-activated
AMPK suppresses the function of STAT3 and NF-kB, and
boosts macrophages to exhibit an anti-inflammatory
phenotype (183). In an Israeli cohort, patients on high-dose
(2,550 mg/day) metformin had a lower risk of developing RA
than those on low-dose (850 mg/day) metformin (adjusted
hazard ratio of 0.62, 95% confidence interval 0.46–0.84),
especially in women (184). A randomized controlled trial
shows that RA patients treated with metformin for 12 weeks
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(80.8%) had significantly higher rates of pain reduction and
decreased disease activity than those treated with placebo
(54.7%) (185). No serious adverse effects were reported in
these two groups.

Since glycolysis contributes to NETs formation, metformin
reduced phorbol 12-myristate 13-acetate-induced NET formation
via the AMPK/mTOR axis (186). NET-derived mitochondrial
DNA induces IFNa production in pDCs, which is an important
pathogenesis of SLE (186). Metformin with concomitant
hydroxychloroquine in patients with mild or moderate SLE can
reduce clinical flares and disease progression (186, 187).
SUMMARY AND PROSPECT

Uncontrolled inflammatory bursts are a common feature of
AIDs, including SLE, RA, AS, and ANCA-AAV. Various
studies have demonstrated that innate immune cells adapt
their metabolism to maintain or change their inflammatory
phenotype. Additionally, a growing body of evidence supports
the immunomodulatory properties of glycolytic metabolites in
AIDs. Molecule machines, such as mTOR, AMPK, and HK2,
which were initially thought to be simply regulators of cellular
metabolism, are now regarded as therapeutic targets for
modulating inflammatory responses. Hence, the discovery that
an immune metabolism characterized by glycolysis may regulate
inflammation broadens the avenues for treating AIDs. Strategies
to target the abovementioned signaling molecules can be
developed to modulate immune cell metabolism. Therefore,
additional studies are needed to increase our understanding of
the metabolic pathways in innate immune cells that are involved
in the pathogenesis of AIDs, could potentially be exploited
therapeutically to weaken exacerbated inflammatory responses.
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GLOSSARY

AID Autoimmune disease
Erk Extracellular signal-regulated kinase
RA Rheumatoid arthritis
SLE Systemic lupus erythematosus
OXPHOS Oxidative phosphorylation
TCA Tricarboxylic acid
G6P glucose-6-phosphate
PPP Pentose phosphate pathway
NAD+ Nicotinamide adenine dinucleotide
GLUT Glucose transporter
HK Hexokinase
GAPDH Glyceraldehyde-3-phosphate dehydrogenase
PKM2 Pyruvate kinase isoenzyme M2
PI3K Phosphatidylinositol 3 kinase
Akt Serine-threonine protein kinase
mTOR Mammalian target of rapamycin
MAPK Mitogen-activated protein kinase
HIF-1a Hypoxia-inducible factor 1a
NF-kB Nuclera factor-kappa B
mTORC mTOR complexe
NETs Neutrophil extracellular traps
NADPH Nicotinamide adenine dinucleotide phosphate
2-DG 2-deoxyglucose
ROS Reactive oxygen species
LDHA Lactic dehydrogenase A
OPA1 Optic atrophy 1
IL Interleukin
STAT Signal transducer and activator of transcription
6-
biphosphatase

6-phosphofructo-2-kinase/fructose-2

PFKFB
AMPK AMP-activated protein kinase
TLR Toll-like receptor
IC Immune complex
DC Dendritic cell
TNF- Tumor necrosis factor-
TBK1 Tumor necrosis receptor-associated factor family member

associated NF-kB activator binding kinase 1
FLS Fibroblast-like synoviocyte
[18F]FDG [18F]-fluoro-2-deoxy-d-glucose
anti-CCP Anti-cyclic citrullinated peptide antibody
PAD Peptidyl arginine deiminase
RANKL Receptor activator of nuclear factor kappa-B ligand
ANCA Anti-neutrophil cytoplasmic antibody
AAV ANCA-associated vasculitis
MPO Myeloperoxidase
M-CSF Macrophage-colony stimulating factor 1
DMF Dimethyl fumarate
Nrf2 Nuclear factor E2-related factor 2
MCT4 Monocarboxylate transporter 4
PFK-1 Phosphofructokinase-1
F2 Fructose-2
6BP 6-bisphosphate
Frontiers in Imm
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