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The advantages of using design-based stereology in the collection of quantitative data,
have been highlighted, in numerous publications, since the description of the disector
method by Sterio (1984). This review article discusses the importance of total number
derived with the disector method, as a key variable that must continue to be used to
understand the rodent brain and that such data can be used to develop quantitative
networks of the brain. The review article will highlight the huge impact total number has
had on our understanding of the rodent brain and it will suggest that neuroscientists
need to be aware of the increasing number of studies where density, not total number,
is the quantitative measure used. It will emphasize that density can result in data that
is misleading, most often in an unknown direction, and that we run the risk of this
type of data being accepted into the collective neuroscience knowledge database.
It will also suggest that design-based stereology using the disector method, can be
used alongside recent developments in electron microscopy, such as serial block-face
scanning electron microscopy (SEM), to obtain total number data very efficiently at the
ultrastructural level. Throughout the article total number is discussed as a key parameter
in understanding the micro-networks of the rodent brain as they can be represented as
both anatomical and quantitative networks.

Keywords: stereology, serial block-face scanning electron microscopy, total number, rodent brain, the disector
method

INTRODUCTION

The first detailed drawings of the cells of the brain, by ‘‘Ramón y Cajal’’ indicated that the
brain is a complex arrangement of many different types of cells (see Swanson and Lichtman,
2016). Modern imaging methods have shown that the complexity of this network spans
from the nanoscale to axonal pathways (Bohland et al., 2009; Finlay, 2016). This network is
formed by the connections between a series of nodes, at cellular and subcellular levels, each
representative of a specific brain region and fundamental to functional interactions in the brain
(Barbas, 2015; Li et al., 2016). Within each node there is a total number of cells and synapses
and these numbers are crucial in understanding how a brain region interacts functionally
with other regions. All anatomically connected brain regions are quantitative networks and
models of normal and pathological brain function benefit from using estimates of total number
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(for early descriptions of this idea see Mulders et al., 1997).
The total number of neurons and/or synapses in each region,
each node, in a quantitative network must be obtained without
size or shape bias and within identifiable anatomical boundaries
(Witter, 2010). The unbiased stereological estimator, the disector,
combined with design-based stereological sampling can be used
to obtain an estimate of total number within a defined volume of
tissue (West et al., 1991; Oorschot, 1996).

Rodents, particularly rats and mice, are key animal models
used to investigate many pathologies of the human brain (Nestler
and Hyman, 2010) and thus it is essential to have quantitative
models of the rodent brain networks to correlate with function.
This review article will focus on the idea that total number,
either of cells or synapses, obtained with the disector method,
is crucial in enabling the rodent brain to be understood as a
quantitative network that allows both function and dysfunction
to be interpreted at a cellular basis. Finally, it will suggest that the
disector method is poised along-side developments in electron
microscopy to allow major advances in our understanding of
the quantitative structure of the rodent brain at the subcellular
level. Throughout the article total number is discussed as a
key parameter in understanding the micro-networks of the
rodent brain as they can be represented as both anatomical and
quantitative networks.

THE DISECTOR METHOD—A
REVOLUTION IN THE ESTIMATION OF
TOTAL NUMBER

The brain is comprised of a number of component networks of
individual cells and synapses that can be considered particles with
a certain shape and size. These particles can be counted as long
as any profile of the particle can be reliably identified in random
sections through the particle. It has been well established that
within the brain both cells and synapses rarely conform to simple
geometric shapes and that the volume of particles may change
with experimental treatment as noted in a number of studies
(Kitahara et al., 2016). If number is estimated from the presence
of particles in a single tissue section it is biased towards particles
of larger volume and although a range of correction factors can be
applied to single section estimates this is far from ideal (Calverley
and Jones, 1987; Calverley et al., 1988; Park and Ahmad, 2014).
The existence of a particle size bias should have been abolished
with the publication of a seminal article describing the disector
method in 1984 by Sterio. This method was a major breakthrough
in quantitation. It requires that all profiles from a particle
can be identified in a section, that each particle has a single
‘‘top’’ or ‘‘bottom’’, depending on the direction from which
slices through the particle are viewed and that section thickness
is known, preferably measured. The original disector method
(Sterio, 1984), known as the physical disector used two adjacent
sections a known distance apart, that was not greater than around
one third of the height of the smallest particle to be counted.
Particle profiles visible in one section, the reference section, are
counted if they are not present in the parallel ‘‘lookup’’ section,
meaning the profile counted must have been either the top or

bottom of the particle. This method and how to apply it over
a range of cell and synapse types are described in a number of
excellent books, key stereological reviews and specific research
publications (Geinisman et al., 1996; Howard and Reed, 2005;
West, 2012, 2013a; Mouton, 2014). The disector method was
rapidly adopted by neuroscientists estimating synapse number
as serial physical sections are commonly used in transmission
electron microscopy and it was well established that synapse size
and shape varies with section orientation (Geinisman et al., 1992,
1996). It continues to be a key tool for estimating total synapse
number and synapse number per neuron (da Costa et al., 2009;
Jasinska et al., 2016).

The use of two parallel sections to form the disector was
ideally suited to transmission electron microscopic studies
of subcellular elements but was time consuming at a light
microscope level. The optical disector method removed this
constraint by using one relatively thick physical section
and counting within it, through a series of optical sections
(Gundersen, 1986). Essentially particle number is counted within
an unbiased sampling frame as one focuses through a series of
optical sections for a known distance that forms the z-dimension
of the disector volume. In three dimensions the unbiased
sampling frame is an unbiased sampling volume with either
the upper or lower optical section forming an exclusion plane
(Gundersen, 1986; Gundersen et al., 1988a; West et al., 1991;
West, 2013a; Mouton, 2014). This method requires accurate
measurement of the z-direction within the section and use of a
high-quality objective lens to minimize the thickness of the focal
plane. Optical section thickness can be minimized in the confocal
microscope making it ideally suited for the optical disector
method (Peterson, 1999; Kubínová and Janáček, 2015). Detailed
explanations of the optical disector method can be found in key
stereological articles (West, 2013a; Mouton, 2014) and examples
of its use in specific brain regions are numerous (West et al., 1991;
Oorschot, 1996; Bonthius et al., 2004; Ash et al., 2014).

The disector method provides an unbiased estimate of
total number within the disector volume sampled within the
structure of interest. This is a measure of density (Nv) within
the known disector volume but if the total volume of the
structure is not known this can be misleading (Oorschot,
1994; Coggeshall and Lekan, 1996; Dumitriu et al., 2012; Ash
et al., 2014). The volume of the brain region within which
density is estimated may change due to tissue processing
or many other factors and this change may be differential
across experimental groups and to an unknown extent. The
relationship between density and total number is unknown, thus
making density a potentially misleading quantitative measure.
This is avoided by determining the volume of the region
of interest, the reference volume (Vref), within which the
density is determined. These parameters can then be used
to estimate the total number (N) where N = Nv × Vref.
These methods are described in detail in many excellent
sources (Gundersen et al., 1988b; West, 2013a; Mouton,
2014).

The removal of potential bias but also efficiency have
been important concerns as stereological methods have
continued to be developed (Gundersen and Jensen, 1987;
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Gundersen et al., 1999; West, 1999, 2012; Hosseini-Sharifabad
and Nyengaard, 2007). The unbiased sampling design of
stereology, based on application of a set of uniform random
points, enabled concurrent estimation of Vref during a disector
estimation of density. This had the advantage that the estimate of
total number (N) is not affected by any change in tissue volume
as all the measurements are relative, are fractions (Gundersen
et al., 1988a; West, 1993, 2002). The disector method, following
a random systematic sampling design, estimates particle number
(N) from the number of particles counted (

∑
Q−) in a known

volume of tissue that is a known fraction (f) of the volume
of region of interest (the Vref). The total number (N) of
particles within the Vref is determined from the number of
particles counted (

∑
Q−) and the inverse of the fraction (f),

N =
∑

Q− × (1/f). The original method used the physical
disector but with use of the optical disector the method became
known as the optical fractionator (West et al., 1991; West, 2002;
Hosseini-Sharifabad and Nyengaard, 2007) and is very widely
used. Despite the unbiased nature of the disector method and
the major advantages of using an estimate of total number,
the methodology still contains potential sources of systematic
bias. With increased use of the optical disector over the last
decades the type of sections within which a disector density
estimate is made has changed and become more diverse. Tissue
deformation during sectioning and the potential loss of particles
from the section surface are long standing issues, addressed
by assigning an upper and lower guard to each section where
particles were not counted (Gundersen, 1986; West et al., 1991).
However, there is evidence of uneven section shrinkage in
frozen sections, an increasingly common choice for optical
disector studies (Bonthius et al., 2004; Carlo and Stevens, 2011;
Puigdellívol-Sánchez et al., 2015) and of variable density along
the z-axis in sections from a range of sectioning methods (Hatton
and von Bartheld, 1999; Dorph-Petersen et al., 2001; Gardella
et al., 2003; von Bartheld, 2012; West, 2013b). These potential
sources of systematic bias are important and solutions such
as using smaller counting frames that vary in position in the
Z-axis, have been suggested as ways of achieving higher precision
(Puigdellívol-Sánchez et al., 2015). Investigators should publish
information on the tissue processing, embedding and cutting
protocols used, alongside details of stereological sampling
parameters so that results can be compared across research
studies. Neuroscientists would benefit if journals insisted these
parameters be included in publications as it would allow data
to be more easily compared between studies. Other sources of
potential bias, such as differences between experimenters in
object or boundary identification can be minimized by including
specific criteria used and photographic evidence (West et al.,
1991; Gondré-Lewis et al., 2016). Immuno-labeling to phenotype
particles of interest, can help identification but antibody
penetration and labeling success in the z-axis direction must be
assessed and reported (Ash et al., 2014). Despite the potential of
errors within individual estimates of total number, total number
remains superior to density estimates and can be combined
with our knowledge of brain networks to develop quantitative
networks at both cellular and synaptic levels of anatomically
connected regions within the rodent brain. This type of network

will enhance our understanding of the rodent and thus the
human brain (Gulley and Juraska, 2013 and see DeFelipe, 2015;
DeFelipe et al., 2016 for more detailed discussion).

TOTAL NUMBER—NOT VOLUME OR
DENSITY—THE PAST

It has been over three decades since the original description of
the disector method and the demonstration that volume and
density on their own were of limited value in understanding
the number of structures within a brain region. One of the
most influential studies that emphasized the importance of using
total number within a defined volume, not density, was an early
study undertaken by stereologists on human brain tissue. A 40%
decrease in total neuron number was found in the mediodorsal
thalamic nucleus from schizophrenic patients compared to
controls despite numerous previous studies reporting no change
in density (Pakkenberg and Gundersen, 1989). The potential
effect of a volume change on density had been ignored and
misleading data resulted. Total number via a disector estimation,
not an unbiased density estimate alone, has been the key major
advance in understating the rodent brain in health and disease.
An understanding of the value of total number estimates within
a defined brain region has provided understanding of a key
neuroscience dogma; ‘‘that cells are lost from the brain as it ages’’,
which contained the implication that this occurred throughout
the brain. This view had arisen because density estimates, made
within unknown tissue volumes, had resulted in misleading data.
Although there was no significant decrease in the total number
of neocortical neurons in the aging human brain (Pakkenberg
and Gundersen, 1997) neuronal deficits have been found in
some specific cortical regions and layers and for some neuronal
phenotypes during aging (Shi et al., 2006; Stranahan et al., 2012).
It has also been found that there is an age-related decrease in
the total number of granule and Purkinje cells in the anterior,
but not posterior lobe, of the cerebellum (Andersen et al.,
2003). This study also found the volume of the Purkinje cell
perikarya decreased with aging, emphasizing the importance of
the disector method in determining density without bias from
cell size (Andersen et al., 2003). The lack of neuronal loss in
the hippocampus and key output regions stimulated alternative
areas of investigation on cognitive decline in aging (Merrill
et al., 2001). Stereological quantitation combined with immuno-
labeling found a specific loss of GAD67- and SOM-positive
neurons in the hilar region of memory impaired rats but no
decline in total number of NeuN labeled cells. This finding
was instrumental in associating a loss of protein expression
in the labeled cells with dysfunction suggesting therapeutic
intervention may be possible (Spiegel et al., 2013). Concurrently
the total number of glial cells in specific brain nuclei increases
during aging stimulating further research on the role of glial cells
as causative rather than reflective of brain changes (Rubinow and
Juraska, 2009). It is clear that aging can alter the total number of
neurons within specific brain regions but the important point is
that use of the disector method, ensures that the density estimate
is not biased by age-related particle size changes, plus the
conversion of sample density to total number, accommodating
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unknown regional volume change, has enabled the generation of
reliable findings (Pakkenberg and Gundersen, 1989, 1997). Total
number estimates within design-based stereological studies have
contributed in past decades over the breadth of neuroscience
to advance our understanding of Parkinson’s and Huntington’s
disease (Arcuri et al., 2016), ischemeic brain injury (Avendaño
et al., 1995; Mestriner et al., 2013), epilepsy (Foresti et al.,
2009; Ye et al., 2013), schizophrenia (Kaalund et al., 2013),
depression (Allard et al., 2004) and traumatic brain injury (Bregy
et al., 2012; Cope et al., 2016) to name a few. Understanding
injury in the developing brain has also been advanced by the
use of total number with studies of hypoxic/ischemeic brain
damage (Cameron et al., 2015), fetal alcohol spectrum disorder
(Napper and West, 1995; Klintsova et al., 1997), maternal stress
(Oreland et al., 2010) and a range of other prenatal insults
(Smith et al., 2008; Sadowski et al., 2014). The endpoint of the
majority of this research is to understand brain function. Thus,
investigation of the total number of synapses in a brain region
or on a specific type of neuron is as important as total cell
number in understanding how neuronal populations interact
within a network (DeFelipe, 2015). As mentioned previously,
estimation of the total number of synapses with the disector
method was rapidly adopted (Geinisman et al., 1992, 1996).
Numerous studies have used disector estimates of total synapse
number to investigate changes resulting from a number of
phenomena including protein undernutrition (Lukoyanov and
Andrade, 2000), hypothyroidism (Madeira and Paula-Barbosa,
1993), aging (Poe et al., 2001), epilepsy (Thind et al., 2010;
Yamawaki et al., 2015), diabetes (Zhao et al., 2016) and in
some cases the reversibility of synapse change (Lukoyanov
and Andrade, 2000; Yamawaki et al., 2015). Studies have also
indicated that an increase in the number of synapses occurs with
a change in behavior (Klintsova et al., 1997; Hajszan et al., 2009;
Dalzell et al., 2011; Jasinska et al., 2016). An important aspect
of a disector estimate of total synapse number is that values
obtained from control animals within any study can be used, due
to the unbiased nature of the estimator, by other investigators to
model and understand connectivity in the rodent brain (da Costa
et al., 2009; Ciccarelli et al., 2012). Other provisos do affect how
comparable such data sets are but when provisos are noted, total
number becomes valuable to the global neuroscience community
in a way density cannot be, even if obtained with the disector
method.

TOTAL NUMBER—THE PRESENT

As indicated above the ways in which design-based stereological
estimates of total number have contributed to our understanding
of the rodent brain is immense but this may be under threat
due to considerable pressure to generate data as efficiently
as possible. Efficiency has always been a key focus of the
expert stereologists who have driven the ongoing development
of stereological methods (Nava et al., 2014) with research
publications also stressing the efficiency of design-based
stereology (West et al., 1991; Johnson, 2001; Zhu et al., 2015;
Kelly and Hawken, 2017). However, a more recent method
to obtain total number estimates, the ‘‘isotropic fractionator’’

is gaining popularity as studies show that under certain
conditions it generates data comparable to stereological based
total number estimates but in less time (Herculano-Houzel
and Lent, 2005; Herculano-Houzel et al., 2015). However, this
method has major limitations. One mentioned by Herculano-
Houzel (2017), is that the process of homogenization destroys
all information about the structural arrangement of cells within
the tissue which is extremely important in understanding
how function emanates from a biological region. Another
serious limitation is that the brain region of interest must be
accurately dissected out, prior to homogenization precluding
obtaining information from small brain regions, layers and at
an ultrastructural level (Fu et al., 2013). This may also result
in considerable inter-investigator variability. If we consider
that a key use of total number, obtained using design-based
stereology, is to understand the relationship between cells,
the quantitative network of the brain, this method will not
deliver.

Immuno-labeling methods have been an essential tool in
design-based stereological studies and have provided total
number data on specific cell types (Mokin and Keifer, 2006;
Prasad and Richfield, 2010). The continual development of
imaging technologies and the minimal thickness of confocal
imaging planes combined with immuno-labeling allows precise
identification of molecular species and quantitation with a
precision previously only possible in the electron microscope
(Peterson, 1999). The use of transgenic mice is also an
opportunity where design-based stereological determinations of
total number could make a major contribution to understanding
the phenotype of these animals and changes in brain structure
and function (Berlanga et al., 2011; Manaye et al., 2013;
Manaye and Mouton, 2014). However, despite many publications
highlighting the ‘‘reference trap’’, the volume within which
the disector estimate was made is not always determined and
data is presented as ‘‘densities’’ which may be misleading,
as discussed above (Siucinska et al., 2014; Woeffler-Maucler
et al., 2014). It is also important to note that many of
these studies do not report the use of systematic random
sampling, a requirement of design-based stereology to ensure
the estimate is representative of the whole tissue region,
not just the sample area, despite this capability existing in
most confocal imaging platforms. Neuroscience has already
seen that biased data can direct science down false avenues
and waste considerable research resources (Pakkenberg and
Gundersen, 1989; Mura et al., 2004). It is also important to
emphasize that the use of unbiased stereology to estimate total
number is not as time consuming as naïve investigators may
think (Gundersen and Osterby, 1981; Gundersen and Jensen,
1987; West et al., 1991; Brasnjevic et al., 2013; Wang et al.,
2014).

TOTAL NUMBER—THE FUTURE

Faced with trying to understand the rodent brain,
many neuroscientists consider that the total number of
neurons/synapses is important and that reliable estimates of such
values are an essential requirement of quantitative neuroscience.
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FIGURE 1 | The flow diagram outlines the essential steps involved in taking a
tissue sample, using random systematic sampling methodology, to the final
stage of using stereological sampling probes on sections or section pairs
taken from a stack of sections imaged using serial block face scanning
electron microscopy. This could also be accomplished using focused ion
beam scanning electron microscopy (FIB-SEM). Key elements in this design

(Continued)

FIGURE 1 | Continued
are the generation of parallel sections followed by random systematic
sampling to obtain tissue samples for tissue processing and electron
microscopic investigation. Random systematic sampling would then be used
to obtain the sampling location within the scanning electron microscope. The
cube of tissue and the number of samples imaged would be experiment
dependent but each imaging location would generate a set of serial, perfectly
aligned sections that could then be used with a range of stereological
estimators.

Numerous studies have used design-based stereology to enable a
better understanding of the correlation of structure with function
(Hédou et al., 2002; Schmitz and Hof, 2005; Zhao et al., 2016).
The rapidly growing area of connectomics, previously known as
neuroanatomical connections, is focused on the production of a
map of connections within a specific brain region at a cellular
or subcellular level (Mikula, 2016; Swanson and Lichtman,
2016). However, whether specific network arrangements
can be generalized to apply across an entire brain region or
between species is an area of current debate and alternative
methods of assessing brain networks need to be considered
(Luebke, 2017). One potential method is to use estimates of total
number, of either cells or synapses within defined brain regions,
from unbiased stereological estimates to establish quantitative
networks at macro and micro levels (for a wider discussion of
understanding of the brain as circuits see DeFelipe et al., 2016).
I have suggested that the rodent brain can be considered as
a distributed network with many discrete regional networks
interacting to produce an immense spectrum of behavior (Koob
and Volkow, 2016; Herculano-Houzel, 2017) and at each level
this network is a quantitative network at a cellular and synaptic
level. If all neuroscientists produced unbiased total number
estimates as the key quantitative parameter this data would form
the basis of a valuable data set for the construction of quantitative
networks.

Estimates of total synapse number obtained with the
disector method have contributed to our understanding of
network interactions in the rodent brain. This has always
been technically demanding and time consuming but we are
now poised with recent technical developments in electron
microscopy to revolutionize the generation of quantitative
synapse data. Serial block face scanning electron microscopy
(SBF-SEM) and focused ion beam SEM (FIB-SEM) enable the
collection of large three-dimensional data sets of nervous tissue
components, at high resolution, in the electron microscope
with an efficiency incomprehensible compared to conventional
serial sectioning (Kim et al., 2013; Wu et al., 2017). In both
SBF-SEM and FIB-SEM the high energy electrons originating
in the electron beam reflected from the specimen volume (the
tissue in the resin block) are captured to form the image.
After each image is captured, a thin layer is removed from
the block face, equivalent to or considerably less than the
thickness of a conventional thin section, and the resulting
new face is re-imaged. The direct imaging of the block face
avoids the deformation and loss of sections that is common
when images are collected from serial sections and images
are sequentially built up in near perfect alignment. A set of
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images can be collected in a fully automated manner that
previously required several years of painstaking highly skilled
work (Merchán-Pérez et al., 2009; Peddie and Collinson, 2014;
Wu et al., 2017). This volume of tissue generated can then
be sampled using unbiased stereological methods as if it
were a physical tissue block, and quantitative estimates of a
range of parameters can be obtained as outlined in Figure 1
(Ferguson et al., 2017). An added value is that the three-
dimensional reconstruction of components within the tissue
volume enables the investigator to verify the appearance of a
structure in single sections ensuring a high degree of accuracy
in profile identification (see Harris et al., 2015 for further
details). Validation of stereological estimates has always required
comparisons with total number from reconstruction studies and
this is now feasible on the ultrastructural level (Delaloye et al.,
2009).

The potential use of stereological tools on SBF-SEM image
stacks can be seen by considering a recent article that investigated
the effects of a selective serotonin reuptake inhibitor on the
dentate gyrus granule cells (Kitahara et al., 2016). It found a
significant increase in extremely large spines, without an increase
in spine density. The increase in spine size was accompanied
by an increased postsynaptic density that correlated with an
increase in volume of the presynaptic bouton and the volumes of
mitochondria and synaptic vesicles within it. Potential evidence
of a structural change supporting the enhanced glutamatergic
neurotransmission was also detected.

Although this article used 3-dimensional reconstruction to
obtain the data, stereological tools for estimating volume and
surface area could be obtained in combination with the disector
method for particle selection and provide data equivalent
to that obtained via detailed reconstruction (Kitahara et al.,
2016). It is important that we consider the use of SBF-SEM
and FIB-SEM in combination with design-based stereology to
advance our understanding of the ultrastructure of nervous
tissue (Waworuntu et al., 2016). Ongoing developments in
the capture of high resolution images and in the methods of
reconstruction and optimization of images, will ensure that in
the near future this is a very efficient process (Bellesi et al., 2015;

Borrett and Hughes, 2016; Nguyen et al., 2016; Wernitznig et al.,
2016).

CONCLUSION

In order to understand the information processing in the rodent
brain that underlies behavior, it is essential to understand
the connectivity between neurons and synapses across a huge
number of different microcircuits (Dennis and Thompson, 2013;
Kelly and Castellanos, 2014; Mátyás et al., 2014). Estimates of
total number, obtained using the disector method within design
based stereological studies, allows the brain to be viewed as
a network composed of many nodes that are each a complex
of subnetworks. We are making advances in understanding
the complexity of brain networks with the 3-dimensional
reconstruction studies undertaken for connectomic analysis
but it is also apparent that networks are location specific. If
all estimates of cell and synapse number were obtained as
total number from design-based stereological studies this data
could be used collectively to advance our understanding of
the networks of the rodent brain that underlie function and
dysfunction. We must always remember the seminal work that
demonstrated density as a potentially misleading quantity and
be aware that the quality of the imaging technology used
to obtain density does not alter the fact that it is a density
and is potentially misleading. Conversations about the merits
of using total number estimates obtained within design-based
stereological studies vs. other methods must be held within the
neuroscience community and we should strive to produce the
most reliable data possible. The generation of data that can
be used universally, such as total number estimates will enable
greater advances in understanding the rodent and subsequently
the human brain to be made.
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