

Association Between REM Sleep Behavior Disorder and Cognitive Dysfunctions in Parkinson's Disease: A Systematic Review and Meta-Analysis of Observational Studies

Jingrong Mao^{1,2}, Xiurong Huang¹, Jiaming Yu³, Lang Chen⁴, Yuqian Huang⁴, Beisha Tang^{1,5} and Jifeng Guo^{1,5*}

¹ Department of Neurology, Xiangya Hospital, Central South University, Changsha, China, ² Xiangya School of Medicine, Central South University, Changsha, China, ³ Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China, ⁴ Center for Inflammation and Epigenetics, Houston Methodist Research Institute, Houston, TX, United States, ⁵ National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China

OPEN ACCESS

Edited by:

Anat Mirelman, Tel Aviv Sourasky Medical Center, Israel

Reviewed by:

Peng Lei, Sichuan University, China Pedro Ribeiro, Federal University of Rio de Janeiro, Brazil

*Correspondence: Jifeng Guo guojifeng2003@163.com

Specialty section:

This article was submitted to Movement Disorders, a section of the journal Frontiers in Neurology

Received: 30 June 2020 Accepted: 30 September 2020 Published: 06 November 2020

Citation:

Mao J, Huang X, Yu J, Chen L, Huang Y, Tang B and Guo J (2020) Association Between REM Sleep Behavior Disorder and Cognitive Dysfunctions in Parkinson's Disease: A Systematic Review and Meta-Analysis of Observational Studies. Front. Neurol. 11:577874. doi: 10.3389/fneur.2020.577874 **Background:** Rapid eye movement sleep behavior disorder (RBD) is thought to be a prodromal symptom of Parkinson's disease (PD). RBD is also thought to be involved in cognitive decline and dementia in PD. In PD, although the relationship between RBD and cognitive dysfunctions was confirmed by considerable studies, whether RBD was associated with distinct types of cognitive defects is worth of study.

Objectives: This systematic review summarizes the evidence relating to cognitive dysfunction in PD patients with RBD (PD-RBD) and those without and explores their specificity to cognitive domains.

Methods: A meta-analysis using a random-effects model was performed for 16 different cognitive domains, including global cognitive function, memory (long-term verbal recall, long-term verbal recognition, long-term visual recall, short-term spatial recall, and short-term verbal recall), executive function (general, fluid reasoning, generativity, shifting, inhibition, and updating), language, processing speed/complex attention/working memory, visuospatial/constructional ability, and psychomotor ability. The cognitive difference between the groups of patients was measured as a standardized mean difference (SMD, Cohen's *d*). PD-RBD patients were classified into Confirmed-RBD (definite diagnosis with polysomnography, PSG) and Probable-RBD (without PSG re-confirmation). In some domains, RBD patients could not be analyzed separately due to the exiguity of primary studies; this analysis refers to such RBD patients as "Mixed-RBD."

Results: Thirty-nine studies with 6,695 PD subjects were finally included. Confirmed-RBD patients showed worse performance than those without in global cognitive function, long-term verbal recall, long-term verbal recognition, generativity, inhibition, shifting, language, and visuospatial/constructional ability; Probable-RBD, in global cognitive function and shifting; and Mixed-RBD, in long-term visual recall,

1

short-term spatial recall, general executive function, and processing speed/complex attention/working memory.

Conclusion: This meta-analysis strongly suggests a relationship between RBD, Confirmed-RBD in particular, and cognitive dysfunctions in PD patients. Early and routine screening by sensitive and targeted cognitive tasks is necessary for all PD-RBD patients because it may offer the therapeutic time window before they evolve to irreversible dementia.

Keywords: rapid eye movement sleep behavior disorder (RBD), parkinson's disease (PD), dementia, meta-analysis, cognitive dysfunction

INTRODUCTION

Rapid eye movement sleep behavior disorder (RBD) is characterized by loss of the normal skeletal muscle atonia during rapid eye movement (REM) sleep, such that patients appear to act out the content of their dreams (1). Based on the third edition of the International Classification of Sleep Disorders (ICSD), the criteria for RBD were: (1) repeated episodes of behavior or vocalization that are either recorded by polysomnography (PSG) to arise from REM or are presumed to arise from REM based on reports of dream enactment and (2) evidence of REM sleep without atonia (RWA) on PSG (2). RBD has been linked to neurodegenerative pathology like Parkinson's disease (PD) (3). RBD was also identified as a key prodromal symptom of PD by the Movement Disorder Society (4). Approximately 75% of individuals who suffer from RBD progress to PD within 10 years (5, 6). Thus, the majority of patients manifesting RBD in sleep clinics are actually in the prodromal stages of PD.

Considerable studies suggested that RBD could be a key marker of a special subset of PD characterized by a nontremor-dominant motor subtype or a kinetic-rigid motor phenotype (7-9) and symmetric disease (10, 11). RBD may also precede severe non-motor symptoms like increased autonomic dysfunction (12-15) and visual hallucinations (16-20). Of great interest, a concept- "RBD-PD phenotype" -was advanced. Poorer performance in memory, executive function (EF), and visuospatial abilities and a significantly greater risk of dementia were observed in PD patients who carry GBA gene mutations (21-23). GBA mutation carriers have a higher risk of developing probable RBD among PD patients (24). A study consisting 76 PD patients who were followed for an average of 4.5 years uncovered that the rate of deterioration was faster in the patients with RBD, mild cognitive impairment (MCI), and orthostatic hypotension at baseline (25). The similar conclusion that RBD is one of the most crucial prognosis determinants of PD was demonstrated by another follow-up study involving 421 PD patients for 32.8 ± 9.3 months (26). But two studies quarreled with this concept because neither significant gait disturbances and postural impairment nor specific worsening over time was observed in PD patients with RBD (27, 28).

Beyond these non-motor symptoms just mentioned, RBD usually predates, either by years or decades, the cognitive impairment or the diagnosis of MCI, which are the transitional

states between normal aging and dementia in patients with PD (29, 30). Moreover, RBD increased the risk of cognitive decline and even dementia in PD patients (31–35). Considerable work reported an association between RBD and cognitive dysfunction and even dementia in PD [reviewed in (36)], but few suggested no significant declines in some targeted cognitive domains (37, 38) in PD patients with RBD.

The representative lineup includes RBD, "mild parkinsonian signs," typical features of PD, PD with MCI, and a full dementia syndrome (PDD) (30), although not all of the patients follow this course of the disease. The endpoint of cognitive decline, PDD, is miserable and irreversible. These symptoms tend to appear in time intervals from months to years (39–41). The high conversion rate and the long latency of RBD to cognitive dysfunctions in PD patients make this study necessary and meaningful: cognitive dysfunction patients who suffer from both PD and RBD may be given opportunities for prevention and interventions before they progress to dementia.

Thus, this meta-analytic review was designed to shed light on the relationship between RBD and cognition in PD patients, as well as which cognitive domains are impaired. We also examined the influence of demographic and clinical confounders, like clinical stage, on cognitive performances in PD individuals.

MATERIALS AND METHODS

Search Strategy

Consistent with PRISMA's suggestions (42), a systematic literature search was performed by two independent reviewers (JM and JY) up to 04 April 2020 using PsycInfo (PROQUEST), PubMed, Cochrane, and Embase. Searches were constructed using subtext headings and key words based on the following terms: RBD, cognitive impairment, and PD. For a detailed statement of the search, see **Supplementary Table 1**. The search was supplemented by hand searches of the reference lists cited in the original articles and review papers.

Study Eligibility Criteria Inclusion Criteria

This systematic review included studies investigating the effects of RBD in patients with PD on cognitive functions, published in peer-reviewed journals in English. Participants needed to be adults diagnosed with idiopathic PD based on any established international clinical criteria (43–47). RBD should ideally be diagnosed with PSG, while validated questionnaires or targeted interviews were also acceptable. The comparison had to be performed between parkinsonians with and without RBD (PD-RBD and PD-NRBD, respectively). Moreover, only studies assessing cognitive domains through standardized tests were included and the results had to be reported as the mean and standard deviation (SD) or the corresponding original data to allow the calculation of these values. When more than one study was published by the same authors, we checked the independence of samples or used the study with the largest sample size.

Exclusion Criteria

Proceedings, commentaries, letters to the editor, theses, studies performed on animals, and single case studies were all unacceptable. Studies that recruited atypical PD or parkinsonian syndromes were excluded. Cognition measured by subjective report or ratings-based methods or did not report the performance data for each cognitive task were discarded. Studies that concentrated on cognitive functions without linking them directly to RBD in PD or reported a comparison between PD patients and healthy participants were also unacceptable.

Outcomes

For each study, the primary outcomes were cognitive test scores. Our main objective was to meta-analyze these scores to determine whether RBD in PD was associated with distinct types of cognitive defects. We categorized the cognitive tests following the approach described by Litvan et al. (48), Wallace and Bucks (49), and Olaithe and Bucks (50) or the indication provided in the primary studies. Subsequently, seven major cognitive categories were analyzed to organize the findings of this meta-analysis: global cognitive function, memory, EF, language, processing speed/complex attention/working memory, visuospatial/constructional ability, and psychomotor ability. Memory was further divided into long-term verbal recall, longterm verbal recognition, long-term visual recall, short-term spatial recall, and short-term verbal recall. EF was subdivided into the following: general EF, fluid reasoning, generativity, inhibition, shifting, and updating. Therefore, in total, 16 cognitive domains were compartmentalized, and the following analyses were carried out, respectively, in these segmentations. With several previous meta-analyses available for consultation (51-53) or the instructions of the included tests, we categorized the cognitive tests and listed them in Table 1.

Cognitive domains assessed by only one study could not be included. When a cognitive function was explored by more than one test in a primary study, two different strategies were adopted by previous meta-analyses: some extracted data from the most sensitive and relevant instrument (52, 53), while some aggregated the results into a single effect size (ES) (83–85). These two strategies are both valid and have their own advantages; the first solution diminishes the risk of type II errors, while the second strategy decreases bias of a certain test. We decided to follow the first solution. As for the criteria for the "most sensitive and relevant instrument," the sensitivity and relevance in the PD population of each test were checked on the basis of alreadypublished research first, and preference was given to the highest sensitivity and/or relevant test if more than one test assessing the same cognitive domain were adopted in a primary study. If the sensitivity and/or relevance was not available, the most used test was analyzed in this domain. Thus, sensitivity, relevance, and popularity, in this order, are what we considered in choosing assessable tests. This criterion was consistently used across all domains in this meta-analysis.

Data Extraction and Coding

Data extracted and coded from the primary studies included: (1) characters of the publication (e.g., authors and year of publication); (2) diagnoses of PD and RBD; (3) characteristics of the sample [e.g., sample size, gender, age at evaluation, disease duration, education, severity of motor symptoms evaluated by the Unified Parkinson's Disease Rating Scale (UPDRS-III), stage of PD evaluated by Hoehn and Yahr (H&Y), and the levodopa equivalent daily dose (LEDD)]; and (4) cognitive tests.

Statistical Analysis

All statistical analyses were performed using RevMan 5.3 (The Nordic Cochrane Centre, The Cochrane Collaboration, Copenhagen, Denmark) and Stata/SE version 15 (StataCorp, College Station, TX, USA).

SMD was used as the outcome measure because, although the included studies all assessed the same cognitive function within one meta-analysis, different cognitive tests were employed. ESs were categorized using Cohen's *d* as 0.2, indicating a small effect, 0.5, a medium, and 0.8, large. When calculating ESs, the PD-NRBD scores were always subtracted from the PD-RBD scores. Cognitive tests broadly fit into two categories: one where higher scores indicate better performance, namely milder damage, and the other where higher scores conversely represent greater impairment. A negative ES in the former tests indicates that the PD-RBD participants were more impaired than the PD-NRBD participants, as opposed to the latter cases. Random-effects models were applied to all cognitive domains.

The methodological quality of the enrolled cohort and casecontrol studies was evaluated with the Newcastle–Ottawa Scale (86) and the cross-sectional studies with the modified Newcastle– Ottawa Scale (87). Reports that scored \geq 6 points were considered to be of good quality. The quality assessment was performed independently by two authors (JM and JY) and disagreements were resolved by discussion.

Prior defined subgroup analyses were performed based on whether the diagnosis of RBD was confirmed by PSG. Hence, studies were placed in the "Confirmed-RBD" subgroup if the RBD patients met the ICSD criteria where PSG is mandatory. Conversely, studies were placed in the "Probable-RBD" subgroup if the diagnosis was made by questionnaires and/or interviews. In some domains, RBD patients could not be analyzed separately due to the exiguity of the primary studies in which they were enrolled, and they were referred to as "Mixed-RBD." Concretely, in a certain domain, only one primary study used PSG to confirm RBD; therefore, patients from this study were Confirmed-RBD patients. Meanwhile, TABLE 1 | Cognitive domains and neuropsychological tests included in the primary studies.

Categories	Tests	Included studies
Global cognitive function	MMSE↑	Arnaldi et al. $(54)^a$, Duarte Folle et al. $(55)^a$, Ford et al. $(56)^a$, Gagnon et al. $(57)^a$, Gaudreault et al. $(58)^a$, Gjerstad et al. $(59)^a$, Huang et al. (60) , Jozwiak et al. $(5)^a$ Kamble et al. (61) , Kim et al. $(62)^a$, Kim et al. $(63)^a$, Lavault et al. $(28)^a$, Lee et al. $(8)^a$, Lim et al. $(64)^a$, Mahale et al. $(65)^a$, Marques et al. $(66)^a$, Naismith et al. $(34)^a$, Nardone et al. $(67)^a$, Nomura et al. $(15)^a$, Nomura et al. $(66)^a$, Nomura et al. $(67)^a$, Nomura et al. $(71)^a$, Nomura et al. $(72)^a$, Postuma et al. (73) , Rolinski et al. (33) , Sinforiani et al. $(19)^a$, Sixel-Doring et al. $(16)^a$, Vendette et al. $(35)^a$, Zhang et al. (74)
	MOCA↑	Ba et al. $(75)^a$, Boucetta et al. $(76)^a$, Chahine et al. $(31)^a$, Huang et al. $(60)^a$, Kamble et al. $(61)^a$, Kotagal et al. $(77)^a$, Liu et al. $(78)^a$, Nomura et al. $(69)^a$, Pagano et al. $(79)^a$, Postuma et al. $(73)^a$, Rahmani et al. $(80)^a$, Rolinski et al. $(33)^a$, Zhang et al. $(74)^a$
	STMS↑	Meral et al. (81) ^a
	MDRS↑	Plomhause et al. (72) ^a
Long-term verbal recall	RAVLT, immediate recall↑	Gagnon et al. (82), Jozwiak et al. (5), Vendette et al. (35), Zhang et al. (74)
	RAVLT, delayed recall↑	Gagnon et al. (82) ^a , Jozwiak et al. (5) ^a , Vendette et al. (35) ^a , Zhang et al. (74) ^a
	RAVLT, list B↑	Gagnon et al. (82), Jozwiak et al. (5)
	RAVLT, sum of trials 1–5↑	Gagnon et al. (82), Jozwiak et al. (5), Vendette et al. (35)
	HVLT, immediate recall↑	Pagano et al. (79) ^a
	HVLT, delayed recall↑	Chahine et al. (31) ^a
	HVLT, total recall↑	Ba et al. $(75)^{a}$
	SRT, immediate recall↑	Kamble et al. (61)
	SRT, delayed recall↑	Kamble et al. $(61)^a$
	SBST, total recall↑	Meral et al. (81)
	SBST, delayed recall↑	Meral et al. (81) ^a
	Word list learning and recall test↑	Marques et al. $(66)^a$, Sinforiani et al. $(19)^a$
Long-term verbal recognition	RAVLT, recognition↑	Gagnon et al. $(82)^a$, Jozwiak et al. $(5)^a$, Vendette et al. $(35)^a$, Zhang et al. $(74)^a$
	HVLT, recognition↑	Ba et al. $(75)^a$, Pagano et al. $(79)^a$
	HVLT-R, recognition↑	Chahine et al. (31) ^a
	SBST, recognition↑	Meral et al. (81) ^a
Long-term visual recall	Wechsler memory scale↑	Meral et al. (81) ^a , Naismith et al. (34) ^a
	ROCF, immediate recall↑	Jozwiak et al. (5)
	ROCF, delayed recall↑	Jozwiak et al. (5) ^a , Zhang et al. (74) ^a
Short-term verbal recall	Digit span—forward↑	Kamble et al. (61) ^a , Marques et al. (66) ^a , Sinforiani et al. (19) ^a , Zhang et al. (74) ^a
Short-term spatial recall	CBTT↑	Kamble et al. (61) ^a , Sinforiani et al. (19) ^a
General executive function	FAB↑	Kamble et al. (61) ^a , Kim et al. (62) ^a , Lavault et al. (28) ^a , Sinforiani et al. (19) ^a
Fluid reasoning	Raven's progressive matrices↑	Sinforiani et al. (19)
Generativity	Verbal fluency—semantic↑	Ba et al. (75) ^a , Boucetta et al. (76) ^a , Chahine et al. (31) ^a , Gagnon et al. (82) ^a , Jozwiak et al. (5) ^a , Kamble et al. (61) ^a , Marques et al. (66) ^a , Meral et al. (81) ^a , Pagano et al. (79) ^a , Rolinski et al. (33) ^a , Vendette et al. (35) ^a , Zhang et al. (74) ^a
	Verbal fluency—letter↑	Chahine et al. (31), Gagnon et al. (82), Jozwiak et al. (5), Marques et al. (66), Rolinski et al. (33), Vendette et al. (35)
	Animal naming test↑	Kamble et al. (61)
Inhibition	Stroop task↓	Gagnon et al. $(82)^a$, Jozwiak et al. $(5)^a$, Kamble et al. $(61)^a$, Marques et al. $(66)^a$, Meral et al. $(81)^a$, Vendette et al. $(35)^a$, Zhang et al. $(74)^a$
Shifting	TMT: B↓	Gagnon et al. (82) ^a , Jozwiak et al. (5) ^a , Vendette et al. (35) ^a , Zhang et al. (74) ^a
	TMT: B-A↓	Jozwiak et al. (5)
	WCST: Perseveration \downarrow	Meral et al. (81) ^a , Sinforiani et al. (19) ^a
Updating	Digit span—backwards↑	Gagnon et al. $(82)^a$, Jozwiak et al. $(5)^a$, Kamble et al. $(61)^a$, Marques et al. $(66)^a$, Naismith et al. $(34)^a$, Zhang et al. $(74)^a$
Language	Boston naming test↑	Jozwiak et al. (5)ª
	Lexis denomination task↑	Plomhause et al. (72) ^a
Processing speed/Complex attention/Working	LNS↑	Ba et al. (75) ^a , Chahine et al. (31) ^a , Marques et al. (66) ^a , Pagano et al. (79) ^a
memory		

TABLE 1 | Continued

Tests	Included studies
TMT: A↓	Jozwiak et al. (5)ª, Vendette et al. (35)ª, Zhang et al. (74)ª
BJLOT↑	Ba et al. (75) ^a , Boucetta et al. (76) ^a , Chahine et al. (31) ^a , Meral et al. (81) ^a , Pagano et al. (79) ^a
Clock drawing test↑	Meral et al. (81), Zhang et al. (74)
ROCF, copy↑	Gagnon et al. (82)ª, Jozwiak et al. (5)ª, Vendette et al. (35)ª, Zhang et al. (74)ª
Bells test↓	Gagnon et al. (82), Vendette et al. (35)
Block design↑	Gagnon et al. (82), Vendette et al. (35)
BFRT↑	Meral et al. (81)
Symbol digit modalities↑	Ba et al. (75)ª, Boucetta et al. (76)ª, Chahine et al. (31)ª, Marques et al. (66)ª, Pagano et al. (79)ª, Zhang et al. (74)ª
	TMT: A↓ BJLOT↑ Clock drawing test↑ ROCF, copy↑ Bells test↓ Block design↑ BFRT↑

 \uparrow Better performance with higher scores; \downarrow Worse performance with higher scores.

MMSE, Mini-Mental State Examination; MOCA, Montreal Cognitive Assessment; STMS, Short Test of Mental Status; MDRS, Mattis Dementia Rating Scale; RAVLT, Rey Auditory–Verbal Learning Test; HVLT, Hopkins Verbal Learning Test; SRT, story recall test; SBST, sözel bellek surecleri testi; HVLT-R, Hopkins Verbal Learning Test, Rev–Osterrieth complex figure test; CBTT, Corsi's block tapping test; FAB, frontal assessment battery; TMT: B, trail making test: part B; TMT: B-A, trail making test: part B-part A; WCST, Wisconsin Card Sorting Test; LNS, letter–number sequencing; TMT: A, trail making test: part A; BJLOT, Benton judgment of line orientation test; BFRT, Benton's face recognition test.

the patients included in the other studies were Probable-RBD patients not confirmed by PSG. Since one study could not be meta-analyzed, we combined and analyzed the results of all RBD patients, for both Confirmed-RBD and Probable-RBD, denoted as "Mixed-RBD."

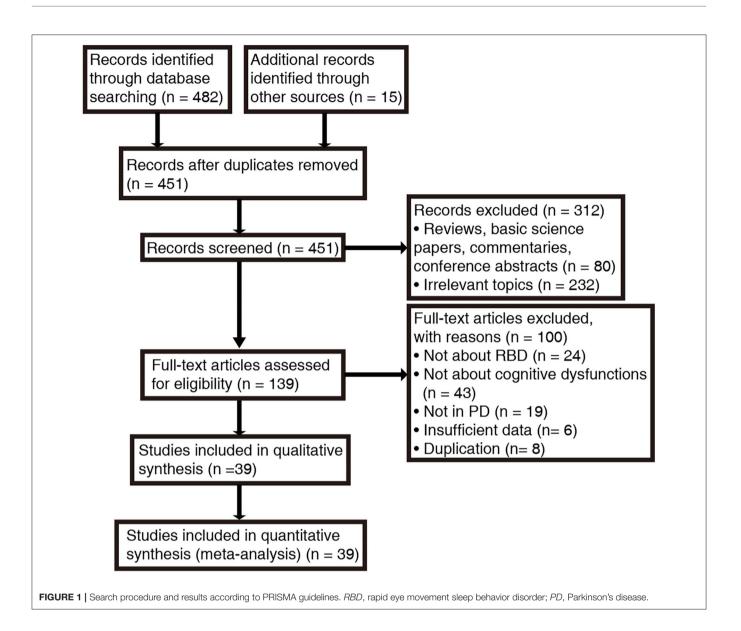
Another subgroup analysis was performed considering the possible differential effects of clonazepam, the major treatment for RBD, which may deteriorate cognitive dysfunctions (88–90). Therefore, studies were placed in either the "Mediated by Clonazepam" subgroup if medicated patients were recruited or "Unmediated by Clonazepam" subgroup when mediated patients were excluded or the dose they were taking was negligible.

Meta-regressions were performed to investigate whether the outcomes were affected by other characteristics, including demographic characteristics (age at evaluation, gender, and education), severity of PD (PD duration, UPDRS-III, H&Y stage, and LEDD), cognitive tests, and tools used to assess RBD. These covariates were meta-regressed individually in a random-effects meta-regression model. According to Borenstein et al. (91), a meta-regression could be generally conducted for outcomes where there are 10 samples at a minimum to one covariate. But given that the majority of domains included <10 reports, with reference to Taylor et al. (92), we liberalized the restriction to five.

The heterogeneity test was quantified using the I^2 statistic. The I^2 was set as low (25%), moderate (50%), or high (75%). Sensitivity analysis was conducted for meta-analysis where $I^2 \ge$ 50% by omitting the enrolled studies, one at a time, to determine the effect of any individual study on the synthesized ES and between-study heterogeneity. Finally, publication bias analysis was performed with the funnel plot of which the asymmetry was further statistically confirmed by the Egger's regression method and the trim-and-fill procedure in the meta-analyses that included ≥ 10 studies.

All statistical tests were two-tailed, and P < 0.05 was considered significant.

RESULTS


Study Selection and Risk of Bias

A total of 482 papers were produced according to our search strategy, and 15 additional records were identified from the references cited in the original articles and review papers. Following exclusion of duplicates and unrelated studies based on title and abstract screening, we retrieved 139 papers for full-text evaluation. The PRISMA flow diagram (**Figure 1**) summarizes the selection process. In total, 39 studies were enrolled after rigorous screening (5, 8, 15, 16, 19, 28, 31, 33–35, 54–82). A critical appraisal assessment found that all studies exhibited "good quality," with the score ranging from 6 to 9, and no studies were excluded due to quality issues (**Supplementary Tables 2, 3**).

Characteristics of the Included Studies

The characteristics of the included studies are summarized in **Table 2**. Across these 39 studies, 6,695 individuals with PD were investigated, with the mean age ranging from 57.3 to 76.5 years. The mean UPDRS-III scores were provided in 30 studies, while either the mean or median H&Y stage values were reported in 25. Two studies (63, 66) did not provide either measure of motor symptoms or disease stage for the entire sample. PSG was used in 18 studies alone or combined with the clinical interview (5, 15, 16, 35, 54, 57, 58, 60, 61, 63, 66–68, 70–73, 82). The remainder adopted sleep questionnaires and/or clinical interviews to identify Probable-RBD. Ten studies (16, 33, 57–59, 61, 69, 70, 78, 82) particularly pointed out the utilization of clonazepam.

Some reports (5, 35, 54, 58, 64, 66, 72, 74, 76, 82) also recruited idiopathic RBD patients and/or health controls in addition to our targeted individuals and did comparisons between any two, but we only extracted the statistics from PD-RBD and PD-NRBD patients. Moreover, PD-RBD patients were further classified into subgroups in four studies: clinical or subclinical PD-RBD (15, 68) and PD-RBD with and without visual hallucinations (VH) (19, 81). In the former two studies (15, 68), patients with both RWA

on PSG and RBD symptoms were classified as the "RBD group"; patients who only manifested RWA without RBD symptoms were categorized as the "Subclinical RBD group." Given that the rest of the reports did not recruit or subgroup the subclinical RBD patients, we only extracted data from the "RBD group" and the "NRBD group" and dropped the data from the "Subclinical RBD group." The latter two studies (19, 81) examined VH besides RBD. Because VH was not the outcome of interest of this review, the groups were collapsed into RBD+ and RBD-.

Meta-Analytic Results

Global Cognitive Function

The meta-analysis included 17 "Confirmed-RBD" and 21 "Probable-RBD" studies. For the "Confirmed-RBD" subgroup, PD-RBD patients had significantly lower scores than PD-NRBD patients, with a medium ES (SMD = -0.41, 95% CI = -0.66 to -0.16, P = 0.001); heterogeneity was moderate

 $(I^2 = 74\%)$. For the "Probable-RBD" subgroup, PD-RBD patients also had significantly lower scores than did PD-NRBD patients, with a medium ES (SMD = -0.24, 95% CI = -0.39 to -0.10, P = 0.0007); heterogeneity was high ($I^2 = 78\%$). No significant difference between these two subgroups was observed (**Table 3**, **Figure 2**).

Global cognitive function is the only domain where the second subgroup analysis could be performed. The metaanalysis included six "Mediated by Clonazepam" studies and three "Unmediated by Clonazepam" studies. For the "Mediated by Clonazepam" subgroup, PD-RBD patients had significantly lower scores than did PD-NRBD patients, with a medium ES (SMD = -0.31, 95% CI = -0.51 to -0.12, P = 0.001); heterogeneity was moderate ($I^2 = 56\%$). For the "Unmediated by Clonazepam" group, the ES was not significant. No significant difference between these two subgroups was observed (**Supplementary Figure 1**).

TABLE 2 | Characteristics of the primary studies included in the meta-analysis.

Galb et al. (43) evaluation (ICSD-2) 6 R BD-(8) 67 2 ± 7.2 NM 11.8 ± 6.0 9.5 ± 3.5 NM 0 Gagnon et al. (57) NM PSG 7 RBD-(8) 67.4 ± 7.3 5.4 ± 6.0 NM NM 1.8 ± 0.8 313.6 ± 18.4 MMSE Gagnon et al. (62) POSBB PSG (CSD-2) 22 RBD-1 66.4 ± 8.5 5.8 ± 3.2 1.4 7 ± 3.9 18.6 ± 7.7 2.0 ± 0.8 363.6 ± 23.4 MMSE Gaudreault et al. (60) PSG (CSD-2) 16 RBD-(11) 6.7 ± 8.0 5.4 ± 3.5 14.8 ± 4.1 18.1 ± 8.6 2.0 ± 0.8 568.4 ± 2.4 MMSE Huang et al. (00) PSG (CSD-2) 16 RBD-(11) 6.4 ± 3.5 3.0 ± 3.5 4.4 ± 5 ± 3.2 2.7 ± 9.7 2.2 ± 0.8 669.4 ± 2.7 MMSE 1.8 ± 5 ± 3.2 2.0 ± 3.5 3.0 ± 3.5 1.4 ± 5 ± 3.3 2.1 ± 9.5 2.5 ± 0.8 469.4 ± 2.7 MOCA 1.8 ± 5 ± 3.2 1.4 ± 5 ± 3.2 2.1 ± 9.5 2.5 ± 0.8 469.2 ± 40.2 MMSE 1.8 ± 5 ± 7.5 3.0 ± 3.3 1.4 ± 5 ± 3.3 2.1 ± 9.5 2.5 ± 0.8 49.2 ± 40.2	Study	Diagnostic criteria for PD	RBD assessment	Participants (n men)	Age (years)	PD duration (years)	Edu	UPDRS-III	H&Y stage	LEDD (mg)	Analyzed cognitive tests
Gelb et al. (43) evaluation (CSD-2) 16 RED-(a) 67.2 ± 7.2 NM 11.8 \pm 6.0 9.5 ± 3.5 NM O Gagnon et al. (47) NM PSG 7 RED-(a) $61.2 + 3.5 \pm 2.9$ NM NM 1.8 ± 0.7 57.3 ± 14.0 Gagnon et al. (42) POSEB PSG (CSD-2) $22 RED + 66.4 \pm 8.5$ 4.9 ± 3.5 14.7 ± 3.9 18.6 ± 7.7 20 ± 0.8 332.6 ± 333.6 PAXT, design dravers, PAX Gaudresult et al. (50) POSEB PSG (CSD-2) 16 RBD+(1) 64.7 ± 8.0 5.4 ± 3.5 14.8 ± 4.1 18.1 ± 8.6 21 ± 0.6 506.1 ± 333.3 MMSE Gaudresult et al. (50) PSG (CSD-2) 16 RBD+(10) 66.1 ± 5.8 $30(1.0 - 5.0)^6$ 84 ± 3.5 24.3 ± 10.0 $20(1.5 - 2.6)^7$ 300.0 (100.0 - 400.0)^6 Jarvards et al. (51) NM PSG (CSD-2) $65.2 RBD - (40)$ 60.1 ± 8.3 $30(1.0 - 5.0)^6$ 88 ± 3.2 37.1 ± 1.5 2.2 ± 0.8 MMSE; vocatulary, RAVIT Jarvards et al. (61) NM PSG (CSD-2) $53 RBD + (40)$ 63.2 ± 8.5	CONFIRMED-RBD										
Gagnon et al. (57) NM PSG TRED+ (6) 68.4 ± 7.5 5.4 ± 6.0 NM NM 1.3 ± 0.6 313.6 ± 184.8 MMSE Gagnon et al. (52) POSBB PSG (CSD-2) 27.8 PD+ 66.4 ± 8.5 49.4 ± 8.5 49.4 ± 8.5 49.4 ± 8.5 49.4 ± 8.5 49.4 ± 8.5 49.4 ± 8.5 49.4 ± 7.3 51.4 ± 2.1 17.3 ± 11.0 2.1 ± 0.8 353.6 ± 32.4 MMSE Gaucheault et al. (62) PDSBB PSG (CSD-2) 16 RBD+ (11) 64.7 ± 8.0 54.4 ± 3.5 14.8 ± 4.1 18.1 ± 8.6 2.1 ± 0.8 363.6 ± 27.4 recognition; SF, 10.5 EV; 10.5 E	Arnaldi et al. (54)	Clinical criteria	PSG + clinical	24 RBD+ (16)	69.4 ± 6.0	NM	10.3 ± 4.6	14.1 ± 5.7	NM	0	MMSE
SRBC-(3) FDSEB PCS (CSD-2) SRBC-(3) FL SL NM NM 1.8 ± 0.7 277.3 ± 148.0 Gagnon et al. (62) POSBB PCS (CSD-2) 18 RBD- 66.4 ± 8.5 4.9 ± 3.5 14.7 ± 3.9 13.6 ± 7.7 2.0 ± 0.8 332.6 ± 33.4 FAVLT, delayed recall, PAVLT Gaudreault et al. (63) POSBB PSG (CSD-2) 16 RBD- (1) 67.4 ± 8.0 5.4 ± 3.5 14.8 ± 1.1 18.1 ± 8.6 2.1 ± 0.8 506.1 ± 393.3 MMSE Gaudreault et al. (60) POSBB PSG (CSD-2) 16 RBD- (9) 63.1 ± 6.0 5.4 ± 3.5 14.8 ± 4.1 18.1 ± 8.6 2.1 ± 0.8 506.1 ± 393.3 MMSE Jozewiak et al. (5) NM PSG (CSD-2) 53 RBD- (40) 68.0 ± 8.4 6.1 ± 4.5 14.5 ± 3.9 2.3 ± 9.5 2.5 ± 0.8 492.2 ± 402.3 MMSE; vocabulary, FAVLT Jozewiak et al. (61) PSG PSG (CSD-2) 53 RBD- (40) 68.0 ± 8.4 6.1 ± 4.5 14.5 ± 3.9 2.3 ± 9.5 2.5 ± 0.8 492.2 ± 402.3 MMSE; vocabulary, FAVLT Jozewiak et al. (61) PSG CSD-2		Gelb et al. (43)	evaluation (ICSD-2)	16 RBD- (8)	67.2 ± 7.2	NM	11.8 ± 5.0	9.5 ± 3.5	NM	0	
Gagnon et al. (62) PDSBB PSG (CSD-2) 22 RED-1 66.4 ± 8.5 6.4 ± 4.5 14.7 ± .3 16.6 ± 7.7 2.0 ± .0.5 326.6 ± 30.6 PAVL7, department, PAU recognition, SVF; DSE, TM recognition, SVF; DSE, TM recognition, SVF; DSE, TM Gaudreault et al. (60) PDSBB PSG (CSD-2) 16 RBD-(1) 64.7 ± 8.0 5.4 ± 3.5 14.8 ± 4.1 18.1 ± 6.8 2.1 ± 0.8 56.6 ± 3.33 MMSE Huang et al. (60) PDSBB PSG (CSD-2) 16 RBD-(10) 63.1 ± 6.0 5.4 ± 3.8 14.5 ± 3.9 20.7 ± 7.7 2.0 (1.5 - 2.5) 300.00 (moo -4moo; NCOC; nop (moo -4moo; NCOC; nop (mooo; nc; NCOC; nop (moo -4moo; NCOC; nop (mooo; nc; NCC; nop (moo	Gagnon et al. (57)	NM	PSG	7 RBD+ (6)	68.4 ± 7.5	5.4 ± 6.0	NM	NM	1.8 ± 0.8	313.6 ± 184.8	MMSE
Barbor65.2 ± 8.9 5.8 ± 3.2 15.4 ± 2.1 17.3 ± 11.0 2.1 ± 0.8 35.8 ± 32.4 meophics, SKP; DBS; More periors; ROCF, copyGaudreault et al. (55)PDSBBPSG (ICSD-2)16 RBD+ (11) 64.7 ± 8.0 5.4 ± 3.5 14.8 ± 4.1 18.1 ± 8.6 2.1 ± 0.8 50.1 ± 38.3 MMSEHuang et al. (60)PDSBBPSG + clinical evaluation (ICSD-2) 16 RBD+ (18) 65.1 ± 5.8 $0.0(1.0 \pm 5.0)^8$ 8.4 ± 3.3 20.7 ± 0.7 2.2 ± 0.8 39.84 ± 27.7 Jozviak et al. (5)PDSBBPSG + clinical evaluation (ICSD-2) 82 RBD+ (80) 65.1 ± 5.8 $0.0(1.0 \pm 5.0)^8$ 8.4 ± 3.3 20.7 ± 0.7 2.2 ± 0.8 39.00 $(100.0 \pm 60.0)^9$ Jozviak et al. (5)NMPSG (ICSD-2) 53 RBD+ (40) 68.0 ± 8.4 6.1 ± 4.5 14.5 ± 3.9 23.1 ± 9.5 2.5 ± 0.8 49.2 ± 402.4 MMSE; vocabulary; RAUT.Jozviak et al. (6)NMPSG (ICSD-2) 53 RBD+ (40) 68.0 ± 8.4 6.1 ± 4.5 14.5 ± 3.9 23.1 ± 9.5 2.5 ± 0.8 49.2 ± 402.4 MMSE; vocabulary; RAUT.Kamble et al. (61)PDSBBMSO + REDSO + 25 RBD 60.4 ± 8.2 6.8 ± 4.6 NM 2.7 ± 0.1 383.7 ± 28.4 MMSE; NUTBEKamble et al. (63)PDSBBPSG + RBDSO + 9 RBD+ (0) 70.1 ± 6.8 1.9 ± 1.5 2.4 ± 2.5 NMNMNMK-MMSEMarques et al. (63)Clinical criteriaPSG + Clinical evaluation (CSD-2) 98.3 ± 6.4 10.1 ± 3.8 17.5 ± 3.3 NM 67.4				8 RBD- (3)	61.0 ± 7.3	5.5 ± 2.9	NM	NM	1.8 ± 0.7	277.3 ± 148.0	
Huang et al. (60)PDSBBPSG + clinical evaluation (ICSD-2) $53 \text{ RBD-}(6)$ 63.1 ± 6.0 5.4 ± 3.8 14.5 ± 3.3 20.7 ± 9.7 2.2 ± 0.8 398.4 ± 273.7 300.0 (100450.0)MOCA $100.0-450.0$ Jozwiak et al. (6)NMPSG (ICSD-2) $53 \text{ RBD+}(6)$ 64.0 ± 9.3 $30.(1-5.0)^6$ 8.8 ± 3.2 23.7 ± 11.5 $2.0(1.5-2.5)^6$ 300.0 (100450.0)MOCA (100450.0)Jozwiak et al. (6)NMPSG (ICSD-2) $53 \text{ RBD+}(40)$ 68.0 ± 8.4 6.1 ± 4.5 14.5 ± 3.9 23.1 ± 9.5 2.5 ± 0.8 49.22 ± 402.3 MMSE; vocabulary, RAVLT (algered recalt, RAVLT, recalt, SVF; TIMT B, STORG recalt, SVF; TIMT B, STORG recalt, SVF; TIMT B, STORG recalt, SVF; TIMT B, STORG recalt, SVF,	Gagnon et al. (82)	PDSBB	PSG (ICSD-2)								
Hung et al. (6) PSB PSG + clinical evaluation (CSD-3) 92 RBD+ (6) 65.1 ± 5.8 3.0 (1.0-5.0) ^b 8.4 ± 3.2 2.3 (1.5-2.5) ^b $30.0.0$ (100-450.0) ^b MOCA (100-450.0) ^b Jozvikk et al. (5) NM PSG + clinical evaluation (CSD-2) 53 RBD+(40) (RBD-(21) 64.0 ± 3.3 3.0 (1.0-5.0) ^b 8.4 ± 3.2 2.3 (1.5-2.5) ^b $30.0.0$ (100-450.0) ^b 492.2 ± 40.2 MMSCA (492.2 ± 40.2) MMSCA (492.2 ± 40.	Gaudreault et al. (58)	PDSBB	PSG (ICSD-2)	16 RBD+ (11)	64.7 ± 8.0	5.4 ± 3.5	14.8 ± 4.1	18.1 ± 8.6	2.1 ± 0.8	506.1 ± 383.3	MMSE
evaluation (ICSD-3) evaluation (ICSD-3) evaluation (ICSD-3) evaluation (ICSD-450) 8.8 ± 3.2 23.7 ± 11.5 2.0 (1.5-2.5) 300.0 (100.0-450.0) Jozwiak et al. (5) NM PSG (ICSD-2) 53 RBD+ (40) 68.0 ± 8.4 6.1 ± 4.5 14.5 ± 3.9 23.1 ± 9.5 2.5 ± 0.8 492.2 ± 40.2.3 MMSE; vocabulary; RAVLT Jozwiak et al. (61) PDSBB MSQ + RBDSQ + 25 RBD + 60.4 ± 8.2 6.8 ± 4.6 NM 27.4 ± 11.1 NM 535 ± 178.9 MOCC; delayer recail; SW; TME B; Stroop, cell (delayer recail; FAVLT, recognition; ROCC), delayer recail; SW; TME B; Stroop, cell (delayer recail; SW; TME B; SW; TME B; Stroop, cell (delayer recail; SW; TME B; SW; TME B; SW; TME B; SW; SW; SW; SW; SW; SW; SW; SW; SW; SW				15 RBD- (9)	63.1 ± 6.0	5.4 ± 3.8	14.5 ± 3.3	20.7 ± 9.7	2.2 ± 0.8	398.4 ± 273.7	
Jozwiak et al. (5) NM PSG (ICSD-2) 53 RBD+ (40) 40 RBD- (21) 68.0 ± 8.4 63.2 ± 8.5 6.1 ± 4.5 6.1 ± 4.3 14.5 ± 3.9 15.1 ± 3.0 23.1 ± 9.5 2.0 ± 9.8 2.5 ± 0.8 2.2 ± 0.9 492.2 ± 402.3 492.2 ± 402.3 MMSE; vocabulary; RAVLT. recognition; ROCF, delayer recail, SVF, TME: 8, Encop- errors; TME: 8, Encop- erro	Huang et al. (60)	PDSBB		92 RBD+ (68)	65.1 ± 5.8	3.0 (1.0–5.0) ^b	8.4 ± 3.5	24.3 ± 10.0	2.0 (1.5–2.5) ^b		MOCA
Kamble et al. (61) PDSBB MSQ + RBDSQ + K $25 \text{ RBD} + 60.4 \pm 8.2$ 6.1 ± 4.3 15.1 ± 3.0 20.3 ± 9.8 2.2 ± 0.9 38.7 ± 283.3 delayed recall; RMLT, recognition; ROCF, delayed recall; SVF; TML; B; Stroog errors; TMT; A; ROCF, Coperrors; Coperrors; TMT; A; ROCF, Coperrors; Coperrors; TMT; A; ROCF, Coperrors; Coperrors				82 RBD- (45)	64.0 ± 9.3	3.0 (1.0–5.0) ^b	8.8 ± 3.2	23.7 ± 11.5	2.0 (1.5–2.5) ^b		
PSG 25 RBD- 57.3 ± 6.6 7.5 ± 3.5 NM 32.7 ± 8.22 NM 754 ± 349.7 CBTT; FAB, DSB; SVF; DS Kim et al. (63) PDSBB PSG + RBDSQ-K 9 RBD+(0) 70.1 ± 6.8 1.9 ± 1.5 2.4 ± 2.5 NM NM NM K-MMSE Marques et al. (66) Clinical criteria Gelb et al. (43) PSG + clinical evaluation (ICSD-2) $10 RBD+(3)$ 64 ± 2.9 7.6 ± 1.7 10 ± 0.6 NM NM NM NMSE; Number of words correctly encoded; DSB; L Storop color-word; SVF; S DSF Nardone et al. (67) NM PSG + clinical evaluation (ICSD-2) $10 RBD+(8)$ 65.9 ± 6.5 5.0 ± 2.3 10.1 ± 3.8 17.5 ± 4.3 NM 578 ± 2.9 MMSE; Nom a 27 ± 341 Nomura et al. (67) NM PSG + interview $18 RBD+(5)$ 71.3 ± 8.3 9.0 ± 4.7 NM NM 30.4 ± 2.9 30.4 ± 2.9 70.5 ± 3.7 18.3 ± 4.3 NM 627 ± 341 Nomura et al. (63) PDSB PSG + interview $18 RBD+(5)$ 71.3 ± 8.3 9.0 ± 4.7 NM NM 30.4 ± 0.9 408 ± 214 MMSE Nomura et al. (63) PDSBB <td< td=""><td>Jozwiak et al. (5)</td><td>NM</td><td>PSG (ICSD-2)</td><td>. ,</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	Jozwiak et al. (5)	NM	PSG (ICSD-2)	. ,							
Kim et al. (63) PDSBB PSG + RBDSQ-K 9 RBD+(0) 70.1 ± 6.8 1.9 ± 1.5 2.4 ± 2.5 NM NM NM K-MMSE Marques et al. (66) Clinical criteria Gelb et al. (43) PSG 10 RBD+(3) 64 ± 2.9 7.6 ± 1.7 10 ± 0.6 NM NM NM NM MMSE; Number of words correctly encoded; DSB; L Stroop color-word; SVF; S DSF Nardone et al. (67) NM PSG + clinical evaluation (ICSD-2) 10 RBD+(6) 65.9 ± 6.5 5.0 ± 2.3 10.1 ± 3.8 17.5 ± 4.3 NM 578 ± 2.9 MMSE Nomura et al. (67) NM PSG + clinical evaluation (ICSD-2) 10 RBD+(5) 71.3 ± 8.3 9.0 ± 4.7 NM NM 578 ± 2.9 MMSE Nomura et al. (68) PSB PSG + interview 18 RBD+(5) 71.3 ± 8.3 9.0 ± 4.7 NM NM 3.0 ± 0.9 408 ± 214 MMSE Nomura et al. (68) PDSB PSG + clinical evaluation (ICSD-2) $27 RBD + (14)$ 76.5 ± 5.9 8.8 ± 5.2 NM NM 3.0 ± 0.8 455 ± 2.30 MMSE Nomura et al. (68) PDSBB PSG + clinical evaluation (ICSD-3) $73.1 \pm 7.$	Kamble et al. (61)	PDSBB		25 RBD+	60.4 ± 8.2	6.8 ± 4.6	NM	27.4 ± 11.1	NM	535 ± 178.9	MOCA; story recall (delayed);
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			PSG	25 RBD-	57.3 ± 6.6	7.5 ± 3.5	NM	32.7 ± 8.22	NM	754 ± 349.7	CBTT; FAB; DSB; SVF; DSF
Marques et al. (66) Gelb et al. (43)Clinical criteria Gelb et al. (43)PSG10 RBD+ (3) 10 RBD- (3) 64 ± 2.9 59 ± 2.6 7.6 ± 1.7 8.1 ± 3.7 10 ± 0.6 10 ± 0.9 NMNM 703 ± 157 NM MMSE; Number of words correctly encoded; DSB; L Strop color-word; SVF; S DSFNardone et al. (67)NMPSG + clinical evaluation (ICSD-2)10 RBD+ (8) 65.9 ± 6.5 5.0 ± 2.3 10.1 ± 3.8 17.5 ± 4.3 NM 578 ± 2.9 MMSENomura et al. (15)NMPSG + interview18 RBD+ (5) 71.3 ± 8.3 9.0 ± 4.7 NMNM 3.0 ± 0.9 408 ± 214 MMSENomura et al. (68)PDSBBPSG + interview18 RBD+ (10) 71.5 ± 7.2 5.3 ± 4.8 NMNM 3.0 ± 0.9 408 ± 214 MMSENomura et al. (70)PDSBBPSG + clinical evaluation (ICSD-3) 27 RBD+ (14) 76.5 ± 5.9 8.8 ± 5.2 NMNM 3.0 ± 0.8 455 ± 230 MMSENomura et al. (71)PDSBBPSG + clinical evaluation (ICSD-3) 71.1 ± 7.3 9.0 ± 6.0 NMNM 3.0 ± 0.8 437 ± 250 MMSENomura et al. (71)Clinical criteria evaluation (ICSD-3) 77.1 ± 7.8 5.7 ± 6.8 NMNM 2.5 ± 0.7 250 ± 199 Plomhause et al. (71)Clinical criteria evaluation (ICSD-3) 77.1 ± 7.8 5.7 ± 6.8 NMNM 0 MDRS	Kim et al. (63)	PDSBB	PSG + RBDSQ-K	9 RBD+ (0)	70.1 ± 6.8	1.9 ± 1.5	2.4 ± 2.5	NM	NM	NM	K-MMSE
Gelb et al. (43) 10 RBD-(3) 59 ± 2.6 8.1 ± 3.7 10 ± 0.9 NM NM 435 ± 133 correctly encoded; DSB; L Stroop color-word; SVF; S DSF Nardone et al. (67) NM PSG + clinical evaluation (ICSD-2) 10 RBD+ (8) 65.9 ± 6.5 5.0 ± 2.3 10.1 ± 3.8 17.5 ± 4.3 NM 578 ± 2.9 MMSE Nomura et al. (15) NM PSG + interview 18 RBD+ (5) 71.3 ± 8.3 9.0 ± 4.7 NM NM 3.0 ± 0.9 408 ± 214 MMSE Nomura et al. (68) PDSBB PSG + interview 18 RBD+ (10) 71.5 ± 7.2 5.3 ± 4.8 NM NM 2.7 ± 0.9 347 ± 199 Nomura et al. (68) PDSBB PSG + interview $27 RBD + (14)$ 76.5 ± 5.9 8.8 ± 5.2 NM NM 3.0 ± 0.8 455 ± 230 MMSE Nomura et al. (70) PDSBB PSG + clinical evaluation (ICSD-3) $47 RBD + (26)$ 73.1 ± 7.3 9.0 ± 6.0 NM NM 3.0 ± 0.8 437 ± 250 MMSE Plomhause et al. (71) Clinical criteria (Clinical criteria PSG + clinical evaluation (ICSD-3) 71.1 ± 7.8 5.7 ± 6.8 NM				22 RBD- (10)	67.7 ± 8.4	1.9 ± 1.4	8.5 ± 4.8	NM	NM	NM	
white weights in the second secon	Marques et al. (66)		PSG	()							correctly encoded; DSB; LNS; Stroop color-word; SVF; SDM
Nomura et al. (15) NM PSG + interview 18 RBD+ (5) 71.3 \pm 8.3 9.0 \pm 4.7 NM NM 3.0 \pm 0.9 408 \pm 214 MMSE Nomura et al. (68) PDSBB PSG + interview 27 RBD+ (14) 76.5 \pm 5.9 8.8 \pm 5.2 NM NM 3.0 \pm 0.8 455 \pm 230 MMSE Nomura et al. (68) PDSBB PSG + interview 27 RBD+ (14) 76.5 \pm 5.9 8.8 \pm 5.2 NM NM 3.0 \pm 0.8 455 \pm 230 MMSE Nomura et al. (70) PDSBB PSG + clinical evaluation (ICSD-3) 47 RBD+ (26) 73.1 \pm 7.3 9.0 \pm 6.0 NM NM 3.0 \pm 0.8 437 \pm 250 MMSE Plomhause et al. (71) Clinical criteria PSG + clinical evaluation (ICSD-0) 17 RBD+ (8) 65 \pm 8 11 \pm 4 ^c NM NM 2.5 \pm 0.7 250 \pm 199 Plomhause et al. (71) Clinical criteria PSG + clinical evaluation (ICSD 0) 17 RBD+ (8) 65 \pm 8 11 \pm 4 ^c NM 14 \pm 8 NM 0 MDRS	Nardone et al. (67)	NM	PSG + clinical	10 RBD+ (8)	65.9 ± 6.5	5.0 ± 2.3	10.1 ± 3.8	17.5 ± 4.3	NM	578 ± 2.9	MMSE
Nomura et al. (68) PDSBB PSG + interview 23 RBD - (10) 71.5 ± 7.2 5.3 ± 4.8 NM NM 2.7 ± 0.9 347 ± 199 Nomura et al. (68) PDSBB PSG + interview 27 RBD + (14) 76.5 ± 5.9 8.8 ± 5.2 NM NM 3.0 ± 0.8 455 ± 230 MMSE Nomura et al. (70) PDSBB PSG + clinical evaluation (ICSD-3) 47 RBD + (26) 73.1 ± 7.3 9.0 ± 6.0 NM NM 3.0 ± 0.8 437 ± 250 MMSE Plomhause et al. (71) Clinical criteria PSG + clinical evaluation (ICSD-0) 17 RBD + (8) 65 ± 8 $11 \pm 4^\circ$ NM NM 2.5 ± 0.7 250 ± 199 Plomhause et al. (71) Clinical criteria PSG + clinical evaluation (ICSD-0) 17 RBD + (8) 65 ± 8 $11 \pm 4^\circ$ NM 14 ± 8 NM 0 MDRS			evaluation (ICSD-2)	13 RBD- (9)	63.7 ± 6.4	6.0 ± 2.8	10.5 ± 3.7	18.3 ± 4.3	NM	627 ± 341	
Nomura et al. (68) PDSBB PSG + interview $27 \text{ RBD} + (14)$ 76.5 ± 5.9 8.8 ± 5.2 NM NM 3.0 ± 0.8 455 ± 230 MMSE Nomura et al. (70) PDSBB PSG + clinical evaluation (ICSD-3) $47 \text{ RBD} + (26)$ 73.1 ± 7.3 9.0 ± 6.0 NM NM 3.0 ± 0.8 437 ± 250 MMSE Plomhause et al. (71) Clinical criteria PSG + clinical evaluation (ICSD-3) 71.1 ± 7.8 5.7 ± 6.8 NM NM 2.5 ± 0.7 250 ± 199 Plomhause et al. (71) Clinical criteria PSG + clinical evaluation (ICSD-3) $17 \text{ RBD} + (8)$ 65 ± 8 $11 \pm 4^\circ$ NM 14 ± 8 NM 0 MDRS	Nomura et al. (15)	NM	PSG + interview	18 RBD+ (5)	71.3 ± 8.3	9.0 ± 4.7	NM	NM	3.0 ± 0.9	408 ± 214	MMSE
$32 \text{ RBD-} (14) 74.5 \pm 8.1 7.0 \pm 8.2 \text{NM} \qquad \text{NM} \qquad 2.5 \pm 0.6 233 \pm 150$ Nomura et al. (70) PDSBB $PSG + \text{clinical} \\ evaluation (ICSD-3) 89 \text{ RBD-} (35) 71.1 \pm 7.8 5.7 \pm 6.8 \text{NM} \qquad \text{NM} \qquad 3.0 \pm 0.8 437 \pm 250 \text{MMSE}$ Plomhause et al. (71) Clinical criteria $PSG + \text{clinical} \\ \text{Clinka arc (45)} \text{surfaciant (CSD-0)} 17 \text{ RBD} + (8) 65 \pm 8 11 \pm 4^{\circ} \text{NM} \qquad 14 \pm 8 \text{NM} \qquad 0 \text{MDRS}$				23 RBD- (10)	71.5 ± 7.2	5.3 ± 4.8	NM	NM	2.7 ± 0.9	347 ± 199	
Nomura et al. (70) PDSBB PSG + clinical evaluation (ICSD-3) 47 RBD+ (26) 73.1 ± 7.3 9.0 ± 6.0 NM NM 3.0 ± 0.8 437 ± 250 MMSE Plomhause et al. (71) Clinical criteria PSG + clinical 17 RBD+ (8) 65 ± 8 $11 \pm 4^{\circ}$ NM NM 2.5 ± 0.7 250 ± 199 Plomhause et al. (71) Clinical criteria PSG + clinical 17 RBD+ (8) 65 ± 8 $11 \pm 4^{\circ}$ NM 14 ± 8 NM 0 MDRS	Nomura et al. (68)	PDSBB	PSG + interview	27 RBD+ (14)	76.5 ± 5.9	8.8 ± 5.2	NM	NM	3.0 ± 0.8	455 ± 230	MMSE
evaluation (ICSD-3) 89 RBD- (35) 71.1 ± 7.8 5.7 ± 6.8 NM NM 2.5 ± 0.7 250 ± 199 Plomhause et al. (71) Clinical criteria PSG + clinical 17 RBD+ (8) 65 ± 8 $11 \pm 4^{\circ}$ NM 14 ± 8 NM 0 MDRS Clinical criteria Clinical criteria $17 RBD + (8)$ 65 ± 8 $11 \pm 4^{\circ}$ NM 14 ± 8 NM 0 MDRS				32 RBD- (14)	74.5 ± 8.1	7.0 ± 8.2	NM	NM	2.5 ± 0.6	233 ± 150	
Plomhause et al. (71) Clinical criteria PSG + clinical 17 RBD+ (8) 65 ± 8 $11 \pm 4^{\circ}$ NM 14 ± 8 NM 0 MDRS	Nomura et al. (70)	PDSBB	PSG + clinical	47 RBD+ (26)	73.1 ± 7.3	9.0 ± 6.0	NM	NM	3.0 ± 0.8	437 ± 250	MMSE
Cibb and Lass (45) — such that $(CCD, 0)$			evaluation (ICSD-3)	89 RBD- (35)	71.1 ± 7.8	5.7 ± 6.8	NM	NM	2.5 ± 0.7	250 ± 199	
Gibb and Lees (45) evaluation (ICSD-2) 40 RBD- (27) 60 ± 12 $15 \pm 12^{\circ}$ NM 15 ± 6 NM 0	Plomhause et al. (71)	Clinical criteria	PSG + clinical	17 RBD+ (8)	65 ± 8	$11 \pm 4^{\circ}$	NM	14 ± 8	NM	0	MDRS
		Gibb and Lees (45)	evaluation (ICSD-2)	40 RBD- (27)	60 ± 12	$15\pm12^{\circ}$	NM	15 ± 6	NM	0	

(Continued)

RBD and Cognition in PD?

TABLE 2 | Continued

Study	Diagnostic criteria for PD	RBD assessment	Participants (n men)	Age (years)	PD duration (years)	Edu	UPDRS-III	H&Y stage	LEDD (mg)	Analyzed cognitive tests
Plomhause et al. (72)	Clinical criteria	PSG + clinical	15 RBD+ (14)	63.2 ± 7.7	7.0 ± 3.7	11.8 ± 3.9	18.8 ± 8.6	NM	435.1 ± 171.1	MDRS; Lexis denomination task
	Gelb et al. (43)	evaluation (ICSD-2)	15 RBD- (11)	61.4 ± 7.5	4.1 ± 3.2	10.5 ± 1.7	19.8 ± 6.5	NM	633.0 ± 342.3	
Postuma et al. (73)	PDSBB	PSG + clinical	27 RBD+ (23)	70.5 ± 7.4	9.7 ± 4.3	NM	34.1 ± 16.5	NM	NM	MOCA
		evaluation (ICSD-2)	15 RBD- (11)	67.5 ± 10.5	9.5 ± 4.8	NM	26.2 ± 16.2	NM	NM	
Sixel-Doring et al. (16)	PDSBB	PSG	210 RBD+ (62)	69 ± 8	8.7 ± 4.4	5.2 ± 4.6	30 ± 14	3.2 ± 1.1	500.6 ± 375.3	MMSE
			247 RBD- (64)	66 ± 11	7.3 ± 5.6	4.2 ± 3.6	28 ± 15	2.9 ± 0.9	422.9 ± 330.4	
Vendette et al. (35)	PDSBB	PSG + clinical evaluation (ICSD-2)	18 RBD+ 16 RBD-	$\begin{array}{c} 65.61 \pm 7.73 \\ 65.13 \pm 7.69 \end{array}$	5.2 ± 2.3 6.0 ± 3.2	15.0 ± 3.7 15.8 ± 1.9	$\begin{array}{c} 17.3\pm7.7\Delta\\ 15.6\pm10.7\Delta\end{array}$	$\begin{array}{c} 2.06 \pm 0.78 \\ 2.22 \pm 0.77 \end{array}$		MMSE; RAVLT, delayed recall; RAVLT, recognition; SVF; TMT: Stroop errors; TMT: A; ROCF, Copy
PROBABLE-RBD										
Ba et al. (75)	Clinical criteria ^a + DAT imaging deficit	RBDSQ (>5)	136 RBD+ (92) 214 RBD- (137)	61.2 ± 9.4 60.4 ± 9.9	$\begin{array}{c} 7.51 \pm 6.69^{c} \\ 7.35 \pm 6.29^{c} \end{array}$	15.6 ± 2.9 15.6 ± 3.0	21.6 ± 9.4 19.6 ± 8.4	1.6 ± 0.5 1.5 ± 0.5	0 0	MOCA; HVLT, total recall; HVLT, Recognition; SVF; SDMT; LNS; BJLOT
Boucetta et al. (76)	Clinical criteriaª	RBDSQ (\geq 5) + positive response to item 5, 6.3 or 6.4	69 RBD+ (52) 240 RBD- (149)	60.9 ± 9.2 61.6 ± 9.8	$6.3 \pm 6.6^{\circ}$ $6.9 \pm 6.7^{\circ}$	15.9 ± 2.3 15.6 ± 2.9	22.5 ± 9.5	NM NM	0 0	MOCA; SVF; SDMT; BJLOT
Chahine et al. (31)	Clinical criteria ^a + DAT imaging deficit	- RBDSQ (≥6)	108 RBD+ (79) 315 RBD- (198)	$\begin{array}{c} 61.9 \pm 9.9 \\ 61.7 \pm 9.7 \end{array}$	0.25 (0.17–0.59) ^b 0.34 (0.25–0.67) ^b	15.3 ± 2.9 15.6 ± 3.0	22.0 ± 8.8 20.5 ± 8.9	NM NM	0 0	MOCA; HVLT-R, delayed free recall; HVLT-R, recognition; SVF SDMT; LNS; BJLOT
Duarte Folle et al. (55)	NM	Interview	160 RBD+ (122)	70.0 ± 9.6	3.5 ± 3.1	14.3 ± 3.7	23.4 ± 2.5	\geq 3, N = 25	459 ± 349	MMSE
			616 RBD- (371)	70.6 ± 10.4	3 ± 2.5	13.6 ± 4.7	22.6 ± 2.4	\geq 3, N = 99	388 ± 332	
Ford et al. (56)	PDSBB	MSQ	46 RBD+ (36)	66.4 ± 9.9	$6.5\pm5.1^{\circ}$	13.0 ± 3.6	26.3 ± 10.0	2.2 ± 0.7	179.2 ± 144.7	MMSE
			78 RBD– (48)	65.8 ± 10.9	$6.0\pm4.4^{\circ}$	13.0 ± 4.1	27.3 ± 11.9	1.9 ± 0.6	172.6 ± 128.2	
Gjerstad et al. (59)	Clinical criteria	SSQ	34 RBD+ (25)	71.6 ± 7.9	11.1 ± 6.2	NM	29.5 ± 15.8	3.0 ± 1.1	626 ± 312	MMSE
	(93)		197 RBD- (89)	73.7 ± 8.5	8.6 ± 5.5	NM	28.2 ± 15.9	2.8 ± 1.0	452 ± 236	
Kim et al. (62)	PDSBB	ICSD-R	578 RBD+ (266)	64.6 ± 8.8	7.66 ± 4.66	NM	NM	2.25 ^b	795.3 ± 406.2	MMSE; FAB
			366 RBD- (182)	62.2 ± 10.0	6.21 ± 3.91	NM	NM	2.03 ^b	693.0 ± 421.6	
Kotagal et al. (77)	PDSBB + DTBZ PET	MSQ	27 RBD+ (25)	63.4 ± 6.7	6.4 ± 3.7	NM	27.6 ± 10.9	2.3 ± 0.4	NM	MOCA
	imaging		53 RBD- (35)	65.3 ± 7.1	5.8 ± 4.0	NM	25.1 ± 11.2	2.3 ± 0.5	NM	
Lavault et al. (28)	PDSBB	Interview	39 RBD+ (26)	66.6 ± 7.9	7.5 ± 5.1	NM	22.0 ± 12.4	NM	576 ± 353	MMSE; FAB
			22 RBD- (13)	60.3 ± 11.1	5.8 ± 3.9	NM	13.5 ± 6.5	NM	649 ± 403	
Lee et al. (8)	PDSBB	ICSD-R	164 RBD+ (79)	65.1 ± 8.4	7.28 ± 5.18	NM	20.3 ± 10.4	2.2 ± 0.7	527 ± 292	MMSE
			283 RBD- (128)	63.1 ± 9.6	5.47 ± 4.16	NM	18.2 ± 11.2	2.1 ± 0.6	485 ± 285	
Lim et al. (64)	PDSBB	RBDSQ + PSG (partial confirmation)	24 RBD+ (12) 14 RBD- (8)	69.8 ± 6.4 69.7 ± 7.2	6.2 ± 2.9 4.4 ± 3.7	NM NM	12.4 ± 2.5 22.4 ± 10.6	1.9 ± 0.4 1.6 ± 0.5	NM NM	MMSE

Mao et al.

RBD and Cognition in PD?

(Continued)

TABLE 2 | Continued

Data are shown as the mean \pm SD unless otherwise noted.

Study	Diagnostic criteria for PD	RBD assessment	Participants (n men)	Age (years)	PD duration (years)	Edu	UPDRS-III	H&Y stage	LEDD (mg)	Analyzed cognitive tests
Liu et al. (78)	PDSBB	RBDSQ (≥5)	31 RBD+ (14)	60.4 ± 10.8	2.71 ± 3.52	9.2 ± 3.8	21.3 ± 9.0	1.9 ± 0.5	0	MOCA
			127 RBD- (61)	58.3 ± 10.4	1.90 ± 1.72	10.3 ± 3.9	20.1 ± 10.9	2.0 ± 0.4	0	
Mahale et al. (65)	Queen Square Brain	RBDSQ	10 RBD+ (0)	62.5 ± 10.3	4.1 ± 2.8	NM	27.5 ± 9.9	2.4 ^b	675.0 ± 521.5	MMSE
	Bank criteria		27 RBD- (0)	51.2 ± 10.7	5.3 ± 4.9	NM	31.0 ± 9.7	2.3 ^b	588.5 ± 313.5	
Meral et al. (81)	PDSBB	Interview (ICSD)	36 RBD+ (24) 43 RBD- (26)	$\begin{array}{c} 66.5 \pm 8.79 \\ 67.6 \pm 8.5 \end{array}$	7.27 ± 3.59 5.60 ± 3.65	NM NM	23.3 ± 11.5 17.5 ± 11.0	NA NA	$\begin{array}{c} 423.2 \pm 198.8 \\ 339.0 \pm 245.9 \end{array}$	STMS; WMS, delayed recall; SBST, recognition; SBST, delayed recall; SVF; stroop error WCST, category; BJLOT
Naismith et al. (34)	PDSBB	RBDSQ (≥5)	51 RBD+ 47 RBD-	$65.5 \pm 7.2 \\ 65.0 \pm 9.7$	6.8 ± 5.7 4.6 ± 4.4	$13.3 \pm 2.9 \\ 14.2 \pm 3.3$	NM NM	2.2 ± 0.7 2.2 ± 0.7	773.3 ± 577.7 512.9 ± 551.1	MMSE; Logical memory, encoding; DSB; TMT: B-A
Nomura et al. (69)	PDSBB	RBDSQ-J (≥6)	27 RBD+ (15)	68.8 ± 8.6	9.1 ± 7.7	NM	NM	2.8 ± 0.7	500 ± 351	MOCA
			43 RBD- (16)	69.4 ± 8.6	6.4 ± 5.2	NM	NM	2.5 ± 0.9	322 ± 243	
Pagano et al. (79)	Clinical criteria ^a + DAT imaging deficit	RBDSQ (≥5)	158 RBD+ (109) 263 RBD- (166)	61.8 ± 9.7 61.5 ± 9.8	$6.5 \pm 6.5^{\circ}$ $6.7 \pm 6.6^{\circ}$	15.6 ± 2.9 15.5 ± 3.0	$\begin{array}{c} 20.9\pm8.8\\ 20.4\pm8.8\end{array}$	$\begin{array}{c} 1.54 \pm 0.50 \\ 1.58 \pm 0.51 \end{array}$	0	MOCA; HVLT, immediate recall; HVLT, delayed recognition; SVF LNS; SDMT; BJLOT
Rahmani et al. (80)	Clinical criteria ^a	RBDSQ	10 RBD+ (8)	61 ± 8.15	NM	15.8 ± 3.1	18.9 ± 10.8	NM	NM	MOCA
			7 RBD- (6)	64 ± 6.6	NM	14.4 ± 3.4	24.5 ± 6.9	NM	NM	
Rolinski et al. (33)	PDSBB	RBDSQ	224 RBD+ (148)	67.5 ± 9.4	1.6 ± 1.0	NM	26.8 ± 10.6	1.9 ± 0.5	345.2 ± 189.6	MOCA; SVF
			251 RBD- (144)	67.9 ± 9.5	1.4 ± 1.0	NM	26.9 ± 11.2	1.9 ± 0.5	322.9 ± 196.7	
Sinforiani et al. (19)	PDSBB	Clinical evaluation (ICSD)	79 RBD+ (46) 31 RBD- (19)	68.0 ± 8.4 63.0 ± 8.2	$10.3 \pm 4.9 \\ 9.5 \pm 4.5$	NM NM	47.7 ± 12.6 35.2 ± 10.3	3.5 ^b 3 ^b		MMSE; CBTT; DSF; Logical memory test; FAB
Zhang et al. (74)	PDSBB	MSQ + RBDSQ + PS0 (partial confirmation)	G32 RBD+ (23) 42 RBD- (20)	64.9 ± 5.2 62.2 ± 8.3	4.0 ± 2.5 4.2 ± 2.7	9.5 ± 2.3 9.8 ± 2.6	$\begin{array}{c} 19.8 \pm 12.0 \\ 20.0 \pm 9.6 \end{array}$	2.0 (1.5–2.5) ^b 2.0 (1.5–2.5) ^b		MOCA; SVF; RAVLT, delayed recall; RAVLT, recognition; ROC recall; DSB; TMT: B, time; Stroc time; DSF; TMT: A; SDMT; ROCF, Copy

PD, Parkinson's disease; RBD, REM sleep behavior disorder; Edu, education; UPDRS III, Unified Parkinson's Disease Rating Scale, part 3; H&Y stage, Hoehn and Yahr stage; LEDD, levodopa equivalent daily dose; PSG, polysomnography; ICSD-2, second edition of the International Classification of Sleep Disorders; NM, not mentioned; MMSE, Mini-Mental State Examination; PDSBB, U.K. Parkinson's Disease Society Brain Bank criteria; RAVLT, Rey auditory-verbal learning

test; SVF, semantic/category verbal fluency test; DSB, digit span backward; TMT: B, trail making test: part B; ROCF, Rey–Osterrieth complex figure test; ICSD-3, third edition of the International Classification of Sleep Disorders; MOCA, Montreal Cognitive Assessment; TMT: A, trail making test: part A; MSQ, Mayo Sleep Questionnaire; RBDSQ, REM Sleep Behavior Disorder Screening Questionnaire; CBTT, Corsi's block tapping test; FAB, frontal assessment battery; DSF, digit span forward; RBDSQ-K, Korean version of REM Sleep Behavior Disorder Screening Questionnaire; K-MMSE, Korean version of the Mini-Mental State Examination; LNS, letter–number sequencing; SDMT, symbol digit modalities test; MDRS, Mattis Dementia Rating Scale; DAT, dopamine transporter; HVLT, Hopkins Verbal Learning Test; BJLOT, Benton judgment of line orientation test; HVLT-R, Hopkins Verbal Learning Test, SOR, Stavanger Sleepiness Questionnaire; ICSD-R, International Classification of Sleep Disorders–Revised; DTBZ, dopaminergic denervation on [¹¹C]dihydrotetrabenazine; STMS, Short Test of Mental Status; WMS, Wechsler Memory Scale; SBST,

sözel bellek surecleri testi; WCST, Wisconsin Card Sorting Test; TMT: B-A, trail making test: part B-part A; RBDSQ-J, Japanese version of REM Sleep Behavior Disorder Screening Questionnaire.

^aAll clinical data were extracted from the PPMI database. Further information is described in detail at http://www.ppmi-info.org.

^bMedian (IQR). ^cMonths. TABLE 3 | Summary of the meta-analytic results of the following cognitive dimensions.

Domains/subgroups	κ	PD-RBD	PD-NRBD	Effec	t size	Hete	rogeneity
				SMD (P-value)	95% CI	l² (%)	Р
CONFIRMED-RBD							
Global cognitive function	17	625	708	-0.41 (0.001)	-0.66 to -0.16	74	< 0.0000
Memory-long-term verbal recall	5	128	109	-0.64 (0.02)	-1.16 to -0.11	70	0.009
Memory-long-term verbal recognition	3	93	74	-0.50 (0.002)	-0.81 to -0.19	0	0.58
Memory—short-term verbal recall	2	35	35	0.15 (0.63)	-0.47 to 0.78	36	0.21
EF-generativity	5	128	109	-1.12 (0.002)	-1.85 to -0.39	83	0.0001
EF—inhibition	5	128	99	0.63 (0.0007)	0.27-1.00	36	0.18
EF-shifting	3	93	74	0.80 (<0.0001)	0.48-1.12	0	0.66
EF-updating	4	110	93	-0.39 (0.22)	-1.01 to 0.23	75	0.007
Language	2	68	55	-0.49 (0.009)	-0.85 to -0.12	0	0.93
Visuospatial/constructional ability	3	93	74	-0.61 (0.0001)	-0.92 to -0.30	0	0.99
PROBABLE-RBD							
Global cognitive function	21	2025	3097	-0.24 (0.0007)	-0.39 to -0.10	78	< 0.0000
Memory-long-term verbal recall	6	476	714	-0.20 (0.18)	-0.49 to 0.09	81	<0.0001
Memory-long-term verbal recognition	5	470	877	0.07 (0.64)	-0.21 to 0.34	80	0.0004
Memory-short-term verbal recall	2	111	73	-0.23 (0.24)	-0.61 to 0.16	35	0.22
EF-generativity	7	763	1368	0.12 (0.49)	-0.22 to 0.45	92	< 0.0000
EF—inhibition	2	68	89	0.40 (0.27)	-0.31 to 1.11	79	0.03
EF—shifting	4	198	163	0.39 (0.0003)	0.18-0.61	0	0.68
EF-updating	2	83	89	-0.34 (0.11)	-0.76 to 0.08	46	0.17
Visuospatial/constructional ability	6	539	1117	-0.04 (0.78)	-0.37 to 0.28	88	< 0.0000
MIXED-RBD							
Memory—long-term visual recall	4	172	172	-0.34 (0.002)	-0.55 to -0.12	0	0.70
Memory-short-term spatial recall	2	104	56	-0.65 (0.001)	-1.04 to -0.26	19	0.27
EF-general	4	721	444	-0.31 (0.02)	-0.57 to -0.06	46	0.13
Processing speed/complex attention/working memory (LNS)	4	412	802	-0.01 (0.95)	-0.33 to 0.30	81	0.001
Processing speed/complex attention/working memory (TMT: A)	3	103	98	0.57 (<0.0001)	0.29-0.86	0	0.82
Psychomotor ability	6	464	1084	-0.31 (0.05)	-0.62 to 0.01	84	< 0.0000

Statistically significant values of effect size are reported in bold.

K, number of studies; PD-RBD, number of PD patients with RBD; PD-NRBD, number of PD patients without RBD; SMD, standardized mean difference; CI, confidence intervals; I², heterogeneity statistics; EF, executive function; LNS, letter–number sequencing; TMT: A, trail making test: part A.

Memory-Long-Term Verbal Recall

The meta-analysis included five "Confirmed-RBD" and six "Probable-RBD" studies. For the "Confirmed-RBD" subgroup, PD-RBD patients had significantly lower scores than did PD-NRBD patients, with a medium ES (SMD = -0.64, 95% CI = -1.16 to -0.11, P = 0.02); heterogeneity was moderate ($I^2 = 70\%$). For the "Probable-RBD" subgroup, the ES was not significant. No significant difference between these two subgroups was observed (**Table 3, Figure 3A**).

Memory-Long-Term Verbal Recognition

The meta-analysis included three "Confirmed-RBD" and five "Probable-RBD" studies. For the "Confirmed-RBD" subgroup, PD-RBD patients had significantly lower scores than did PD-NRBD patients, with a medium ES (SMD = -0.50, 95% CI = -0.81 to -0.19, P = 0.002); heterogeneity was absent ($I^2 = 0\%$). For the "Probable-RBD" subgroup, the ES was not significant. The difference between these two subgroups was significant (P = 0.008) (**Table 3, Figure 3B**).

Memory-Long-Term Visual Recall

The meta-analysis included one "Confirmed-RBD" and three "Probable-RBD" primary studies. Given the exiguity of the primary studies in the "Confirmed-RBD" subgroup, we analyzed these two subgroups together. PD-RBD patients had significantly lower scores than did PD-NRBD patients, with a medium ES (SMD = -0.34, 95% CI = -0.55 to -0.12, P = 0.002); heterogeneity was absent ($I^2 = 0\%$) (**Table 3, Figure 3C**).

Memory-Short-Term Verbal Recall

This meta-analysis included two "Confirmed-RBD" and two "Probable-RBD" studies. The ESs for both groups were insignificant (**Table 3**, **Figure 3D**).

Memory-Short-Term Spatial Recall

This meta-analysis included one "Confirmed-RBD" and one "Probable-RBD" study. Given the exiguity of the primary studies in both subgroups, we analyzed them together. PD-RBD patients had significantly lower scores than did PD-NRBD

Audu an Cubanaun		D-RBD			-NRBI			Std. Mean Difference	Std. Mean Difference
Study or Subgroup Confirmed-RBD	Mean	5D	Total	Mean	5D	Total	Weight	IV, Random, 95% CI	IV, Random, 95% CI
Arnaldi 2015	26.1	1.4	24	28.9	1.9	16	1.7%	-1.70 [-2.44, -0.95]	
Gagnon 2004	20.1	0.5	24 7	29.5	0.5	8	1.1%	0.00 [-1.01, 1.01]	
Gaudreault 2013	29.5	1.1	16	29.3	0.8	15	1.1%	-0.40 [-1.12, 0.31]	
		2.43				82			
Huang 2018	22.3	2.43	92 53	24.61 29.3	2.36 1.1	62 40	3.4%	-0.96 [-1.27, -0.64]	
lozwiak 2017 Kamble 2019	26.8	2.4	25	29.3	1.1	40 25	2.9% 2.3%	-0.80 [-1.23, -0.38]	
Kim 2016	20.0	2.4 3.5	25	22.9	4.3	25	2.3% 1.6%	-0.10 [-0.66, 0.45] -0.19 [-0.97, 0.59]	
	28.2	0.4	10	28.2	0.8	10	1.4%		
Marques 2010		0.4 1.4		28.2			1.4%	0.00 [-0.88, 0.88]	
Nardone 2013 Nomura 2010	26.6 25.6	3.9	10 18	26.2	1.3 3.2	13 23	2.1%	-1.15 [-2.05, -0.25]	
								-0.19 [-0.81, 0.42]	
Nomura 2013	26.9	2.9 4.5	27	26.5 26.8	2.5 3	32 89	2.5%	0.15 [-0.37, 0.66]	
Nomura 2017	24.7		47				3.2%	-0.58 [-0.94, -0.22]	
Plomhause 2013	140	3	17	138	4	40	2.2%	0.53 [-0.05, 1.10]	
Plomhause 2014	138	4.2	15	139	3.9	15	1.8%	-0.24 [-0.96, 0.48]	
Postuma 2012	20.1	6.2	27	26.3	2.3	15	1.9%	-1.17 [-1.86, -0.49]	
Sixel-Doring 2011	28.4	2.9	210	28.8	2.9	247	4.0%	-0.14 [-0.32, 0.05]	
Vendette 2007 Subtotal (95% CI)	28.89	0.96	18 625	29	0.82	16 708	1.9% 36.9%	-0.12 [-0.79, 0.55]	
. ,	o 40 O			10 (5				-0.41 [-0.66, -0.16]	•
Heterogeneity: Tau ² = Test for overall effect:				- 10 (F	< 0.00	5001), 1	- 74%		
Probable-RBD									
Ba 2018	26.98	2.4	136	27.32	2.21	214	3.9%	-0.15 [-0.36, 0.07]	-1
Boucetta 2016	27.77	2.63	69	28.16	2.36	240	3.6%	-0.16 [-0.43, 0.11]	-+
Chahine 2016	26.96	2.35	108	27.2	2.31	315	3.8%	-0.10 [-0.32, 0.12]	-+
Duarte Folle 2019	26.9	0.36	160	27.2	0.36	616	4.0%	-0.83 [-1.01, -0.65]	-
Ford 2013	28.8	1.4	46	28.5	1.3	78	3.2%	0.22 [-0.14, 0.59]	+
Gjerstad 2008	28.9	1.1	16	29.3	0.8	15	1.8%	-0.40 [-1.12, 0.31]	
Kim 2014	26.45	3.17	578	26.93	2.57	366	4.2%	-0.16 [-0.29, -0.03]	7
Kotagal 2012	26	2.3	27	26.3	2	53	2.7%	-0.14 [-0.61, 0.32]	
_avault 2010	28	2.5	39	28.7	1.3	22	2.4%	-0.32 [-0.85, 0.20]	
Lee 2010	25.7	3.9	164	25.9	4.2	283	3.9%	-0.05 [-0.24, 0.14]	+
_im 2016	26.3	2.3	24	28.1	1.9	14	1.9%	-0.81 [-1.50, -0.13]	<u> </u>
_iu 2019	23.58	4.46	31	25.91	2.84	127	3.0%	-0.72 [-1.12, -0.32]	
Mahale 2016	26.5	1.6	10	27.4	2.2	27	1.7%	-0.43 [-1.16, 0.31]	
Meral 2007	26.89	2.56	36	25.49	1.59	43	2.7%	0.66 [0.21, 1.12]	— <u>—</u>
Vaismith 2011	28.4	1.7	51	28.8	1.5	47	3.0%	-0.25 [-0.64, 0.15]	-+
Nomura 2016	21	5.8	27	23	5	43	2.6%	-0.37 [-0.86, 0.11]	
Pagano 2018	26.99	2.34	158	27.22	2.31	263	3.9%	-0.10 [-0.30, 0.10]	-+
Rahmani 2016	26.6	2.71	10	26.4	3.01	7	1.2%	0.07 [-0.90, 1.03]	
Rolinski 2014	24.2	3.7	224	24.8	3.5	251	4.0%	-0.17 [-0.35, 0.01]	-1
Sinforiani 2006	24.22	3.16	79	26.3	2.1	31	2.9%	-0.71 [-1.14, -0.28]	I
Zhang 2016 Subtotal (95% CI)	23.09			24.59		42 3097	2.7% 63.1%	-0.47 [-0.94, -0.00] -0.24 [-0.39, -0.10]	•
Heterogeneity: Tau² = Test for overall effect:				= 20 (P	< 0.00	0001); I	² = 78%		
Fotal (95% CI)			2650			3805	100.0%	-0.31 [-0.43, -0.18]	♦
Heterogeneity: Tau ² =	0.09; Cł	ni² = 15	5.51, c	lf = 37 (P < 0.0	00001);	l² = 76%		
Test for overall effect:						,,			
	erences:	•		/					Favours [PD-RBD] Favours [PD-NRBD]

FIGURE 2 | Forest plot for global cognitive function with subtotals by the diagnosis of rapid eye movement sleep behavior disorder (RBD) displaying the effect size calculated using a random-effects model. SD, standard deviation; Std. Mean Difference, standardized mean difference; CI, confidence interval.

patients, with a medium ES (SMD = -0.65, 95% CI = -1.04 to -0.26, P = 0.001); heterogeneity was absent ($I^2 = 19\%$) (**Table 3, Figure 3E**).

General EF

The meta-analysis included one "Confirmed-RBD" and three "Probable-RBD" studies. Given the exiguity of the primary studies in the "Confirmed-RBD" subgroup, we analyzed these two subgroups together. PD-RBD patients had significantly lower scores than did PD-NRBD patients, with a medium ES (SMD = -0.31, 95% CI = -0.57 to -0.06, P = 0.02); heterogeneity was low ($I^2 = 46\%$) (**Table 3**, **Figure 4A**).

EF-Fluid Reasoning

The meta-analytic study could not be performed due to the exiguity of the primary studies (n = 1). PD-RBD patients

Α	Memory – Long-te	PD-	-RBD	F	D-NRBD			Std. Mean Difference	Std. Mean	
	Study or Subgroup Confirmed-RBD Gagnon 2009	Mean 6.95 3	SD Tot	22 9.83		Total	7.5%	IV, Random, 95% Cl -1.04 [-1.71, -0.37]	IV, Rando	iii, 93% GI
	Jozwiak 2017 Kamble 2019	7.3	3.3	22 9.83 53 10 25 9.2	3.4	40	9.7% 8.2%	-1.04 [-1.71, -0.37] -0.80 [-1.23, -0.37] -0.86 [-1.45, -0.28]		
	Marques 2019 Vendette 2007		0.4	10 15.1	0.2	25 10 16	5.5% 7.0%	-0.86 [-1.45, -0.28] 0.91 [-0.02, 1.84] -0.99 [-1.71, -0.27]		
	Subtotal (95% CI) Heterogeneity: Tau ² = Test for overall effect:	0.24; Chi ²	12 2 = 13.54	28 df = 4 (P		109	37.9%	-0.64 [-1.16, -0.11]	-	
	Probable-RBD									
	Ba 2018 Chahine 2016 Meral 2007	45.23	2.36	92 47.69 79 8.46	2.56	137 198 43	11.1%	-0.23 [-0.49, 0.04] -0.16 [-0.42, 0.10]		
	Pagano 2018 Sinforiani 2006	8.2 24.89 9.24	4.95 1	36 8.04 58 23.66 79 11.8	4.96	263 31	9.5% 11.5% 9.7%	0.11 [-0.33, 0.56] 0.25 [0.05, 0.45] -0.68 [-1.10, -0.25]		
	Zhang 2016 Subtotal (95% CI)	5.78		32 7.18		42	9.2% 62.1%	-0.67 [-1.14, -0.19] -0.20 [-0.49, 0.09]		
	Heterogeneity: Tau ² = Test for overall effect:	0.10; Chi ^a Z = 1.33 ((P = 0.18)		< 0.0001		1%			
	Total (95% CI) Heterogeneity: Tau ² = Test for overall effect:	Z = 2.51 (P = 0.01	df = 10 (01); I² =		-0.38 [-0.67, -0.08]	-2 -1 0 Favours [PD-RBD]	1 2 Favours [PD-NRBD]
в	Test for subgroup diffe Memory – Long-te					1" = 51.	1%			
	Study or Subgroup	PD Mean	-RBD SD To	tal Mea	PD-NRBD n SD) Total		Std. Mean Difference IV, Random, 95% Cl	Std. Mean IV, Rando	Difference m, 95% Cl
	Confirmed-RBD Gagnon 2009	12.76		22 13.9		18	8.4%	-0.56 [-1.20, 0.08]		-
	Jozwiak 2017 Vendette 2007 Subtotal (95% CI)	12.7 13.41	2.76	53 13. 18 13.8 93		40 16 74	12.1% 7.9% 28.4%	-0.59 [-1.01, -0.17] -0.18 [-0.85, 0.50] -0.50 [-0.81, -0.19]		
	Heterogeneity: Tau ² = Test for overall effect:		² = 1.09, c	lf = 2 (P =	• 0.58); l²				-	
	Probable-RBD Ba 2018	47.52 1			7 10.86	214	16.2%	-0.19 [-0.40, 0.03]		
	Chahine 2016 Meral 2007	4.42	0.7	08 11. 36 3.8	3 0.6	315 43 263	16.2% 11.3%	-0.10 [-0.32, 0.12] 0.90 [0.44, 1.37]		
	Pagano 2018 Zhang 2016 Subtotal (95% CI)	11.23 10.44	1.56	58 11.0 32 10.8 70		203 42 877	16.6% 11.3% 71.6%	0.12 [-0.07, 0.32] -0.23 [-0.69, 0.23] 0.07 [-0.21, 0.34]		
	Heterogeneity: Tau ² = Test for overall effect:			df = 4 (P	= 0.0004); l ² = 80				
	Total (95% CI) Heterogeneity: Tau ² =	0.09; Chi ²	^e = 30.34,	63 df = 7 (P	< 0.0001		100.0% %	-0.08 [-0.33, 0.17]	-1 -0.5	0.5 1
с	Test for overall effect: Test for subgroup diffe Memory - Long-te	rences: C	hi² = 7.04	, df = 1 (f	P = 0.008), l² = 85	.8%		Favours [PD-RBD]	Favours [PD-NRBD]
Ū	Study or Subgroup		-RBD		D-NRBD	Total V		td. Mean Difference IV, Random, 95% CI	Std. Mean I IV, Rando	
	Mixed-RBD Jozwiak 2017	12.2		53 1	5 7.4		26.7%	-0.41 [-0.82, 0.01]		
	Meral 2007 Naismith 2011		3.7	51 9.	1 1.34 5 3.5	47	22.8% 29.2%	-0.45 [-0.90, -0.01] -0.14 [-0.53, 0.26]		
	Zhang 2016 Subtotal (95% CI) Heterogeneity: Tau ² =		1	72	5 5.89	172 1	21.3% 00.0%	-0.40 [-0.87, 0.06] -0.34 [-0.55, -0.12]	-	•
					- 0.70), 1	- 0 /8				
	Test for overall effect:	Z = 3.10 ((P = 0.00							
	Test for overall effect: Total (95% CI) Heterogeneity: Tau ² =	0.00; Chi	1 ² = 1.43,		= 0.70); l ^a	172 1 = 0%	00.0%	-0.34 [-0.55, -0.12]	0.5 .0.25	0.25 0.5
	Test for overall effect: Total (95% CI) Heterogeneity: Tau ² = Test for overall effect: Test for subgroup diffe	0.00; Chi Z = 3.10 (rences: N	1 ² = 1.43, (P = 0.00 Not applic	df = 3 (P 2) able	= 0.70); l ^a		00.0%	-0.34 [-0.55, -0.12] •	-0.5 -0.25 0 Favours [PD-RBD]	0.25 0.5 Favours [PD-NRBD]
D	Test for overall effect: Total (95% CI) Heterogeneity: Tau ² = Test for overall effect: Test for subgroup diffe Memory - Short-te	0.00; Chi Z = 3.10 (rences: N rm Vert PD	1 2 = 1.43, (P = 0.00 Not applic Dal Rec	df = 3 (P 2) able all P	D-NRBD	* = 0%	s	td. Mean Difference	Favours (PD-RBD) Std. Mean I	Favours [PD-NRBD]
D	Test for overall effect: Total (95% CI) Heterogeneity: Tau ² = Test for overall effect: Test for subaroup diffe Memory - Short-tee <u>Study or Subaroup</u> Confirmed-RBD	0.00; Chi Z = 3.10 (rences: N rrm Verb PD Mean	1 ² = 1.43, (P = 0.00 Not applic Dal Rec: Dal Rec: <u>SD To</u>	df = 3 (P 2) able all P tal Mean	D-NRBD n SD T	^e = 0%	S leight	td. Mean Difference IV, Random, 95% Cl	Favours [PD-RBD]	Favours [PD-NRBD]
D	Test for overall effect: Total (95% CI) Heterogeneity: Tau ² = Test for overall effect: Test for subaroup diffe Mermory - Short-te <u>Study or Subaroup</u> Confirmed-RBD Kamble 2019 Marques 2010	0.00; Chi Z = 3.10 (rences: N rrm Verb PD Mean	1 2 = 1.43, (P = 0.00 Not applic Dal Rec -RBD <u>SD To</u> 0.7 0.3	df = 3 (P 2) able all <u>P</u> tal Mean 25 4. ⁴	D-NRBD	^e = 0% <u>otal W</u> 25 2 10	S Veight 24.3% 13.1%	td. Mean Difference IV, Random, 95% CI 0.39 [-0.17, 0.95] -0.27 [-1.15, 0.61]	Favours (PD-RBD) Std. Mean I	Favours [PD-NRBD]
D	Test for overall effect: Total (95% CI) Heterogeneity: Tau ² = Test for overall effect: Test for subaroup diff Mernory - Short-fec <u>Study or Subaroup</u> Confirmed-RBD Kamble 2019	0.00; Chi Z = 3.10 (rences: N PD Mean 5.2 5.6 0.08; Chi	1 ² = 1.43, (P = 0.00 Not applic Dal Rec: -RBD SD To 0.7 0.3 ² = 1.55,	df = 3 (P 2) able all P tal Mean 25 4. 10 5. 35 df = 1 (P	D-NRBD n SD T 9 0.8 7 0.4	^c otal W 25 10 35	S /eight 24.3%	td. Mean Difference IV, Random, 95% Cl 0.39 (-0.17, 0.95)	Favours (PD-RBD) Std. Mean I	Favours [PD-NRBD]
D	Test for overall effect: Total (95% CI) Heterogeneity: Tau ² = Test for overall effect: Test for subaroup diffe Memory - Short-te Study or Subaroup Confirmed-RBD Kamble 2019 Subtotal (95% CI) Heterogeneity: Tau ² = Test for overall effect: Probable-RBD	0.00; Chi Z = 3.10 (rences: N PD Mean 5.2 5.6 0.08; Chi Z = 0.48 (1 ² = 1.43, (P = 0.00 Not applic bal Rec: -RBD <u>SD To</u> 0.7 0.3 ² = 1.55, (P = 0.63	df = 3 (P 2) able all P tal Mean 25 4. 10 5. 35 df = 1 (P)	D-NRBD n SD T 9 0.8 7 0.4 = 0.21); I	t = 0%	S /eight 24.3% 13.1% 37.4%	td. Mean Difference IV, Random, 95% Cl 0.39 [-0.17, 0.95] -0.27 [-1.15, 0.61] 0.15 [-0.47, 0.78]	Favours (PD-RBD) Std. Mean I	Favours [PD-NRBD]
D	Test for overall effect: Total (95% Cl) Heterogeneity: Tau ² = Test for overall effect: Test for subaroup diffect: Test for subaroup Study or Subaroup Confirmed-RBD Kamble 2019 Subtotal (95% Cl) Heterogeneity: Tau ² = Test for overall effect:	0.00; Chi Z = 3.10 (rences: N PD Mean 5.2 5.6 0.08; Chi	1' r = 1.43, (P = 0.00 Not applic cal Rec: -RBD <u>SD To</u> 0.7 0.3 r = 1.55, (P = 0.63 1.3 1.92	df = 3 (P 2) able all P tal Mean 25 4. 10 5. 35 df = 1 (P)	D-NRBD n SD T 9 0.8 7 0.4 = 0.21); I 6 0	Total W 25 2 10 35 2 = 36% 31 3 42 3	S Veight 24.3% 13.1%	td. Mean Difference IV, Random, 95% CI 0.39 [-0.17, 0.95] -0.27 [-1.15, 0.61]	Favours (PD-RBD) Std. Mean I	Favours [PD-NRBD]
D	Test for overall effect: Total (95% CI) Heterogeneity: Tau ² = Test for overall effect: Test for subaroup diffe- Memory - Short-te Study or Subaroup Confirmed-RBD Kamble 2019 Marques 2010 Subtotal (95% CI) Heterogeneity: Tau ² = Test for overall effect: Probable-RBD Sinforiani 2006 Zhang 2016	0.00; Chi ⁷ Z = 3.10 (rences: N PD Mean 5.2 5.6 0.08; Chi ⁷ Z = 0.48 (4.14 11.84 0.03; Chi ⁷	1' r ² = 1.43, (P = 0.00 Not applic Dal Rec: -RBD <u>SD To</u> 0.7 0.3 r ² = 1.55, (P = 0.63 1.3 1.92 1 r ² = 1.53,	df = 3 (P 2) able all P tal Mean 25 4.: 10 5. 35 df = 1 (P) 79 4.: 32 11.8 11 df = 1 (P	D-NRBD n SD T 9 0.8 7 0.4 = 0.21); I 6 0 8 1.9	Fotal W 25 2 10 35 25 35 22 36% 31 2 73 0	S 24.3% 13.1% 37.4% 32.6% 30.0% 52.6%	td. Mean Difference IV. Random, 95% Cl 0.39 [-0.17, 0.95] -0.27 [-1.15, 0.61] 0.15 [-0.47, 0.78] -0.41 [-0.83, 0.01] -0.02 [-0.48, 0.44]	Favours (PD-RBD) Std. Mean I	Favours [PD-NRBD]
D	Test for overall effect: Total (95% Cl) Heterogeneity: Tau ² = Test for overall effect: Test for subaroup diffe Memory - Short-te Study or Subaroup Confirmed-RBD Kamble 2019 Subtotal (95% Cl) Heterogeneity: Tau ² = Test for overall effect: Probable-RBD Sinforiani 2006 Zhang 2016 Subtotal (95% Cl)	0.00; Chi Z = 3.10 (rences: N PD Mean 5.2 5.6 0.08; Chi Z = 0.48 (4.14 11.84 0.03; Chi Z = 1.17 (1 [°] $r^2 = 1.43,$ (P = 0.00 Not applic coal Rec. -RBD 0.7 0.3 $r^2 = 1.55,$ (P = 0.63) 1.3 1.92 1 $r^2 = 1.53,$ (P = 0.24)	df = 3 (P 2) able all P tal Mean 25 4. 10 5. 35 df = 1 (P) 79 4. 32 11.8 11 df = 1 (P) 46	D-NRBD 9 0.8 7 0.4 = 0.21); I 6 0 8 1.9 = 0.22); I	Total W 25 2 10 35 2 36% 31 2 73 1 2 36% 10 1 2 35% 108 1	S leight 24.3% 13.1% 37.4% 32.6% 30.0% 52.6% 00.0%	td. Mean Difference IV. Random, 95% Cl 0.39 [-0.17, 0.95] -0.27 [-1.15, 0.61] 0.15 [-0.47, 0.78] -0.41 [-0.83, 0.01] -0.02 [-0.48, 0.44]	Favours (PD-RBD) Std. Mean I	Favours [PD-NRBD]
D	Test for overall effect: Total (95% CI) Heterogeneity: Tau ² = Test for overall effect: Test for subaroup diffe- Mermory - Short-te Study or Subaroup Confirmed-RBD Kamble 2019 Marques 2010 Subtotal (95% CI) Heterogeneity: Tau ² = Test for overall effect: Probable-RBD Sinforiani 2006 Zhang 2016 Subtotal (95% CI) Heterogeneity: Tau ² = Test for overall effect:	0.00; Chi Z = 3.10 (rences: N PD Mean 5.2 5.6 0.08; Chi Z = 0.48 (4.14 11.84 0.03; Chi Z = 1.17 (0.06; Chi Z = 0.44 (1 ¹ $r^2 = 1.43,$ (P = 0.00 Not applic Dal Rec: -RBD SD To 0.7 0.3 $r^2 = 1.55,$ (P = 0.63 1.3 1.92 1 $r^2 = 1.53,$ (P = 0.24 1 $r^2 = 5.38,$ (P = 0.68	df = 3 (P 2) able all P 25 4. 10 5. 35 df = 1 (P) 79 4. 32 11.8 11 df = 1 (P) 46 df = 3 (P)	D-NRBD 9 0.8 7 0.4 = 0.21); 6 0 8 1.9 = 0.22); = 0.15);	$\begin{array}{c} cotal & M\\ \hline cotal & M\\ 25 & 2\\ 10 & -35 & -3\\ 35 & -36\\ 22 & -36\%\\ 31 & -36\%\\ 42$	S (eight 24.3% 13.1% 37.4% 32.6% 30.0% 52.6% 00.0%	td. Mean Difference IV, Random, 95% CI 0.39 [-0.17, 0.95] -0.27 [-1.15, 0.61] 0.15 [-0.47, 0.78] -0.41 [-0.83, 0.01] -0.02 [-0.48, 0.44] -0.23 [-0.61, 0.16]	Favours (PD-RBD) Std. Mean I	Favours (PD-NRBD) Difference
D	Test for overall effect: Total (95% CI) Heterogeneity: Tau ² = Test for overall effect: Test for subaroup diffe- <u>Study or Subaroup</u> <u>Confirmed-RBD</u> Kamble 2019 Kamble 2019 Subtotal (95% CI) Heterogeneity: Tau ² = Test for overall effect: Probable-RBD Sinforiani 2006 Zhang 2016 Subtotal (95% CI) Heterogeneity: Tau ² = Test for overall effect: Total (95% CI) Heterogeneily: Tau ² = Test for overall effect:	0.00; Chi Z = 3.10 (1) PD Mean 5.2 5.6 0.08; Chi Z = 0.48 (1) 4.14 11.84 0.03; Chi Z = 1.17 (1) 0.06; Chi (rences; C rm Spa	1 1 ²⁷ = 1.43, (P = 0.00 Not applied Not applied applied <u>SD To</u> 0.7 0.3 ²⁷ = 1.55, (P = 0.63 1.3 1.3 ²⁷ = 1.55, (P = 0.63 1.3 1.92 1.3 1.92 1.3 1.92 1.3 1.92 1.3 1.92 1.3 1.92 1.3 1.92 1.3 1.92 1.	df = 3 (P 2) able P tal Mear 25 4. 10 5: 35 df = 1 (P) 79 4. 32 11.8 df = 1 (P) 46 df = 3 (P) 3, df = 1	D-NRBD 9 0.8 7 0.4 = 0.21); I 6 0 8 1.9 = 0.22); I = 0.15); I (P = 0.31) PD-NRB	² = 0% Cotal W 25 2 10 35 3 ² = 36% 108 111 ² = 35% 108 12 ² = 35% 108 111 ² = 44%	S leight 24.3% 37.4% 32.6% 32.6% 30.0% 32.6%	td. Mean Difference IV, Random, 95% CI 0.39 [-0.17, 0.95] -0.27 [-1.15, 0.61] 0.15 [-0.47, 0.78] -0.41 [-0.83, 0.01] -0.02 [-0.48, 0.44] -0.23 [-0.61, 0.16] -0.08 [-0.44, 0.28] Std. Mean Difference	Favours (PD-RBD) Std. Mean IV. Randor IV. Randor T	Favours (PD-NRBD) Difference
	Test for overall effect: Total (95% Cl) Heterogeneity: Tau ² = Test for overall effect: Test for subaroup diffe- Study or Subaroup diffe- Study or Subaroup diffe- Study or Subaroup Kamble 2019 Subtotal (95% Cl) Heterogeneity: Tau ² = Test for overall effect: Probable-RBD Sinfordani 2006 Zhang 2016 Subtotal (95% Cl) Heterogeneity: Tau ² = Test for overall effect: Total (95% Cl) Heterogeneity: Tau ² = Test for overall effect: Test for overall effect: Study or Subaroup diffe	0.00; Chiř Z = 3.10 Mean 5.2 5.6 0.08; Chiř 1.84 11.84 0.03; Chiř 1.84 0.03; Chiř 1.84 0.03; Chiř 1.84 0.03; Chiř 1.84 0.03; Chiř 1.84 0.06; Chiř 1.84 1.84 0.06; Chiř 1.84 1.84 0.06; Chiř 1.84 1.84 0.06; Chiř 1.84 1.84 1.84 1.84 1.84 1.84 1.84 1.84	1 1 ²⁷ = 1.43, (P = 0.00 Not applied Not applied SD To 0.7 0.3 ²⁷ = 1.55, (P = 0.63 1.3 1.92 1 ²⁷ = 1.53, (P = 0.24 1 ²⁷ = 5.38, (P = 0.06 Ch ² = 1.0 Ch ² = 1.0 Ch ² = 1.0 Ch ² = 0.2 Ch ² = 0	df = 3 (P 2) able P tal Meau 25 4: 10 5: 36 df = 1 (P) 79 4: 8 3111 df = 1 (P) 46 df = 3 (P) 3, df = 1 (2) 3, df = 1 (2)	D-NRBD n SD T 9 0.8 7 0.4 = 0.21); I 6 0 8 1.9 = 0.22); I = 0.15); I (P = 0.31) PD-NRB an SD	$\begin{array}{c} \hline \text{otal} & \text{M} \\ \hline \text{otal} & \text{M} \\ \hline 25 & 2 \\ 10 & -35 \\ 35 & -35 \\ 2 \\ 2 \\ 2 \\ 36 \\ 42 \\ 2 \\ -35 \\ 31 \\ 2 \\ 2 \\ 36 \\ 31 \\ 2 \\ 2 \\ 35 \\ 108 $	S 24.3% (3.1%) 37.4% 32.6% 30.0% 32.6% 33% Weight	td. Mean Difference IV, Random, 95% Cl 0.39 [-0.17, 0.95] -0.27 [-1.15, 0.61] 0.15 [-0.47, 0.76] -0.41 [-0.83, 0.01] -0.22 [-0.48, 0.44] -0.23 [-0.61, 0.16] -0.08 [-0.44, 0.28] Std. Mean Difference IV, Random, 95% J	Favours (PD-RBD) Sid. Mean I IV, Rando 	Favours (PD-NRBD)
	Test for overall effect: Total (95% Cl) Heterogeneity: Tau ² = Test for overall effect: Test for subaroup diff Mermory - Short-te Study or Subaroup Kamble 2019 Kamble 2019 Subtotal (95% Cl) Heterogeneity: Tau ² = Test for overall effect: Probable-RBD Sinforiani 2006 Subtotal (95% Cl) Heterogeneity: Tau ² = Test for overall effect: Total (95% Cl) Heterogeneity: Tau ² = Test for overall effect: Test for overa	0.00; Chi Z = 3.10) Mean 5.2 5.6 0.08; Chi Z = 0.48 (4.14 11.84 0.03; Chi Z = 0.48 (0.06; Chi Z = 0.48 (0.06; Chi Z = 0.44 (0.46) (0.46; Chi Z = 0.44 (0.46) (0.4	1 1 $r^{2} = 1.43$, (P = 0.00 Not applied values of the second	df = 3 (P 2) able all P 40 25 4.1 10 5. 35 35 4f = 1 (P) 79 4.1 132 11.8 11 4f = 1 (P) 46 df = 3 (P) 44 df = 3 (P) 3, df = 1) 45 46 df = 3 (P) 25 3, df = 1 27 3, df = 1 27 4.1 10 3, df = 1 27 3, df = 1 27 4.1 10 3, df = 1 27 3, df = 1 27 4.1 10 3, df = 1 27 4.1 10 3, df = 1 27 4.1 10 3, df = 1 27 4.1 10 3, df = 1 27 4.1 10 10 10 10 10 10 10 10 10 10 10 10 10	D-NRBD 9 0.8 7 0.4 = 0.21); I 6 0 8 1.9 = 0.22); I = 0.15); I (P = 0.31) PD-NRB	** = 0% total W 25 2 10 35 35 31 2* 36% 31 2 2* 36% 31 2 31 2 31 2 31 2 31 2 31 2 31 2 31 2 35 31	S S 24.3% 3.1% 37.4% 32.6% 00.0% 33% Weight 37.2% 62.8%	td. Mean Difference IV, Random, 95% Cl 0.39 [-0.17, 0.95] -0.27 [-1.15, 0.61] 0.15 [-0.47, 0.76] -0.41 [-0.83, 0.01] -0.22 [-0.48, 0.44] -0.23 [-0.61, 0.16] -0.08 [-0.44, 0.28] Std. Mean Difference IV, Random, 95% (-0.91 [-1.49, -0.32, -0.50 (-0.92, -0.08)	Favours (PD-RBD) Sid. Mean I IV, Rando	Favours (PD-NRBD)
	Test for overall effect: Total (95% Cl) Heterogeneity: Tau ² = Test for subaroup diffect: Test for subaroup diffect: Test for subaroup diffect: Study or Subgroup Confirmed-RBD Kamble 2019 Subtotal (95% Cl) Heterogeneity: Tau ² = Test for overall effect: Probable-RBD Sinforiani 2006 Zhang 2016 Subtotal (95% Cl) Heterogeneity: Tau ² = Test for overall effect: Total (95% Cl) Heterogeneity: Tau ² = Test for overall effect: Test for subaroup diffe Memory - Short-fe Sinforiani 2006 Subtotal (95% Cl) Mixed-RBD Kamble 2019 Sinforiani 2006 Subtotal (95% Cl)	0.00; Chi Z = 3.10 (PD Mean 5.2 5.6 0.08; Chi Z = 0.48 (4.14 11.84 0.03; Chi Z = 0.48 (0.03; Chi Z = 0.44 (0.03; Chi Chi Z = 0.46 (Mean Mean 4.6 3.87	1 1 $r^{2} = 1.43$, (P = 0.00 via tapplic via tapplic via tappl	df = 3 (P 2) able all P 25 4.1 10 5: 335 df = 1 (P) 79 4.1, 132 113 df = 1 (P) 3, df = 1 (P) 3, df = 1 (P) 3, df = 1 (P) 10 25 :: 79 79 10 46 df = 3 (P) 10 25 :: 79 10 10 10 10 10 10 10 10 10 10 10 10 10	D-NRBD n SD T 9 0.8 7 0.4 = 0.21); I 6 0 8 1.9 = 0.22); I = 0.15); I (P = 0.31 (P = 0.31); PD-NRB an SD 5.2 0.7 4.3 0.6	¹ = 0% ¹ = 0% ² = 36% ³ = 35% ³ = 36% ³ = 35% ³ = 36% ³ = 35% ³ = 35% ³ = 35% ³ = 35% ³ = 35% ³ = 35%	S leight 33.1% 33.1% 32.6% 30.0% 32.6% 33% Weight 37.2% 62.8% 37.2%	td. Mean Difference IV, Random, 95% Cl 0.39 [-0.17, 0.95] -0.27 [-1.15, 0.61] 0.15 [-0.47, 0.76] -0.41 [-0.83, 0.01] -0.02 [-0.48, 0.44] -0.23 [-0.61, 0.16] -0.08 [-0.44, 0.28] Std. Mean Difference IV, Random, 95% f -0.91 [-1.49, -0.32 -0.50 [-0.92, -0.08	Favours (PD-RBD) Sid. Mean I IV, Rando	Favours (PD-NRBD)
	Test for overall effect: Total (95% Cl) Heterogeneity: Tau ² = Test for subaroup diffe Mermory - Short-te Study or Subaroup Confirmed-RBD Kamble 2019 Marques 2019 Marques 2019 Subtotal (95% Cl) Heterogeneity: Tau ² = Test for overall effect: Probable-RBD Sinforiani 2006 Zhang 2016 Zhang 2016 Zhang 2016 Subtotal (95% Cl) Heterogeneity: Tau ² = Test for overall effect: Total (95% Cl) Heterogeneity: Tau ² = Test for overall effect. Study or Subaroup diffe Mermory - Short-te Study or Subaroup Mixed-RBD Kamble 2019 Sinforiani 2006 Subtotal (95% Cl) Heterogeneity: Tau ² = Test for overall effect. Total (95% Cl) Heterogeneity: Tau ² = Test for overall effect.	0.00; Chi Z = 3.10 (PD Mean 5.2 5.6 0.08; Chi Z = 0.48 (4.14 11.84 0.03; Chi Z = 0.48 (0.03; Chi Z = 0.44 (0.03; Chi Chi Z = 0.46 (Mean Mean 4.6 3.87	1 1 $r^2 = 1.43, (P = 0.00)$ tota tapilic tota tapilic $r^2 = 1.55, (P = 0.63)$ 1.3 1.9 1.2 1.3 1.2 1.5 5.5 5.6 0.7 0.3 1.2 1.3 1.2 1.3 1.2 1.3 1.2 1.5 5.5 5.5 5.6 0.7 0.3 1.2 1.3 1.2 1.3 1.2 1.3 1.3 1.2 1.3 1.2 1.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5	df = 3 (P 2) able all P tal Meau 25 4. 100 5. 35 35 46 f = 1 (P) 79 4.1 32 11.8 46 df = 3 (P) 3. df = 1 (P) 3. df = 1 (P) 46 df = 3 (P 10 4. 3. df = 1 (P 10 4. 3. df = 1 (P 10 4. 3. df = 1 (P 10 4. 4. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5.	D-NRBD n SD T 9 0.8 7 0.4 = 0.21); I 6 0 8 1.9 = 0.22); I = 0.15); I (P = 0.31 (P = 0.31); PD-NRB an SD 5.2 0.7 4.3 0.6	$\begin{array}{c} \hline cotal & W\\ \hline cotal & W\\ 25 & \vdots\\ 10 & \vdots\\ 35 & \vdots\\ 42 & \vdots\\ 73 & 1\\ 2^2 & = 36\%\\ \hline 108 & 111\\ 2^2 & = 3$	S leight 24.3% 37.4% 32.6% 30.0% 32.6% 33% Weight 37.2% 62.8% 00.0% 52.8% 3%	td. Mean Difference IV, Random, 95% Cl 0.39 [-0.17, 0.95] -0.27 [-1.15, 0.61] 0.15 [-0.47, 0.78] -0.41 [-0.83, 0.01] -0.02 [-0.48, 0.44] -0.23 [-0.61, 0.16] -0.08 [-0.44, 0.28] Std. Mean Difference IV, Random, 95% (-0.91 [-1.49, -0.32 -0.50 [-0.92, -0.08 -0.65 [-1.04, -0.26]	Favours (PD-RBD) Std. Mean I IV. Rando 1 0.5 0 Favours (PD-RBD) Std. Mean IV. Rando	Favours (PD-NRBD)
	Test for overall effect: Total (95% Cl) Heterogeneity: Tau ² = Test for subaroup diffect: Test for subaroup diffect: Test for subaroup diffect: Study or Subgroup Confirmed-RBD Kamble 2019 Subtotal (95% Cl) Heterogeneity: Tau ² = Test for overall effect: Probable-RBD Sinforiani 2006 Zhang 2016 Subtotal (95% Cl) Heterogeneity: Tau ² = Test for overall effect: Total (95% Cl) Heterogeneity: Tau ² = Test for overall effect: Test for subaroup diffe Memory - Short-fe Sinforiani 2006 Subtotal (95% Cl) Mixed-RBD Kamble 2019 Sinforiani 2006 Subtotal (95% Cl)	0.00: Chick 2 = 3.10 () 2 = 3.10 () PD Mean PD Mean 5.2 5.6 0.08; Chick 2 = 0.48 () 4.14 11.84 0.03; Chi 2 = 0.44 () 0.06; Chi 2 = 0.44 () Mean 4.6 3.87 0.02; Ch 2 = 3.28 0.02; Ch 2 = 3.28	1 1 ² = 1.43, 3 ² = 1.55, 3	df = 3 (P 2) able all p 25 4, 10 5; 35 5; 35 5; 35 5; 35 6; 11 1 32 11.8 35 1; 36 6; 11 2 37 4, 32 11.8 36; 11 4 46 df = 1 (P) 3, df = 1 (P) 3, df = 1 (P) 3, df = 1 (P) 3, df = 1 (P) 104 4, df = 1 (P) 105 105 105 105 105 105 105 105 105 105	D-NRED 9 0.8 = 0.21); I = 0.21); I = 0.21); I = 0.22); I = 0.15); I (P = 0.31) (P = 0.31) PD-NREB = 0.27) J 3 0.6 (P = 0.27)	² = 0% ¹ = 0% ² = 25 ³ = 36% ³ = 36% ³ = 36% ³ = 36% ³ = 36% ² = 36% ¹ = 35% ¹ = 35% ¹ = 35% ¹ = 35% ¹ = 35% ¹ = 35% ¹ = 35% ¹ = 35% ¹	S leight 24.3% 37.4% 37.4% 32.6% 30.0% 52.6% 33% Weight 37.2% 62.8% 100.0% % 100.0%	td. Mean Difference IV, Random, 95% Cl 0.39 [-0.17, 0.95] -0.27 [-1.15, 0.61] 0.15 [-0.47, 0.78] -0.41 [-0.83, 0.01] -0.02 [-0.48, 0.44] -0.23 [-0.61, 0.16] -0.08 [-0.44, 0.28] Std. Mean Difference IV, Random, 95% (-0.91 [-1.49, -0.32 -0.50 [-0.92, -0.08 -0.65 [-1.04, -0.26]	Favours (PD-RBD) Std. Mean 1 IV. Rando IV. Rando Favours (PD-RBD) Std. Mean IV. Rando Favours (PD-RBD)	Favours (PD-NRBD)

FIGURE 3 | Forest plot for (A) long-term verbal recall with subtotals by the diagnosis of rapid eye movement sleep behavior disorder (RBD), (B) long-term verbal recognition with subtotals by the diagnosis of RBD, (C) long-term visual recall, (D) short-term verbal recall with subtotals by the diagnosis of RBD, and (E) short-term spatial recall displaying effect size calculated using a random-effects model. *SD*, standard deviation; *Std. Mean Difference*, standardized mean difference; *CI*, confidence interval.

Α	General Executive Function PD-RBD PD-NRBD Std. Mean Difference Std. Mean Diff Study or Subarcoup Mean SD Total Mean SD Total Weight IV, Random, 95% CI IV, Random, 4 Mixed-RBD IV	
	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	
в	Total (95% CI) 721 444 100.0% -0.31 [-0.57, -0.06] Heterogeneity: Tau' = 0.03; CP ² = 5.60, df = 3 (P = 0.13); P = 46% -0.31 [-0.57, -0.06] -1 -0.5 0 Test for overall effect: Z = 2.41 (P = 0.02) Test for subarous differences: Not applicable Favours [PD-RBD] Favours [PD-RBD] Favours [PD-RBD] Favours [PD-RBD] Executive Function - Generativity PD-NRBD Std. Mean Difference Std. Mean Difference	ference
	Study or subgroup Mean SD Total Weight IV. Random. 95% CI IV. Random. Confirmed-RBD Gapono 2008 26.86 6.65 22 36.13 5.34 18 7.1% -1.49 (-2200.78) Jacviak 2017 27.9 7.4 53 36.3 8.9 400 86% -1.03 (-1470.59) Kamble 2019 11.8 2.1 25 21.8 6.6 25 7.2% -2.01 (-27.01.32) Wandters 2007 27 6.09 18 9.60 6.53 16 6.7% -1.53 (-2.37.1.57) Vendetis 2007 27 6.09 18 9.60 5.38 16 6.7% -1.53 (-2.37.1.57) Hebrogeneity, Tau' = 0.55; Chi* = 22.99, off = 4 (P = 0.001); P = 33.6% -1.12 (-1.55, -0.39) -1.12 (-1.55, -0.39) -1.12 (-1.55, -0.39)	95% Cl
	Test for overall effect: $Z = 3.02$ ($P = 0.002$) Probable-RBD Ba 2016 50.19 9.24 136 51.31 10.4 214 9.6% -0.11 [-0.33, 0.10] Boucenta 2016 10.19 2.78 69 11.05 2.97 240 9.4% -0.29 [-0.56, -0.02] Chainia 2016 46.33 12.1 108 49.47 11.33 315 9.6% -0.27 [-0.49, -0.05] Meral 2007 16.63 1.47 36 13.36 1.63 43 8.0% 2.08 [1.52, 2.63] Pagaino 2016 49.61 11.65 158 47.08 11.48 263 9.6% 0.22 [1.02, 0.42] Chainia 2016 34.1 9.2 224 35.4 9.1 251 97% -0.14 [-0.32, 0.04] Zhang 2016 7.72 1.55 32 8.05 1.53 42 8.5% -0.21 [-0.67, 0.25] Subtotal (5% CI) 753 1366 4.4% 0.12 [-0.27, 0.44] Heterogeneity: Tau" = 0.18; Ch" = 72.59, df = 6 ($P < 0.00001$); $P = 92\%$ Test for overall effect: $Z = 0.89 (P = 0.49)$	
с	Total (95%, Cl) 891 1477 100.0% -0.31 [-0.66, 0.04] Heterogeneity: Tau" = 0.32; Chi" = 150.15; df = 11 (P < 0.00001); lº = 93%	
	Study or Subgroup Mean SD Total Mean SD	
	Probable-RBD Maral 2007 4.23 1.86 36 3.04 1.28 47 18.4% 0.76 [0.31, 1.21] Zhang 2016 14.33 7.9 32 14.07 7.31 42 18.1% 0.03 10.43, 0.49] Subtotal (95% CI) 68 89 36.6% 0.40 [-0.31, 1.11] Heterogeneity: Tau*e 0.21; Chi*e 4.85, cff = 1 (P = 0.03); i* 79% Test for overall effect: Z = 1.10 (P = 0.27) Test for overall effect: Z = 1.10 (P = 0.27)	
D	Total (95% CI) 196 188 100.0% 0.55 (0.24, 0.86) Heterogeneity: Tau ² = 0.08; Ch ² = 12.03, df = 6 (P = 0.06); P = 50% -2 -1 0 Test for overall feets: Z = 3.4 (P = 0.005) Test for overall feets: Z = 3.4 (P = 0.005) Favours (PD-RBD) Favours (PD-RBD) Test for svalue out differences: Ch ² = 0.34, df = 1 (P = 0.56), P = 0% Executive Function - Shifting Favours (PD-RBD) Favours (PD-RBD) Extudy or Subgroup Mean SD Total Weight IV, Random, 95% CI IV, Random, 95% CI	ference
		<u></u>
	Probable-RBD Meral 2007 2.63 0.72 36 2.42 0.62 43 16.0% 0.31 [-0.13, 0.76] Nalsmith 2011 80.2 67.9 51 65.5 53.3 47 19.5% 0.24 [-0.16, 0.64] Sindoran 2006 71.86 30.71 79 60.31 38.17 31 17.6% 0.56 [0.14, 0.99] Zhang 2016 105.31 45.8 32 86.52 2.87 42 14.7% 0.56 [0.05, 0.96] Subtotal (95% CI) 198 16.3 67.9% 0.39 [0.18, 0.61] - Heterogenety: Trau ² = 0.00; Ch ² = 1.53, dt = 3 (P = 0.68); P = 0.% Test for overall effect; Z = 3.59 (P = 0.0003) - -	
E	Total (95% Ct) 291 227 100.0% 0.53 (0.34, 0.72) Heterogeneity: Tau' = 0.01; Ch' = 6.71, df = 6 (P = 0.35); P = 11% -1 0.5 0 Test for overal effect: Z = 5.44 (P < 0.00001)	erence
	Study or Subgroup Mean SD Total Weight IV, Random, 95% CI IV, Random, 15% Confirmed-RBD Gagono 2009 9.66 2.42 22 11.72 2.47 18 14.9% -0.75 [-1.39, -0.10] Joxviak 2017 9.6 2.3 53 11.32 7 40 16.9% -0.08 [-1.10, -0.26] Joxviak 2017 9.6 2.3 53 13.27 40 16.9% -0.06 [-1.10, -0.26] Kamble 2019 3.4 0.6 25 3.9 0.7 25 16.3% -0.75 [-1.33, -0.18] Marques 2010 4.6 0.4 10 4.1 0.5 10 9.9% 1.06 [0.11, 2.01] Subtotal (95% CI) 10 93 60.9% -0.39 [-1.01, 0.23] -0.39 [-1.01, 0.23] Heterogeneity: Tau* = 0.29; Chi* = 12.1; df = 3 (P = 0.007); P = 75% Test for overall flett: 2 = 1.22 (P = 0.22) -0.39 [-1.01, 0.23]	
	Probable-RBD Naismith 2011 6 1.8 51 7 1.9 47 20.2% -0.54 [-0.94, -0.13] Zhang 2016 5.52 2.36 32 5.78 2.29 42 18.9% -0.11 [-0.57, 0.35] Subtolat (95% CI) 83 89 39.1% -0.34 [-0.76, 0.08] Heterogeneity: Tat'= 0.04; Chi ² = 1.86, df = 1 (P = 0.17); P = 46% Test for overall effect: Z = 1.59 (P = 0.11)	
	Total (95% Cl) 193 182 100.0% -0.39 [-0.77, -0.02] Heterogeneity: Tau" = 0.14; ChiP = 14.99; d = 5 (P = 0.01); P = 67% -0.39 [-0.77, -0.02] -2 -1 0 Test for solverail effect: Z = 2.04 (P = 0.04); Test for solverail effecteres: ChiP = 0.02, df = 1 (P = 0.90); P = 0% Favours (PD-RBD) Fa	1 2 vours [PD-NRBD]

FIGURE 4 | Forest plot for (A) general executive function (EF), (B) generativity with subtotals by the diagnosis of rapid eye movement sleep behavior disorder (RBD), (C) inhibition with subtotals by the diagnosis of RBD, (D) shifting with subtotals by the diagnosis of RBD, and (E) updating with subtotals by the diagnosis of RBD displaying effect size calculated using a random-effects model. SD, standard deviation; Std. Mean Difference, standardized mean difference; Cl, confidence interval. performed worse in this domain than did PD-RBD patients, according to the only primary study.

EF-Generativity

The meta-analysis included five "Confirmed-RBD" and seven "Probable-RBD" studies. For the "Confirmed-RBD" subgroup, PD-RBD patients had significantly lower scores than did PD-NRBD patients, with a large ES (SMD = -1.12, 95% CI = -1.85 to -0.39, P = 0.002); heterogeneity was high ($I^2 = 83\%$). For the "Probable-RBD" subgroup, the ES was not significant. The difference between these two subgroups was significant (P = 0.002) (**Table 3, Figure 4B**).

EF-Inhibition

The meta-analysis included five "Confirmed-RBD" and two "Probable-RBD" studies. For the "Confirmed-RBD" subgroup, PD-RBD patients had significantly higher scores than did PD-NRBD patients, with a medium ES (SMD = 0.63, 95% CI = 0.27– 1.00, P = 0.0007); heterogeneity was low ($I^2 = 36\%$). For the "Probable-RBD" subgroup, the ES was not significant. No significant difference between these two subgroups was observed (**Table 3, Figure 4C**).

EF-Shifting

The meta-analysis included three "Confirmed-RBD" studies and four "Probable-RBD" primary studies. For the "Confirmed-RBD" subgroup, PD-RBD patients had significantly higher scores than did PD-NRBD patients, with a large ES (SMD = 0.80, 95% CI = 0.48–1.12, P < 0.00001); heterogeneity was absent ($I^2 = 0\%$). For the "Probable-RBD" subgroup, PD-RBD patients also had significantly higher scores than did PD-NRBD patients, with a medium ES (SMD = 0.39, 95% CI = 0.18–0.61, P = 0.0003); heterogeneity was absent ($I^2 = 0\%$). The difference between these two subgroups was significant (P = 0.04) (**Table 3, Figure 4D**).

EF-Updating

This meta-analysis included four "Confirmed-RBD" and two "Probable-RBD" studies. The ESs for both subgroups were insignificant (**Table 3**, **Figure 4E**).

Language

This meta-analysis only included two "Confirmed-RBD" studies. PD-RBD patients had significantly lower scores than did PD-NRBD patients, with a medium ES (SMD = -0.49, 95% CI = -0.85 to -0.12, P = 0.009); heterogeneity was absent ($I^2 = 0\%$) (**Table 3, Figure 5**).

Processing Speed/Complex Attention/Working Memory

This domain was evaluated by seven studies in total, four of which used the letter–number sequence (LNS) and three adopted the trail making test, part A (TMT: A). Since these two tests could not be combined together, we analyzed them separately.

The meta-analysis focusing only on studies that used LNS scores included one "Confirmed-RBD" and three "Probable-RBD" primary studies. Given the exiguity of the primary studies in the "Confirmed-RBD" subgroup, we analyzed

these two subgroups together. The ES was not significant (Table 3, Figure 6A).

The meta-analysis focusing only on studies that used TMT: A scores included two "Confirmed-RBD" and one "Probable-RBD" primary studies. Given the exiguity of the primary studies in the "Probable-RBD" subgroup, we analyzed these two subgroups together. PD-RBD patients had significantly higher scores than did PD-NRBD patients, with a medium ES (SMD = 0.57, 95% CI = 0.29–0.86, P < 0.0001); heterogeneity was absent ($I^2 = 0\%$) (**Table 3, Figure 6B**).

Visuospatial and Constructional Ability

The meta-analysis included three "Confirmed-RBD" and six "Probable-RBD" studies. For the "Confirmed-RBD" subgroup, PD-RBD patients had significantly lower scores than did PD-NRBD patients, with a medium ES (SMD = -0.61, 95% CI = -0.92 to -0.30, P = 0.0001); heterogeneity was absent ($I^2 = 0$ %). For the "Probable-RBD" subgroup, the ES was not significant. The difference between these two subgroups was significant (P = 0.01) (**Table 3, Figure 7**).

Psychomotor Ability

The meta-analysis included one "Confirmed-RBD" and five "Probable-RBD" primary studies. Given the exiguity of the primary studies in the "Confirmed-RBD" subgroup, we analyzed these two subgroups together. The ES was not significant (**Table 3**, **Figure 8**).

Moderator Analysis

Meta-regression revealed that gender had a significant impact on the obtained ES for psychomotor ability ($K = 6, \beta = 6.310$, P = 0.001; PD duration for psychomotor ability (K = 6, $\beta = -0.225$, P = 0.005); H&Y for visuospatial/constructional ability (K = 6, $\beta = -0.835$, P = 0.033); LEDD for psychomotor ability (K = 6, $\beta = -0.003$, P = 0.005); cognitive test for global cognitive function (K = 38, $\beta = 0.221$, P = 0.041), long-term verbal recall (K = 11, $\beta = 0.135$, P = 0.039), long-term verbal recognition (K = 8, $\beta = 0.336$, P = 0.000), inhibition (K = 7, $\beta = 0.558$, P = 0.011), and visuospatial/constructional ability $(K = 9, \beta = -0.576, P = 0.048)$; and RBD assessment for generativity (K = 12, $\beta = 1.294$, P = 0.013), shifting (K = 7, $\beta = -0.417$, P = 0.033), and psychomotor ability (K = 6, $\beta = 2.239, P = 0.001$). No other demographic and clinical factors manifested any significant effect on the ES for these outcomes. Finally, no other aspects had significant impact on the ES for the remaining outcomes (Supplementary Table 4).

Sensitivity Analysis

No obvious outliers were uncovered by the sensitivity analyses aiming at determining the effect of any individual study on the pooled ES, indicating the stability of the meta-analytic findings (**Supplementary Figures 2–9**).

Another sensitivity analysis identified that the study by Marques et al. (66) contributed dramatically to the heterogeneities in the "Confirmed-RBD" subgroups in the long-term verbal recall and updating domains, separately. After excluding this study, all heterogeneities plunged to 0%, and SMD

Language									
	PD	-RBI	D	PD	-NRB	D		Std. Mean Difference	Std. Mean Difference
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% CI	IV, Random, 95% CI
Confirmed-RBD									
Jozwiak 2017	28.7	1.8	53	29.4	0.8	40	75.4%	-0.48 [-0.89, -0.06]	
Plomhause 2014	71.6	2.4	15	73.6	4.8	15	24.6%	-0.51 [-1.24, 0.22]	_
Subtotal (95% CI)			68			55	100.0%	-0.49 [-0.85, -0.12]	
Heterogeneity: Tau ² = (0.00; Cł	ni² = (0.01, df	= 1 (P =	= 0.93	3); I ² = (0%		
Test for overall effect: 2	Z = 2.63	(P =	0.009)						
Total (95% CI)			68			55	100.0%	-0.49 [-0.85, -0.12]	
Heterogeneity: Tau ² = (0.00: Cł	ni² = ().01. df	= 1 (P =	= 0.93	3); ² = (0%		
Test for overall effect: Z									
Test for subgroup differ			,						Favours [PD-RBD] Favours [PD-NRBD]

FIGURE 5 | Forest plot for language with subtotals by the diagnosis of rapid eye movement sleep behavior disorder (RBD) displaying effect size calculated using a random-effects model. *SD*, standard deviation; *Std. Mean Difference*, standardized mean difference; *CI*, confidence interval.

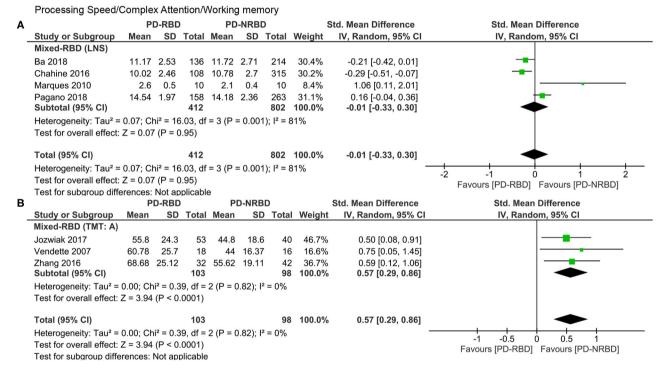


FIGURE 6 | Forest plot for processing speed/complex attention/working memory evaluated by the (A) LNS and the (B) TMT: A displaying effect size calculated using a random-effects model. SD, standard deviation; Std. Mean Difference, standardized mean difference; Cl, confidence interval; LNS, letter-number sequence; TMT: A, trail making test, part A.

decreased from -0.64 (95% CI = -1.16 to -0.11, P = 0.02) to -0.89 (95% CI = -1.17 to -0.61, P < 0.00001) in long-term verbal recall and from -0.39 (95% CI = -1.01 to 0.23, P = 0.22) to -0.71 (95% CI = -1.02 to -0.41, P < 0.00001) in updating. For the rest of the domains, excluding one single study did not change the heterogeneity dramatically.

Publication Bias

Global cognitive domain was the only domain where publication bias analysis could be performed, and the funnel plot for it suggested symmetry: Egger's test was insignificant and the trim-and-fill analysis did not remove any study for both the Confirmed and Probable-RBD subgroups.

DISCUSSION

Summary of Findings

This study is the first systematic review and meta-analysis of the association between RBD and cognitive dysfunctions in patients with PD. This meta-analysis indicates that, relative to those without RBD, people with PD who were diagnosed with RBD, as confirmed or probable, demonstrate poorer cognitive

Confirmed-RBD Gagnon 2009 Jozwiak 2017 /endette 2007	<u>Mean</u> 26.5	SD	Total	Mean	00				
Confirmed-RBD Gagnon 2009 Jozwiak 2017 Vendette 2007					50	Total	Weight	IV, Random, 95% CI	IV, Random, 95% CI
Jozwiak 2017 Vendette 2007									
Vendette 2007		6.93	22	29.9	3.2	18	8.2%	-0.60 [-1.24, 0.04]	
	27.5	5.9	53	30.6	3.7	40	10.9%	-0.61 [-1.03, -0.19]	
	26.3	7.14	18	30	3	16	7.6%	-0.65 [-1.34, 0.05]	
Subtotal (95% CI)			93			74	26.7%	-0.61 [-0.92, -0.30]	
Heterogeneity: Tau ² = 0	.00; Ch	ni² = 0.0	01, df =	2 (P =	0.99)	; l ² = 0 ⁶	%		
Test for overall effect: Z	= 3.83	(P = 0	.0001)						
Probable-RBD									
Ba 2018	12.7	2.82	136	13.2	2.6	214	13.3%	-0.19 [-0.40, 0.03]	
Boucetta 2016	12.2	2.34	69	12.9	1.9	240	12.7%	-0.35 [-0.62, -0.08]	
Chahine 2016	12.2	2.36	108	13	2	315	13.3%	-0.38 [-0.60, -0.16]	
Meral 2007	16	5.05	36	12.2	3.4	43	10.3%	0.89 [0.42, 1.35]	
Pagano 2018	13	1.94	158	12.4	2.4	263	13.5%	0.27 [0.07, 0.47]	
Zhang 2016	28.4	4.02	32	30	4	42	10.3%	-0.39 [-0.86, 0.07]	
Subtotal (95% CI)			539			1117	73.3%	-0.04 [-0.37, 0.28]	
Heterogeneity: Tau ² = 0				= 5 (P <	< 0.00	0001); I	² = 88%		
Test for overall effect: Z	= 0.27	(P = 0	.78)						
Total (95% CI)			632			1191	100.0%	-0.20 [-0.47, 0.08]	
Heterogeneity: Tau ² = 0	14 CF	$hi^2 = 52$		= 8 (P <	< 0.00				``
Test for overall effect: Z	,			0 (1	- 0.00	,,, 1	0070		-1 -0.5 0 0.5 1 Favours [PD-RBD] Favours [PD-NRBD]

FIGURE 7 | Forest plot for visuospatial/constructional ability with subtotals by the diagnosis of rapid eye movement sleep behavior disorder (RBD) displaying effect size calculated using a random-effects model. SD, standard deviation; Std. Mean Difference, standardized mean difference; Cl, confidence interval.

ixed-RBD a 2018 43.64 9.08 136 46.36 9.36 214 20.3% -0.29 [-0.51, -0.08] bucetta 2016 40.04 10.28 69 42.22 9.71 240 19.2% -0.22 [-0.49, 0.05] hahine 2016 38.74 10.28 108 42.02 9.4 315 20.2% -0.34 [-0.56, -0.12] arques 2010 40 4 10 48.8 3.2 10 5.2% -2.33 [-3.52, -1.14] agano 2018 42.16 9.58 109 39.59 9.81 263 20.1% 0.26 [0.04, 0.49] hang 2016 30.66 8.34 32 35.22 11.39 42 14.9% -0.44 [-0.91, 0.02] Jubtotal (95% CI) 464 1084 100.0% -0.31 [-0.62, 0.01] -0.31 [-0.62, 0.01] eterogeneity: Tau ² = 0.11; Chi ² = 31.94, df = 5 (P < 0.00001); I ² = 84% stor overall effect: Z = 1.93 (P = 0.05) -0.05)		P	D-RBD		PD	D-NRBE)	:	Std. Mean Difference	Std. Mean Difference
a 2018 43.64 9.08 136 46.36 9.36 214 20.3% -0.29 [-0.51, -0.08] pucetta 2016 40.04 10.28 69 42.22 9.71 240 19.2% -0.22 [-0.49, 0.05] nahine 2016 38.74 10.28 108 42.02 9.4 315 20.2% -0.34 [-0.56, -0.12] arques 2010 40 4 10 48.8 3.2 10 5.2% -2.33 [-3.52, -1.14] agano 2018 42.16 9.58 109 39.59 9.81 263 20.1% 0.26 [0.04, 0.49] nang 2016 30.66 8.34 32 35.22 11.39 42 14.9% -0.44 [-0.91, 0.02] ubtotal (95% CI) 464 1084 100.0% -0.31 [-0.62, 0.01] -0.31 [-0.62, 0.01] eterogeneity: Tau ² = 0.11; Chi ² = 31.94, df = 5 (P < 0.00001); I ² = 84% set for overall effect: Z = 1.93 (P = 0.05) -0.05	tudy or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% CI	IV, Random, 95% CI
Ducetta 2016 40.04 10.28 69 42.22 9.71 240 19.2% -0.22 $[-0.49, 0.05]$ hahine 2016 38.74 10.28 108 42.02 9.4 315 20.2% -0.34 $[-0.56, -0.12]$ arques 2010 40 4 10 48.8 3.2 10 5.2% -2.33 $[-3.52, -1.14]$ agano 2018 42.16 9.58 109 39.59 9.81 263 20.1% 0.26 $[0.04, 0.49]$ anang 2016 30.66 8.34 32 35.22 11.39 42 14.9% -0.44 $[-0.91, 0.02]$ ubtotal (95% Cl) 464 1084 100.0% -0.31 $[-0.62, 0.01]$ eterogeneity: Tau ² = 0.11; Chi ² = 31.94, df = 5 (P < 0.00001); I ² = 84\% $eterogeneity: Tau2 = 0.11; Chi2 = 31.94, df = 5 (P < 0.00001); I2 = 84\%$ set for overall effect: Z = 1.93 (P = 0.05) 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40	lixed-RBD									
anahine 2016 38.74 10.28 108 42.02 9.4 315 20.2% -0.34 $[-0.56, -0.12]$ arques 2010 40 4 10 48.8 3.2 10 5.2% -2.33 $[-3.52, -1.14]$ agano 2018 42.16 9.58 109 39.59 9.81 263 20.1% 0.26 $[0.04, 0.49]$ anang 2016 30.66 8.34 32 35.22 11.39 42 14.9% -0.44 $[-0.91, 0.02]$ ubtotal (95% CI) 464 1084 100.0% -0.31 $[-0.62, 0.01]$ eterogeneity: Tau ² = 0.11; Chi ² = 31.94, df = 5 (P < 0.00001); l ² = 84\% $a64\%$ $a64\%$ $a64\%$ eterogeneity: Tau ² = 0.13; Chi ² = 31.94, df = 5 (P < 0.00001); l ² = 84\% $a6\%$ $a6\%$ $a6\%$ $a6\%$	a 2018	43.64	9.08	136	46.36	9.36	214	20.3%	-0.29 [-0.51, -0.08]	
Taining 2016 36.74 10.26 106 42.02 3.4 313 20.2 3.2 10 5.2% -0.34 $[-0.30, -0.12]$ arques 2010 40 4 10 48.8 3.2 10 5.2% -2.33 $[-3.52, -1.14]$ agano 2018 42.16 9.58 109 39.59 9.81 263 20.1% 0.26 $[0.04, 0.49]$ ang 2016 30.66 8.34 32 35.22 11.39 42 14.9% -0.44 $[-0.91, 0.02]$ abtotal (95% CI) 464 1084 100.0% -0.31 $[-0.62, 0.01]$ eterogeneity: Tau ² = 0.11; Chi ² = 31.94, df = 5 (P < 0.00001); I ² = 84% est for overall effect: Z = 1.93 (P = 0.05)	oucetta 2016	40.04	10.28	69	42.22	9.71	240	19.2%	-0.22 [-0.49, 0.05]	
agano 2018 42.16 9.58 109 39.59 9.81 263 20.1% 0.26 $[0.04, 0.49]$ anang 2016 30.66 8.34 32 35.22 11.39 42 14.9% -0.44 $[-0.91, 0.02]$ abtotal (95% CI) 464 1084 100.0% -0.31 $[-0.62, 0.01]$ eterogeneity: Tau ² = 0.11; Chi ² = 31.94, df = 5 (P < 0.00001); l ² = 84% $a84\%$ $a85$ $b7$ $a84\%$	hahine 2016	38.74	10.28	108	42.02	9.4	315	20.2%	-0.34 [-0.56, -0.12]	
ang 2016 30.66 8.34 32 35.22 11.39 42 14.9% -0.44 $[-0.91, 0.02]$ ubtotal (95% CI) 464 1084 100.0% -0.31 $[-0.62, 0.01]$ eterogeneity: Tau ² = 0.11; Chi ² = 31.94, df = 5 (P < 0.00001); I ² = 84% $ext for overall effect: Z = 1.93 (P = 0.05)$ $ext for overall effect: Z = 1.93 (P = 0.05)$	larques 2010	40	4	10	48.8	3.2	10	5.2%	-2.33 [-3.52, -1.14]	
Jubtotal (95% CI) 464 1084 100.0% -0.31 [-0.62, 0.01] eterogeneity: Tau ² = 0.11; Chi ² = 31.94, df = 5 (P < 0.00001); I ² = 84% est for overall effect: Z = 1.93 (P = 0.05)	agano 2018	42.16	9.58	109	39.59	9.81	263	20.1%	0.26 [0.04, 0.49]	
eterogeneity: Tau ² = 0.11; Chi ² = 31.94, df = 5 (P < 0.00001); l ² = 84% est for overall effect: Z = 1.93 (P = 0.05)	hang 2016	30.66	8.34	32	35.22	11.39	42	14.9%	-0.44 [-0.91, 0.02]	
est for overall effect: Z = 1.93 (P = 0.05)	ubtotal (95% CI)			464			1084	100.0%	-0.31 [-0.62, 0.01]	•
	leterogeneity: Tau ²	= 0.11; Ch	ni² = 31.9	94, df =	= 5 (P <	0.0000	1); l² = 8	84%		
otal (95% CI) 464 1084 100.0% -0.31 [-0.62, 0.01]	est for overall effect	:: Z = 1.93	(P = 0.0	05)						
	otal (95% CI)			464			1084	100.0%	-0.31 [-0.62, 0.01]	•
eterogeneity: Tau ² = 0.11; Chi ² = 31.94, df = 5 (P < 0.00001); l ² = 84%	eterogeneity: Tau ² :	= 0.11; Ch	ni² = 31.9	94. df =	5 (P <	0.0000	1); $ ^2 = 8$	84%	_	
-2 -1 = 0.05										-2 -1 0 1 2 Favours [PD-RBD] Favours [PD-NRBI

FIGURE 8 | Forest plot for psychomotor ability displaying effect size calculated using a random-effects model. SD, standard deviation; Std. Mean Difference, standardized mean difference; Cl, confidence interval.

performance that differs across cognitive domains. Specifically, Confirmed-RBD patients performed more poorly than those without RBD in global cognitive function, long-term verbal recall, long-term verbal recognition, generativity, inhibition, shifting, language, and visuospatial/constructional ability; Probable-RBD, in global cognitive function and shifting; and Mixed-RBD, in long-term visual recall, short-term spatial recall, general EF, and processing speed/complex attention/working memory that was evaluated by the TMT: A.

Our results put emphasis on PSG that provides objective statistics with which to compare subjective accounts in

diagnosing RBD. Regarding the range and degree of cognitive damage, we found that Confirmed-RBD patients were more serious than did Probable-RBD patients when both were compared to PD-NRBD patients. Dream enactment behavior, the major diagnostic basis of Probable-RBD, is not specific for RBD (1, 94, 95), and presumably, Probable-RBD patients diagnosed accordingly are less generalizable to RBD patients. The results from our analyses clearly present the difference between patients with PSG-confirmed RBD and those with probable RBD based on subjective complaints. Although the gold standard for assessing RBD remains the laboratory PSG, there is heightened growing interest in home-based sleep monitoring by portable or wearable monitoring devices (96, 97). Identification of confirmed RBD cases will likely grow with advances in technology enabling home-based PSG assessment.

Clonazepam, the drug of choice in the treatment of RBD, was reported to deteriorate cognition, as noted above. Although PD-RBD patients treated with clonazepam performed significantly worse on global cognitive function compared to PD-NRBD patients while the unmediated group did not manifest any difference, the subgroup difference was statistically insignificant. This seeming contradiction needs to be further explored by large-sized investigations.

One sensitivity analysis revealed no outlier, and another identified that the results reported by Marques et al. (66) and Pagano et al. (79) contributed significantly to the heterogeneities found in the analysis of long-term verbal recall and updating. The investigations showed that the results of the tests were conflicting with the other studies in their respective domains and were statistically insignificant, which means that the PD-RBD patients performed insignificantly better than did PD-NRBD patients. These two primary studies did not mention the reason for these dissimilar results.

Some demographics and clinical phenomenology of RBD (30) and PD-RBD (25, 73) were identified, such as male gender, age at onset, and severity of PD. Therefore, these features could also affect the relationship between RBD and cognitive dysfunctions. Moderator analysis supported our hypothesis that the neuropsychological patterns of PD-RBD patients are dependent on some demographic and clinical aspects. Moreover, it also revealed the effects of evaluating cognition or RBD on some cognitive domains like global cognitive function. However, considering that the clinical data of patients were not reported consistently across studies, these results should be interpreted with more caution and examined further.

Many studies have revealed no relationship between sleep-related deficits and cognition when insensitive neuropsychological tests were used. For instance, the Mini-Mental State Examination (MMSE), designed to detect frank dementia (98) instead of cognitive dysfunction in PD, possesses a "strikingly low sensitivity" at only 50% when used to screen for dementia in people with PD (99). MMSE is thought to be less sensitive than the Montreal Cognitive Assessment (MOCA) in detecting MCI in PD patients (100). Although the MMSE was not recommended to evaluate cognition in PD by the 2010 Movement Disorders Task Force to detect cognitive impairment in PD (98), it remained the most commonly used global cognitive test. Impaired global cognitive functions detected mostly by the MMSE were related to "bad sleep" or "pure apathy" (51, 53) and were insignificantly associated with impulse control disorders (52) in PD patients in previous meta-analyses. In our metaanalysis, the MMSE was used in 22 of the 38 included studies assessing global cognition. Similarly, the Frontal Assessment Battery (FAB), designed to recognize frontal lobe dysfunction, has been validated in frontotemporal dementia, progressive supranuclear palsy (PSP), and PD. Regression analysis proved that 69.7% of individuals with PSP and frontotemporal dementia were classified correctly with FAB, which suggested that deficits associated with predominantly medial-prefrontal dysfunction could be captured successfully by FAB (101). However, FAB is insensitive to cognitive damage in PD because it detects frontal lobe dysfunction instead of disorders that primarily involve the dorsolateral and ventrolateral prefrontal cortices in PD (102). A study identified the sensitivity (66.3%) and specificity (72.3%) of FAB in detecting dementia in PD at a cutoff of 26 points (103). All the enrolled studies evaluating general EF used FAB in our meta-analysis. Thus, these two domains need to be confirmed by more sensitive tests. Moreover, due to the conflicting results of the processing speed/complex attention/working memory domain evaluated with LNS and TMT: A, this domain also need to be confirmed further.

The Process of Selecting Neurophysiological Tests

In diagnosing MCI in PD, Litvan et al. (48) suggested that two highly similar tests (e.g., two list learning tests or two story recall tests) or highly correlated scores from the same test (e.g., immediate and delayed recall of a word list) should not be used to meet the MCI criterion for two test-score abnormalities. As mentioned earlier, when a cognitive domain was determined with more than one test in a study, we extracted and analyzed data from the most sensitive, relevant, and frequently used tests and discussed in detail the process of assigning the tests in these domains.

In the global cognitive function domain, among the enrolled primary studies, eight (33, 60, 61, 69, 71–74) employed both the MMSE and MOCA. Because the sensitivity of the MOCA is higher than that of the MMSE in evaluating cognitive decline in PD (98–100), we analyzed the MOCA results of these eight studies.

In the long-term verbal recall domain, the tests used were several highly similar tests. We extracted the results of the delayed recall tasks from these tests, like Litvan et al. (48) who suggested in diagnosing MCI in PD or Jansen et al. (104) who selected evaluating cognition in individuals with MCI. This criterion was also applicable to the long-term visual recall domain.

Six studies (5, 31, 33, 35, 66, 82) used both verbal fluency, semantic and letter, to evaluate the generativity. It is controversial which aspect of verbal fluency was more affected in PD patients (105-107). In an attempt to resolve the inconsistency, a metaanalysis with 2,644 PD patients showed that, although PD patients manifested greater deficits in semantic than in letter fluency, the difference was small (108). Because several other studies only employed semantic verbal fluency, we extracted semantic results from these six studies and combined them with the results from other studies in order to minimize heterogeneity. Kamble et al. (61) used two highly similar tests in this domain, the semantic verbal fluency and animal naming tests. Similarly, we extracted the results from the semantic fluency test. This criterion was also applicable to the shifting domain where two tasks of the TMT were adopted in a study (5); we analyzed the task employed by other studies as well. Moreover, two tests, Stroop task and TMT, can be measure by both speed and accuracy; we extracted speed data when these are available.

Concerning the visuospatial and constructional ability, six different tests were adopted by the enrolled primary studies. The Benton judgment of line orientation test (BJLOT), one of the most extensively used visuospatial tasks, was sensitive to visuospatial deficits in PD (109). The copy of the Rey-Osterrieth complex figure test is another widely used test to assess visuo-constructional ability. However, due to its complexity, EF is also reflected in this test (110-112). Using the clock drawing test, PD patients manifested a low performance compared with healthy controls (113). However, the major reason for clock drawing difficulties in PD with early cognitive impairment is dysfunctional executive control of memory retrieval instead of visuospatial impairment (114). Similarly, the block design measures visual perception and organization and visual-motor coordination, and also non-verbal reasoning, analysis, and synthesis (115). The bells test is used to investigate visual perception, processing speed, and attention (116). However, it is considered a sensitive test to diagnose visual hemineglect (117, 118). The sensitivity of Benton's facial recognition in PD patients is rarely studied. A study pointed out that medicated people with PD did not show significant deficits in this test compared with those untreated (119). Therefore, in this domain, the BJLOT is our priority when it exists with other tests of this domain in one study, and the copy of the Rey-Osterrieth complex figure test is our second choice.

Possible Mechanisms of "RBD-PD Phenotype"

Although the relationship between RBD and cognitive dysfunction in PD was confirmed based on our results, the mechanisms behind this phenomenon are yet to be elucidated. The following dysregulations that affect both RBD and cognitive dysfunction in PD may be the targets.

Cholinergic dysfunction is strongly associated with RBD and cognitive decline in PD. RBD in the context of asynucleinopathies was suggested to be a result of degeneration of the pontomedullary cholinergic pathways (67, 120, 121). A smaller volume of the pontomesencephalic tegmentum was found in PD patients with RBD than in those without (76). Moreover, dysfunctions of cholinergic systems and their projections were consistently associated with cognitive damage in PD (122-127). Cholinergic pedunculopontine nucleus neuronal loss in PD is believed to be attributable to cognitive damage (128-130). The decreased volume and the disrupted restingstate functional connectivity of the basal nucleus of Meynert (BNM), the main source of cholinergic innervation (131, 132), were found to be correlated with cognitive decline in PD (133-135). Rivastigmine, an inhibitor of acetylcholinesterase and butyrylcholinesterase, is effective in treating RBD and dementia associated with PD separately (136, 137).

Nigro-striatal dopaminergic impairment, limbic dysfunction, inflammation, and altered metabolism are also related to RBD and cognitive damage in PD. In PD-RBD patients, more severe nigro-striatal dopaminergic damage (138) and greater dopamine transporter loss (139) were discovered compared with PD-NRBD patients. A positive relationship between striatal dopamine transporter availability and fundamental cognitive capability was determined in PD patients (140). Compared to PD-NRBD patients, smaller volumes of the hypothalamus, thalamus, amygdala, anterior cingulate cortex, left posterior cingulate, and hippocampus were found in PD-RBD patients (64, 76). The volume loss of the thalamus and the accompanying damaged functional connectivity were also observed in PD patients with MCI (141). Elevations of peripheral inflammatory factors were found in the PD-RBD group compared with the PD-NRBD group (142). Cognitive damage in PD patients was associated with a higher level of circulating lymphocytes and—in drug-naive ones at least—with dysregulation of the T regulatory cells (143). In addition, an altered brain glucose metabolism was observed in PD patients with RBD and MCI (138, 144–147).

Therefore, it was previously suggested that PD-RBD represents a unique subtype of PD with severe non-motor symptoms. The positive relationship between RBD and cognitive decline in PD patients according to our results enriched and expanded this opinion. The above-mentioned dysfunctions in PD patients accompanied with either RBD or cognitive decline elucidated this relationship further, thus supplying possible therapeutic targets. Even though the results are encouraging, more cases and experiments are needed to confirm this phenotype.

Strengths and Limitations

This meta-analysis not only confirms the relationship between RBD and cognitive dysfunction in PD but also specifies which cognitive domains are involved. In addition, this meta-analysis scientifically distinguished probable RBD from true RBD and thus demonstrated the difference between objective and subjective evaluation of RBD.

However, two limitations warrant consideration when interpreting our results and designing further studies. The first is the pooling of other non-motor symptoms such as hallucinations and depression, which could also affect the cognitive status of patients with PD. Several longitudinal reports have revealed that hallucination can be a predictor of cognitive dysfunction in PD (148-151), specifically in the domain of EF (152). Moreover, a study confirmed cross-sectionally and longitudinally that hallucination was significantly related to the presence and development of dementia (153), and another separately confirmed the relationships between hallucination and depression with dementia in PD (154). In addition, the relationship between depression and cognitive dysfunction in individuals with PD was also confirmed in several studies, and the consensus was that PD patients with baseline depression manifested deteriorated cognition and motor ability (155-157). Given that nearly 60% of PD patients manifested more than one non-motor symptom and roughly 25% displayed more than two (158), the relationship between "pure RBD" and cognitive decline in PD patients is difficult to detect. The second limitation is that the symptoms of cognitive damage and RBD can both fluctuate (28, 59, 159, 160), so studies evaluating them at an arbitrary time point may not comprehensively and accurately reflect the condition. In addition to the fluctuation of symptoms, the effect of the appearance order of RBD and PD symptoms on cognition is controversial (70, 161).

Significance and Conclusion

This meta-analysis strongly suggests an association between RBD and cognitive dysfunctions in PD patients. Early and routine screening by cognitive tasks is simple and inexpensive and should be part of the standard assessment of all PD-RBD patients before they evolve to irreversible dementia in the study setting. Currently, there are no pharmacological therapeutics that could slow cognitive decline or dementia (162–164); however, there is some evidence suggesting that non-pharmacological interventions, like cognitive training, could enhance cognition in non-demented early-stage PD patients (165–167). This underscores the importance of a timely intervention of cognitive dysfunctions in PD. Our findings should be extended in larger prospective longitudinal studies to assess the progression of both cognitive decline and RBD in PD and to identify moderators that may help in a personalized care approach.

AUTHOR CONTRIBUTIONS

JM and JG developed the concept for the study. JM and JY carried out search, quality assessment, and initial data interpretation. JM, XH, and LC carried out statistical analysis. JM prepared the manuscript draft, with input and revisions from LC, YH, BT, and JG. All authors approved the final version.

REFERENCES

- Schenck CH, Mahowald MW. REM sleep behavior disorder: clinical, developmental, and neuroscience perspectives 16 years after its formal identification in SLEEP. *Sleep.* (2002) 25:120–38. doi: 10.1093/sleep/25.2.120
- Sateia MJ. International classification of sleep disorders-third edition: highlights and modifications. *Chest.* (2014) 146:1387– 94. doi: 10.1378/chest.14-0970
- McKenna D, Peever J. Degeneration of rapid eye movement sleep circuitry underlies rapid eye movement sleep behavior disorder. *Mov Disord.* (2017) 32:636–44. doi: 10.1002/mds.27003
- Berg D, Postuma RB, Adler CH, Bloem BR, Chan P, Dubois B, et al. MDS research criteria for prodromal Parkinson's disease. *Mov Disord.* (2015) 30:1600–11. doi: 10.1002/mds.26431
- Jozwiak N, Postuma RB, Montplaisir J, Latreille V, Panisset M, Chouinard S, et al. REM sleep behavior disorder and cognitive impairment in Parkinson's disease. *Sleep.* (2017) 40:zsx101. doi: 10.1093/sleep/ zsx101
- Iranzo A, Fernandez-Arcos A, Tolosa E, Serradell M, Molinuevo JL, Valldeoriola F, et al. Neurodegenerative disorder risk in idiopathic REM sleep behavior disorder: study in 174 patients. *PLoS ONE*. (2014) 9:e89741. doi: 10.1371/journal.pone.0089741
- Kumru H, Santamaria J, Tolosa E, Iranzo A. Relation between subtype of Parkinson's disease and REM sleep behavior disorder. *Sleep Med.* (2007) 8:779–83. doi: 10.1016/j.sleep.2007.02.005
- Lee JE, Kim KS, Shin HW, Sohn YH. Factors related to clinically probable REM sleep behavior disorder in Parkinson disease. *Parkinsonism Relat Disord.* (2010) 16:105–8. doi: 10.1016/j.parkreldis.2009. 08.005
- Postuma RB, Gagnon JF, Vendette M, Charland K, Montplaisir J. REM sleep behaviour disorder in Parkinson's disease is associated with specific motor features. *J Neurol Neurosurg Psychiatry*. (2008) 79:1117– 21. doi: 10.1136/jnnp.2008.149195
- Bliwise DL, Trotti LM, Greer SA, Juncos JJ, Rye DB. Phasic muscle activity in sleep and clinical features of Parkinson disease. *Ann Neurol.* (2010) 68:353–9. doi: 10.1002/ana.22076

FUNDING

This research was supported by grants from the National Key Research and Development Program of China (grant nos. 2017YFC0909100 and 2016YFC1306000), the Central Public-Interest Scientific Institution Basal Research Fund of Chinese Academy of Medical Sciences (grant no. 2018-12M-HL-025), the National Natural Science Foundation of China (grant nos. 81571248, 81873785, and 81974202), the Natural Science Foundation of Hunan Province (grant no. 2017JJ1037), and Science and Technology Major Project of Hunan Provincial Science and Technology Department (grant no. 2018SK1030).

ACKNOWLEDGMENTS

We thank the authors of the included primary studies who provided the data.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fneur. 2020.577874/full#supplementary-material

- Postuma RB, Gagnon JF. Symmetry of Parkinson's disease and REM sleep: one piece of the puzzle. *Ann Neurol.* (2011) 69:905, author reply 6. doi: 10.1002/ana.22259
- Postuma RB, Montplaisir J, Lanfranchi P, Blais H, Rompre S, Colombo R, et al. Cardiac autonomic denervation in Parkinson's disease is linked to REM sleep behavior disorder. *Mov Disord.* (2011) 26:1529– 33. doi: 10.1002/mds.23677
- Postuma RB, Gagnon JF, Vendette M, Montplaisir JY. Markers of neurodegeneration in idiopathic rapid eye movement sleep behaviour disorder and Parkinson's disease. *Brain.* (2009) 132:3298–307. doi: 10.1093/brain/awp244
- Postuma RB, Gagnon JF, Vendette M, Charland K, Montplaisir J. Manifestations of Parkinson disease differ in association with REM sleep behavior disorder. *Mov Disord*. (2008) 23:1665–72. doi: 10.1002/mds.22099
- Nomura T, Inoue Y, Högl B, Uemura Y, Kitayama M, Abe T, et al. Relationship between 123I-MIBG scintigrams and REM sleep behavior disorder in Parkinson's disease. *Parkinsonism Related Disord*. (2010) 16:683– 5. doi: 10.1016/j.parkreldis.2010.08.011
- Sixel-Döring F, Trautmann E, Mollenhauer B, Trenkwalder C. Associated factors for REM sleep behavior disorder in Parkinson disease. *Neurology*. (2011) 77:1048–54. doi: 10.1212/WNL.0b013e31822e560e
- Yoritaka A, Ohizumi H, Tanaka S, Hattori N. Parkinson's disease with and without REM sleep behaviour disorder: are there any clinical differences? *Eur Neurol.* (2009) 61:164–70. doi: 10.1159/000189269
- Pacchetti C, Manni R, Zangaglia R, Mancini F, Marchioni E, Tassorelli C, et al. Relationship between hallucinations, delusions, and rapid eye movement sleep behavior disorder in Parkinson's disease. *Mov Disord.* (2005) 20:1439– 48. doi: 10.1002/mds.20582
- Sinforiani E, Zangaglia R, Manni R, Cristina S, Marchioni E, Nappi G, et al. REM sleep behavior disorder, hallucinations, and cognitive impairment in Parkinson's disease. *Mov Disord*. (2006) 21:462–6. doi: 10.1002/mds.20719
- Onofrj M, Bonanni L, Albani G, Mauro A, Bulla D, Thomas A. Visual hallucinations in Parkinson's disease: clues to separate origins. *J Neurol Sci.* (2006) 248:143–50. doi: 10.1016/j.jns.2006.05.025
- 21. Mata IF, Leverenz JB, Weintraub D, Trojanowski JQ, Chen-Plotkin A, Van Deerlin VM, et al. GBA variants are associated with a distinct pattern

of cognitive deficits in Parkinson's disease. *Mov Disord.* (2016) 31:95-102. doi: 10.1002/mds.26359

- Alcalay RN, Caccappolo E, Mejia-Santana H, Tang M, Rosado L, Orbe Reilly M, et al. Cognitive performance of GBA mutation carriers with early-onset PD: the CORE-PD study. *Neurology*. (2012) 78:1434– 40. doi: 10.1212/WNL.0b013e318253d54b
- Winder-Rhodes SE, Evans JR, Ban M, Mason SL, Williams-Gray CH, Foltynie T, et al. Glucocerebrosidase mutations influence the natural history of Parkinson's disease in a community-based incident cohort. *Brain.* (2013) 136:392–9. doi: 10.1093/brain/aws318
- Gan-Or Z, Mirelman A, Postuma RB, Arnulf I, Bar-Shira A, Dauvilliers Y, et al. GBA mutations are associated with rapid eye movement sleep behavior disorder. *Ann Clin Transl Neurol.* (2015) 2:941–5. doi: 10.1002/acn3.228
- Fereshtehnejad SM, Romenets SR, Anang JB, Latreille V, Gagnon JF, Postuma RB. New clinical subtypes of Parkinson disease and their longitudinal progression: a prospective cohort comparison with other phenotypes. *JAMA Neurol.* (2015) 72:863–73. doi: 10.1001/jamaneurol.2015.0703
- Fereshtehnejad SM, Zeighami Y, Dagher A, Postuma RB. Clinical criteria for subtyping Parkinson's disease: biomarkers and longitudinal progression. *Brain.* (2017) 140:1959–76. doi: 10.1093/brain/awx118
- Benninger DH, Michel J, Waldvogel D, Candia V, Poryazova R, van Hedel HJ, et al. REM sleep behavior disorder is not linked to postural instability and gait dysfunction in Parkinson. *Mov Disord.* (2010) 25:1597– 604. doi: 10.1002/mds.23121
- Lavault S, Leu-Semenescu S, Tezenas du Montcel S, Cochen de Cock V, Vidailhet M, Arnulf I. Does clinical rapid eye movement behavior disorder predict worse outcomes in Parkinson's disease? *J Neurol.* (2010) 257:1154– 9. doi: 10.1007/s00415-010-5482-y
- Petersen RC, Smith GE, Waring SC, Ivnik RJ, Tangalos EG, Kokmen E. Mild cognitive impairment: clinical characterization and outcome. *Arch Neurol.* (1999) 56:303–8. doi: 10.1001/archneur.56.3.303
- Boeve BF. REM sleep behavior disorder: updated review of the core features, the REM sleep behavior disorder-neurodegenerative disease association, evolving concepts, controversies, and future directions. *Ann N Y Acad Sci.* (2010) 1184:15–54. doi: 10.1111/j.1749-6632.2009.05115.x
- Chahine LM, Xie SX, Simuni T, Tran B, Postuma R, Amara A, et al. Longitudinal changes in cognition in early Parkinson's disease patients with REM sleep behavior disorder. *Parkinsonism Relat Disord*. (2016) 27:102– 6. doi: 10.1016/j.parkreldis.2016.03.006
- Gong Y, Xiong KP, Mao CJ, Shen Y, Hu WD, Huang JY, et al. Clinical manifestations of Parkinson disease and the onset of rapid eye movement sleep behavior disorder. *Sleep Med.* (2014) 15:647– 53. doi: 10.1016/j.sleep.2013.12.021
- 33. Rolinski M, Szewczyk-Krolikowski K, Tomlinson PR, Nithi K, Talbot K, Ben-Shlomo Y, et al. REM sleep behaviour disorder is associated with worse quality of life and other non-motor features in early Parkinson's disease. *J Neurol Neurosurg Psychiatry.* (2014) 85:560–6. doi: 10.1136/jnnp-2013-306104
- Naismith SL, Terpening Z, Shine JM, Lewis SJ. Neuropsychological functioning in Parkinson's disease: differential relationships with self-reported sleep-wake disturbances. *Mov Disord.* (2011) 26:1537–41. doi: 10.1002/mds.23640
- Vendette M, Gagnon JF, Décary A, Massicotte-Marquez J, Postuma RB, Doyon J, et al. REM sleep behavior disorder predicts cognitive impairment in Parkinson disease without dementia. *Neurology.* (2007) 69:1843–9. doi: 10.1212/01.wnl.0000278114.14096.74
- Lin YQ, Chen SD. RBD: a red flag for cognitive impairment in Parkinson's disease? *Sleep Med.* (2018) 44:38–44. doi: 10.1016/j.sleep.2018. 01.006
- 37. Erro R, Santangelo G, Picillo M, Vitale C, Amboni M, Longo K, et al. Link between non-motor symptoms and cognitive dysfunctions in *de novo*, drug-naive PD patients. *J Neurol.* (2012) 259:1808–13. doi: 10.1007/s00415-011-6407-0
- Marion MH, Qurashi M, Marshall G, Foster O. Is REM sleep behaviour disorder (RBD) a risk factor of dementia in idiopathic Parkinson's disease? *J Neurol.* (2008) 255:192–6. doi: 10.1007/s00415-008-0629-9
- Louis ED, Bennett DA. Mild Parkinsonian signs: an overview of an emerging concept. *Mov Disord.* (2007) 22:1681–8. doi: 10.1002/mds.21433

- Aarsland D, Andersen K, Larsen JP, Lolk A, Kragh-Sorensen P. Prevalence and characteristics of dementia in Parkinson disease: an 8-year prospective study. Arch Neurol. (2003) 60:387–92. doi: 10.1001/archneur.60.3.387
- Emre M, Aarsland D, Brown R, Burn DJ, Duyckaerts C, Mizuno Y, et al. Clinical diagnostic criteria for dementia associated with Parkinson's disease. *Mov Disord*. (2007) 22:1689–707; quiz 837. doi: 10.1002/mds.21507
- Moher D, Liberati A, Tetzlaff J, Altman DG, Group P. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. *PLoS Med.* (2009) 6:e1000097. doi: 10.1371/journal.pmed.1000097
- Gelb DJ, Oliver E, Gilman S. Diagnostic criteria for Parkinson disease. Arch Neurol. (1999) 56:33–9. doi: 10.1001/archneur.56.1.33
- Hughes AJ, Daniel SE, Kilford L, Lees AJ. Accuracy of clinical diagnosis of idiopathic Parkinson's disease: a clinico-pathological study of 100 cases. J Neurol Neurosurg Psychiatry. (1992) 55:181–4. doi: 10.1136/jnnp.55.3.181
- Gibb WR, Lees AJ. The relevance of the Lewy body to the pathogenesis of idiopathic Parkinson's disease. J Neurol Neurosurg Psychiatry. (1988) 51:745–52. doi: 10.1136/jnnp.51.6.745
- 46. National Collaborating Centre for Chronic Conditions (UK). Parkinson's Disease: National Clinical Guideline for Diagnosis and Management in Primary and Secondary Care. London: National Institute for Health and Clinical Excellence: Guidance. (2006).
- 47. Daniel SE, Lees AJ. Parkinson's disease society brain bank, London: overview and research. *J Neural Transm Suppl.* (1993) 39:165–72.
- Litvan I, Goldman JG, Troster AI, Schmand BA, Weintraub D, Petersen RC, et al. Diagnostic criteria for mild cognitive impairment in Parkinson's disease: movement disorder society task force guidelines. *Mov Disord.* (2012) 27:349–56. doi: 10.1002/mds.24893
- Wallace A, Bucks RS. Memory and obstructive sleep apnea: a meta-analysis. Sleep. (2013) 36:203–20. doi: 10.5665/sleep.2374
- Olaithe M, Bucks RS. Executive dysfunction in OSA before and after treatment: a meta-analysis. *Sleep.* (2013) 36:1297– 305. doi: 10.5665/sleep.2950
- Pushpanathan ME, Loftus AM, Thomas MG, Gasson N, Bucks RS. The relationship between sleep and cognition in Parkinson's disease: a metaanalysis. *Sleep Med Rev.* (2016) 26:21–32. doi: 10.1016/j.smrv.2015.04.003
- Santangelo G, Raimo S, Barone P. The relationship between impulse control disorders and cognitive dysfunctions in Parkinson's disease: a meta-analysis. *Neurosci Biobehav Rev.* (2017) 77:129–47. doi: 10.1016/j.neubiorev.2017.02.018
- D'Iorio A, Maggi G, Vitale C, Trojano L, Santangelo G. "Pure apathy" and cognitive dysfunctions in Parkinson's disease: a meta-analytic study. *Neurosci Biobehav Rev.* (2018) 94:1–10. doi: 10.1016/j.neubiorev.2018.08.004
- Arnaldi D, de Carli F, Picco A, Ferrara M, Accardo J, Bossert I, et al. Nigro-caudate dopaminergic deafferentation: a marker of REM sleep behavior disorder? *Neurobiol Aging.* (2015) 36:3300–5. doi: 10.1016/j.neurobiolaging.2015.08.025
- Duarte Folle A, Paul KC, Bronstein JM, Keener AM, Ritz B. Clinical progression in Parkinson's disease with features of REM sleep behavior disorder: a population-based longitudinal study. *Parkinsonism Relat Disord.* (2019) 62:105–11. doi: 10.1016/j.parkreldis.2019.01.018
- Ford AH, Duncan GW, Firbank MJ, Yarnall AJ, Khoo TK, Burn DJ, et al. Rapid eye movement sleep behavior disorder in Parkinson's disease: magnetic resonance imaging study. *Mov Disord.* (2013) 28:832– 6. doi: 10.1002/mds.25367
- Gagnon JF, Fantini ML, Bédard MA, Petit D, Carrier J, Rompré S, et al. Association between waking EEG slowing and REM sleep behavior disorder in PD without dementia. *Neurology*. (2004) 62:401– 6. doi: 10.1212/01.WNL.0000106460.34682.E9
- Gaudreault PO, Gagnon JF, Montplaisir J, Vendette M, Postuma RB, Gagnon K, et al. Abnormal occipital event-related potentials in Parkinson's disease with concomitant REM sleep behavior disorder. *Parkinsonism Relat Disord.* (2013) 19:212–7. doi: 10.1016/j.parkreldis.2012.10.006
- Gjerstad MD, Boeve B, Wentzel-Larsen T, Aarsland D, Larsen JP. Occurrence and clinical correlates of REM sleep behaviour disorder in patients with Parkinson's disease over time. *J Neurol Neurosurg Psychiatr.* (2008) 79:387– 91. doi: 10.1136/jnnp.2007.116830
- 60. Huang JY, Zhang JR, Shen Y, Zhang HJ, Cao YL, Mao CJ, et al. Effect of rapid eye movement sleep behavior disorder on obstructive sleep apnea

severity and cognition of Parkinson's disease patients. *Chin Med J.* (2018) 131:899–906. doi: 10.4103/0366-6999.229888

- Kamble N, Yadav R, Lenka A, Kumar K, Nagaraju BC, Pal PK. Impaired sleep quality and cognition in patients of Parkinson's disease with REM sleep behavior disorder: a comparative study. *Sleep Med.* (2019) 62:1– 5. doi: 10.1016/j.sleep.2019.04.001
- Kim YE, Jeon BS, Yang HJ, Ehm G, Yun JY, Kim HJ, et al. REM sleep behavior disorder: association with motor complications and impulse control disorders in Parkinson's disease. *Parkinsonism Relat Disord.* (2014) 20:1081–4. doi: 10.1016/j.parkreldis.2014.03.022
- Kim HJ, Im HK, Kim J, Han JY, De Leon M, Deshpande A, et al. Brain atrophy of secondary REM-sleep behavior disorder in neurodegenerative disease. J Alzheimer's Dis. (2016) 52:1101–9. doi: 10.3233/JAD-151197
- Lim JS, Shin SA, Lee JY, Nam H, Lee JY, Kim YK. Neural substrates of rapid eye movement sleep behavior disorder in Parkinson's disease. *Parkinsonism Relat Disord.* (2016) 23:31–6. doi: 10.1016/j.parkreldis.2015.11.027
- Mahale RR, Yadav R, Pal PK. Rapid eye movement sleep behaviour disorder in women with Parkinson's disease is an underdiagnosed entity. J Clin Neurosci. (2016) 28:43–6. doi: 10.1016/j.jocn.2015.08.046
- Marques A, Dujardin K, Boucart M, Pins D, Delliaux M, Defebvre L, et al. REM sleep behaviour disorder and visuoperceptive dysfunction: a disorder of the ventral visual stream? *J Neurol.* (2010) 257:383– 91. doi: 10.1007/s00415-009-5328-7
- 67. Nardone R, Bergmann J, Brigo F, Christova M, Kunz A, Seidl M, et al. Functional evaluation of central cholinergic circuits in patients with Parkinson's disease and REM sleep behavior disorder: a TMS study. *J Neural Trans.* (2013) 120:413–22. doi: 10.1007/s00702-012-0888-6
- Nomura T, Inoue Y, Kagimura T, Nakashima K. Clinical significance of REM sleep behavior disorder in Parkinson's disease. *Sleep Med.* (2013) 14:131–5. doi: 10.1016/j.sleep.2012.10.011
- Nomura T, Tanaka K, Tajiri Y, Kishi M, Nakashima K. Screening tools for clinical characteristics of probable REM sleep behavior disorder in patients with Parkinson's disease. *eNeurologicalSci.* (2016) 4:22– 4. doi: 10.1016/j.ensci.2016.04.004
- Nomura T, Kishi M, Nakashima K. Differences in clinical characteristics when REM sleep behavior disorder precedes or comes after the onset of Parkinson's disease. J Neurol Sci. (2017) 382:58–60. doi: 10.1016/j.jns.2017.08.3247
- Plomhause L, Dujardin K, Duhamel A, Delliaux M, Derambure P, Defebvre L, et al. Rapid eye movement sleep behavior disorder in treatment-naive Parkinson disease patients. *Sleep Med.* (2013) 14:1035– 7. doi: 10.1016/j.sleep.2013.04.018
- Plomhause L, Dujardin K, Boucart M, Herlin V, Defebvre L, Derambure P, et al. Impaired visual perception in rapid eye movement sleep behavior disorder. *Neuropsychology*. (2014) 28:388–93. doi: 10.1037/neu0000006
- Postuma RB, Bertrand JA, Montplaisir J, Desjardins C, Vendette M, Rios Romenets S, et al. Rapid eye movement sleep behavior disorder and risk of dementia in Parkinson's disease: a prospective study. *Mov Disord.* (2012) 27:720–6. doi: 10.1002/mds.24939
- Zhang JR, Chen J, Yang ZJ, Zhang HJ, Fu YT, Shen Y, et al. Rapid eye movement sleep behavior disorder symptoms correlate with domains of cognitive impairment in parkinson's disease. *Chin Med J.* (2016) 129:379– 85. doi: 10.4103/0366-6999.176077
- 75. Ba M, Yu G, Kong M, Liang H, Yu L. CSF Aβ1-42 level is associated with cognitive decline in early Parkinson's disease with rapid eye movement sleep behavior disorder. *Transl Neurodegener*. (2018) 7:22. doi: 10.1186/s40035-018-0129-5
- Boucetta S, Salimi A, Dadar M, Jones BE, Collins DL, Dang-Vu TT. Structural brain alterations associated with rapid eye movement sleep behavior disorder in Parkinson's disease. *Sci Rep.* (2016) 6:26782. doi: 10.1038/srep26782
- Kotagal V, Albin RL, Müller MLTM, Koeppe RA, Chervin RD, Frey KA, et al. Symptoms of rapid eye movement sleep behavior disorder are associated with cholinergic denervation in Parkinson disease. *Ann Neurol.* (2012) 71:560–8. doi: 10.1002/ana.22691
- Liu H, Ou R, Wei Q, Hou Y, Cao B, Zhao B, et al. Rapid eye movement behavior disorder in drug-naïve patients with Parkinson's disease. J Clin Neurosci. (2019) 59:254–8. doi: 10.1016/j.jocn.2018.07.007

- Pagano G, De Micco R, Yousaf T, Wilson H, Chandra A, Politis M. REM behavior disorder predicts motor progression and cognitive decline in Parkinson disease. *Neurology*. (2018) 91:e894–905. doi: 10.1212/WNL.00000000006134
- Rahmani F, Ansari M, Pooyan A, Mirbagheri MM, Aarabi MH. Differences in white matter microstructure between Parkinson's disease patients with and without REM sleep behavior disorder. *Annu Int Conf IEEE Eng Med Biol Soc.* (2016) 2016:1124–6. doi: 10.1109/EMBC.2016.7590901
- Meral H, Aydemir T, Ozer F, Ozturk O, Ozben S, Erol C, et al. Relationship between visual hallucinations and REM sleep behavior disorder in patients with Parkinson's disease. *Clin Neurol Neurosurg.* (2007) 109:862– 7. doi: 10.1016/j.clineuro.2007.08.010
- Gagnon JF, Vendette M, Postuma RB, Desjardins C, Massicotte-Marquez J, Panisset M, et al. Mild cognitive impairment in rapid eye movement sleep behavior disorder and Parkinson's disease. *Ann Neurol.* (2009) 66:39– 47. doi: 10.1002/ana.21680
- Patel R, Silla F, Pierce S, Theule J, Girard TA. Cognitive functioning before and after repetitive transcranial magnetic stimulation (rTMS): a quantitative meta-analysis in healthy adults. *Neuropsychologia*. (2020) 2020:107395. doi: 10.1016/j.neuropsychologia.2020.107395
- Hu M, Wu X, Shu X, Hu H, Chen Q, Peng L, et al. Effects of computerised cognitive training on cognitive impairment: a meta-analysis. J Neurol. (2019). doi: 10.1007/s00415-019-09522-7. [Epub ahead of print].
- Kylstra WA, Aaronson JA, Hofman WF, Schmand BA. Neuropsychological functioning after CPAP treatment in obstructive sleep apnea: a meta-analysis. *Sleep Med Rev.* (2013) 17:341–7. doi: 10.1016/j.smrv.2012.09.002
- Wells GA, Shea D, O'Connell D, Peterson J, Welch V, Losos M, et al. The newcastle-ottawa scale (NOS) for assessing the quality of nonrandomised studies in meta-analyses. *ohri.ca* Available online at: http://www.ohri.ca/ programs/clinical_epidemiology/oxford.asp (accessed July 25, 2019).
- Herzog R, Alvarez-Pasquin MJ, Diaz C, Del Barrio JL, Estrada JM, Gil A. Are healthcare workers' intentions to vaccinate related to their knowledge, beliefs and attitudes? A systematic review. *BMC Public Health.* (2013) 13:154. doi: 10.1186/1471-2458-13-154
- Aurora RN, Zak RS, Maganti RK, Auerbach SH, Casey KR, Chowdhuri S, et al. Best practice guide for the treatment of REM sleep behavior disorder (RBD). J Clin Sleep Med. (2010) 6:85–95. doi: 10.5664/jcsm.27717
- Salzman C. Do benzodiazepines cause Alzheimer's disease? Am J Psychiatry. (2020) 177:476–8. doi: 10.1176/appi.ajp.2020.20040375
- Dokkedal-Silva V, Berro LF, Galduroz JCF, Tufik S, Andersen ML. Clonazepam: indications, side effects, and potential for nonmedical use. *Harv Rev Psychiatry*. (2019) 27:279–89. doi: 10.1097/HRP.00000000000227
- Michael B, Hedges LV, Higgins JPT, Rothstein HR. Meta-Regression. Introduction to Meta-Analysis. New York, NY: Wiley (2009). p. 187– 203. doi: 10.1002/9780470743386
- 92. Taylor RS, Taylor RJ, Bayliss S, Hagstrom H, Nasr P, Schattenberg JM, et al. Association between fibrosis stage and outcomes of patients with nonalcoholic fatty liver disease: a systematic review and meta-analysis. *Gastroenterology*. (2020) 158:1611–25.e12. doi: 10.1053/j.gastro.2020.01.043
- Larsen JP, Dupont E, Tandberg E. Clinical diagnosis of Parkinson's disease. Proposal of diagnostic subgroups classified at different levels of confidence. *Acta Neurol Scand.* (1994) 89:242–51. doi: 10.1111/j.1600-0404.1994.tb01674.x
- 94. Iranzo A, Santamaria J. Severe obstructive sleep apnea/hypopnea mimicking REM sleep behavior disorder. *Sleep.* (2005) 28:203– 6. doi: 10.1093/sleep/28.2.203
- Schenck CH, Milner DM, Hurwitz TD, Bundlie SR, Mahowald MW. A polysomnographic and clinical report on sleep-related injury in 100 adult patients. *Am J Psychiatry*. (1989) 146:1166–73. doi: 10.1176/ajp.146.9.1166
- Cooray N, Andreotti F, Lo C, Symmonds M, Hu MTM, De Vos M. Detection of REM sleep behaviour disorder by automated polysomnography analysis. *Clin Neurophysiol.* (2019) 130:505–14. doi: 10.1016/j.clinph.2019.01.011
- Kelly JM, Strecker RE, Bianchi MT. Recent developments in home sleep-monitoring devices. *ISRN Neurol.* (2012) 2012:768794. doi: 10.5402/2012/768794
- Chou KL, Amick MM, Brandt J, Camicioli R, Frei K, Gitelman D, et al. A recommended scale for cognitive screening in clinical trials of Parkinson's disease. *Mov Disord*. (2010) 25:2501–7. doi: 10.1002/mds.23362

- Riedel O, Klotsche J, Spottke A, Deuschl G, Forstl H, Henn F, et al. Cognitive impairment in 873 patients with idiopathic Parkinson's disease. results from the German study on epidemiology of Parkinson's disease with dementia (GEPAD). J Neurol. (2008) 255:255–64. doi: 10.1007/s00415-008-0720-2
- 100. Burdick DJ, Cholerton B, Watson GS, Siderowf A, Trojanowski JQ, Weintraub D, et al. People with Parkinson's disease and normal MMSE score have a broad range of cognitive performance. *Mov Disord.* (2014) 29:1258–64. doi: 10.1002/mds.25924
- Kulisevsky J, Pagonabarraga J. Cognitive impairment in Parkinson's disease: tools for diagnosis and assessment. *Mov Disord.* (2009) 24:1103– 10. doi: 10.1002/mds.22506
- 102. Lewis SJ, Dove A, Robbins TW, Barker RA, Owen AM. Cognitive impairments in early Parkinson's disease are accompanied by reductions in activity in frontostriatal neural circuitry. J Neurosci. (2003) 23:6351– 6. doi: 10.1523/JNEUROSCI.23-15-06351.2003
- 103. Kaszas B, Kovacs N, Balas I, Kallai J, Aschermann Z, Kerekes Z, et al. Sensitivity and specificity of addenbrooke's cognitive examination, mattis dementia rating scale, frontal assessment battery and mini mental state examination for diagnosing dementia in Parkinson's disease. *Parkinsonism Relat Disord.* (2012) 18:553–6. doi: 10.1016/j.parkreldis.2012.02.010
- 104. Jansen WJ, Ossenkoppele R, Tijms BM, Fagan AM, Hansson O, Klunk WE, et al. Association of cerebral amyloid-beta aggregation with cognitive functioning in persons without dementia. *JAMA Psychiatry*. (2018) 75:84–95. doi: 10.1001/jamapsychiatry.2017.3391
- Flowers KA, Robertson C, Sheridan MR. Some characteristics of word fluency in Parkinson's disease. J Neurolinguistics. (1995) 9:33–46. doi: 10.1016/0911-6044(95)00004-6
- 106. Azuma T, Bayles KA, Cruz RF, Tomoeda CK, Wood JA, McGeagh A, et al. Comparing the difficulty of letter, semantic, and name fluency tasks for normal elderly and patients with Parkinson's disease. *Neuropsychology*. (1997) 11:488–97. doi: 10.1037/0894-4105.11.4.488
- Matison R, Mayeux R, Rosen J, Fahn S. "Tip-of-the-tongue" phenomenon in Parkinson disease. *Neurology*. (1982) 32:567–70. doi: 10.1212/WNL. 32.5.567
- Henry JD, Crawford JR. Verbal fluency deficits in Parkinson's disease: a meta-analysis. J Int Neuropsychol Soc. (2004) 10:608– 22. doi: 10.1017/S1355617704104141
- 109. Montse A, Pere V, Carme J, Francesc V, Eduardo T. Visuospatial deficits in Parkinson's disease assessed by judgment of line orientation test: error analyses and practice effects. J Clin Exp Neuropsychol. (2001) 23:592– 8. doi: 10.1076/jcen.23.5.592.1248
- Shorr JS, Delis DC, Massman PJ. Memory for the rey-osterrieth figure: perceptual clustering, encoding, and storage. *Neuropsychology*. (1992) 6:43– 50. doi: 10.1037/0894-4105.6.1.43
- 111. Somerville J, Tremont G, Stern RA. The boston qualitative scoring system as a measure of executive functioning in rey-osterrieth complex figure performance. J Clin Exp Neuropsychol. (2000) 22:613–21. doi: 10.1076/1380-3395(200010)22:5;1-9;FT613
- 112. Beebe DW, Ris MD, Brown TM, Dietrich KN. Executive functioning and memory for the Rey-Osterreith complex figure task among community adolescents. *Appl Neuropsychol.* (2004) 11:91–8. doi: 10.1207/s15324826an1102_4
- 113. Scarpina F, Paschino C, Priano L, Mauro A. Performance at the clock drawing test of individuals affected by Parkinson's disease and healthy subjects: a retrospective study. *Neurol Sci.* (2020) 41:843– 9. doi: 10.1007/s10072-019-04167-w
- 114. Saur R, Maier C, Milian M, Riedel E, Berg D, Liepelt-Scarfone I, et al. Clock test deficits related to the global cognitive state in Alzheimer's and Parkinson's disease. *Dement Geriatr Cogn Disord.* (2012) 33:59– 72. doi: 10.1159/000336598
- 115. Coalson DL, Raiford SE, Saklofske DH, Weiss LG. CHAPTER 1 -WAIS-IV: advances in the assessment of intelligence. In: Weiss LG, Saklofske DH, Coalson DL, Raiford SE, editors. WAIS-IV Clinical Use and Interpretation. San Diego: Academic Press (2010) p. 3– 23. doi: 10.1016/B978-0-12-375035-8.10001-1
- 116. Gauthier L, Dehaut F, Joanette Y. The bells test: a quantitative and qualitative test for visual neglect. Int J Clini Neuropsychol. (1989) 11:49– 54. doi: 10.1037/t28075-000

- 117. Azouvi P, Samuel C, Louis-Dreyfus A, Bernati T, Bartolomeo P, Beis JM, et al. Sensitivity of clinical and behavioural tests of spatial neglect after right hemisphere stroke. *J Neurol Neurosurg Psychiatry*. (2002) 73:160– 6. doi: 10.1136/jnnp.73.2.160
- 118. Cr O, Fc L. Use of bells test in the evaluation of the hemineglect post unilateral stroke. J Neurol Neurosci. (2016) 7:S3. doi: 10.21767/2171-6625.1000124
- 119. Sprengelmeyer R, Young AW, Mahn K, Schroeder U, Woitalla D, Buttner T, et al. Facial expression recognition in people with medicated and unmedicated Parkinson's disease. *Neuropsychologia*. (2003) 41:1047– 57. doi: 10.1016/S0028-3932(02)00295-6
- 120. Boeve BF, Silber MH, Saper CB, Ferman TJ, Dickson DW, Parisi JE, et al. Pathophysiology of REM sleep behaviour disorder and relevance to neurodegenerative disease. *Brain.* (2007) 130:2770–88. doi: 10.1093/brain/awm056
- Braak H, Del Tredici K, Rub U, de Vos RA, Jansen Steur EN, Braak E. Staging of brain pathology related to sporadic Parkinson's disease. *Neurobiol Aging*. (2003) 24:197–211. doi: 10.1016/S0197-4580(02)00065-9
- 122. Muller ML, Bohnen NI. Cholinergic dysfunction in Parkinson's disease. *Curr Neurol Neurosci Rep.* (2013) 13:377. doi: 10.1007/s11910-013-0377-9
- 123. Yarnall A, Rochester L, Burn DJ. The interplay of cholinergic function, attention, and falls in Parkinson's disease. *Mov Disord.* (2011) 26:2496– 503. doi: 10.1002/mds.23932
- 124. Perry EK, Curtis M, Dick DJ, Candy JM, Atack JR, Bloxham CA, et al. Cholinergic correlates of cognitive impairment in Parkinson's disease: comparisons with Alzheimer's disease. J Neurol Neurosurg Psychiatry. (1985) 48:413–21. doi: 10.1136/jnnp.48.5.413
- 125. Tiraboschi P, Hansen LA, Alford M, Sabbagh MN, Schoos B, Masliah E, et al. Cholinergic dysfunction in diseases with Lewy bodies. *Neurology*. (2000) 54:407–11. doi: 10.1212/WNL.54.2.407
- 126. Bohnen NI, Kaufer DI, Ivanco LS, Lopresti B, Koeppe RA, Davis JG, et al. Cortical cholinergic function is more severely affected in parkinsonian dementia than in Alzheimer disease: an *in vivo* positron emission tomographic study. *Arch Neurol.* (2003) 60:1745–8. doi: 10.1001/archneur.60.12.1745
- 127. Hall H, Reyes S, Landeck N, Bye C, Leanza G, Double K, et al. Hippocampal Lewy pathology and cholinergic dysfunction are associated with dementia in Parkinson's disease. *Brain*. (2014) 137:2493–508. doi: 10.1093/brain/awu193
- 128. Hirsch EC, Graybiel AM, Duyckaerts C, Javoy-Agid F. Neuronal loss in the pedunculopontine tegmental nucleus in Parkinson disease and in progressive supranuclear palsy. *Proc Natl Acad Sci USA*. (1987) 84:5976– 80. doi: 10.1073/pnas.84.16.5976
- 129. Zweig RM, Jankel WR, Hedreen JC, Mayeux R, Price DL. The pedunculopontine nucleus in Parkinson's disease. Ann Neurol. (1989) 26:41– 6. doi: 10.1002/ana.410260106
- 130. Scarnati E, Florio T. The pedunculopontine nucleus and related structures. functional organization. *Adv Neurol.* (1997) 74:97–110.
- 131. Gratwicke J, Kahan J, Zrinzo L, Hariz M, Limousin P, Foltynie T, et al. The nucleus basalis of Meynert: a new target for deep brain stimulation in dementia? *Neurosci Biobehav Rev.* (2013) 37:2676-88. doi: 10.1016/j.neubiorev.2013.09.003
- 132. Lu YT, Chang WN, Chang CC, Lu CH, Chen NC, Huang CW, et al. Insula volume and salience network are associated with memory decline in Parkinson disease: complementary analyses of voxelbased morphometry versus volume of interest. *Parkinsons Dis.* (2016) 2016:2939528. doi: 10.1155/2016/2939528
- 133. Ray NJ, Bradburn S, Murgatroyd C, Toseeb U, Mir P, Kountouriotis GK, et al. *In vivo* cholinergic basal forebrain atrophy predicts cognitive decline in *de novo* Parkinson's disease. *Brain.* (2018) 141:165–76. doi: 10.1093/brain/awx310
- 134. Schulz J, Pagano G, Fernandez Bonfante JA, Wilson H, Politis M. Nucleus basalis of Meynert degeneration precedes and predicts cognitive impairment in Parkinson's disease. *Brain.* (2018) 141:1501–16. doi: 10.1093/brain/ awy072
- 135. Zhang C, Wu C, Zhang H, Dou W, Li W, Sami MU, et al. Disrupted resting-state functional connectivity of the nucleus basalis of meynert in Parkinson's disease with mild cognitive impairment. *Neuroscience*. (2020) 442:228–36. doi: 10.1016/j.neuroscience.2020.07.008

- 136. Poewe W, Wolters E, Emre M, Onofrj M, Hsu C, Tekin S, et al. Longterm benefits of rivastigmine in dementia associated with Parkinson's disease: an active treatment extension study. *Mov Disord.* (2006) 21:456– 61. doi: 10.1002/mds.20700
- 137. Di Giacopo R, Fasano A, Quaranta D, Della Marca G, Bove F, Bentivoglio AR. Rivastigmine as alternative treatment for refractory REM behavior disorder in Parkinson's disease. *Mov Disord.* (2012) 27:559– 61. doi: 10.1002/mds.24909
- 138. Arnaldi D, Morbelli S, Brugnolo A, Girtler N, Picco A, Ferrara M, et al. Functional neuroimaging and clinical features of drug naive patients with *de novo* Parkinson's disease and probable RBD. *Parkinsonism Relat Disord.* (2016) 29:47–53. doi: 10.1016/j.parkreldis.2016.05.031
- 139. Cao R, Chen X, Xie C, Hu P, Wang K. Serial dopamine transporter imaging of nigrostriatal function in parkinson's disease with probable REM sleep behavior disorder. *Front Neurosci.* (2020) 14:349. doi: 10.3389/fnins.2020.00349
- 140. Vriend C, van Balkom TD, van Druningen C, Klein M, van der Werf YD, Berendse HW, et al. Processing speed is related to striatal dopamine transporter availability in Parkinson's disease. *Neuroimage Clin.* (2020) 26:102257. doi: 10.1016/j.nicl.2020.102257
- 141. Li MG, He JF, Liu XY, Wang ZF, Lou X, Ma L. Structural and functional thalamic changes in Parkinson's disease with mild cognitive impairment. J Magn Reson Imaging. (2020) 52:1207–15. doi: 10.1002/jmri.27195
- 142. Hu Y, Yu SY, Zuo LJ, Piao YS, Cao CJ, Wang F, et al. Investigation on abnormal iron metabolism and related inflammation in parkinson disease patients with probable RBD. *PLoS ONE.* (2015) 10:e0138997. doi: 10.1371/journal.pone.0138997
- 143. Magistrelli L, Storelli E, Rasini E, Contaldi E, Comi C, Cosentino M, et al. Relationship between circulating CD4+ T lymphocytes and cognitive impairment in patients with Parkinson's disease. *Brain Behav Immun.* (2020) 89:668–74. doi: 10.1016/j.bbi.2020.07.005
- 144. Huang C, Mattis P, Perrine K, Brown N, Dhawan V, Eidelberg D. Metabolic abnormalities associated with mild cognitive impairment in Parkinson disease. *Neurology.* (2008) 70:1470– 7. doi: 10.1212/01.wnl.0000304050.05332.9c
- 145. Hosokai Y, Nishio Y, Hirayama K, Takeda A, Ishioka T, Sawada Y, et al. Distinct patterns of regional cerebral glucose metabolism in Parkinson's disease with and without mild cognitive impairment. *Mov Disord.* (2009) 24:854–62. doi: 10.1002/mds.22444
- Lyoo CH, Jeong Y, Ryu YH, Rinne JO, Lee MS. Cerebral glucose metabolism of Parkinson's disease patients with mild cognitive impairment. *Eur Neurol.* (2010) 64:65–73. doi: 10.1159/000315036
- 147. Garcia-Garcia D, Clavero P, Gasca Salas C, Lamet I, Arbizu J, Gonzalez-Redondo R, et al. Posterior parietooccipital hypometabolism may differentiate mild cognitive impairment from dementia in Parkinson's disease. *Eur J Nucl Med Mol Imaging.* (2012) 39:1767–77. doi: 10.1007/s00259-012-2198-5
- 148. Santangelo G, Trojano L, Vitale C, Ianniciello M, Amboni M, Grossi D, et al. A neuropsychological longitudinal study in Parkinson's patients with and without hallucinations. *Mov Disord.* (2007) 22:2418–25. doi: 10.1002/mds.21746
- 149. Ramirez-Ruiz B, Junque C, Marti MJ, Valldeoriola F, Tolosa E. Cognitive changes in Parkinson's disease patients with visual hallucinations. *Dement Geriatr Cogn Disord.* (2007) 23:281–8. doi: 10.1159/000100850
- 150. Anang JB, Gagnon JF, Bertrand JA, Romenets SR, Latreille V, Panisset M, et al. Predictors of dementia in Parkinson disease: a prospective cohort study. *Neurology*. (2014) 83:1253–60. doi: 10.1212/WNL.00000000000842
- 151. Aarsland D, Andersen K, Larsen JP, Perry R, Wentzel-Larsen T, Lolk A, et al. The rate of cognitive decline in Parkinson disease. *Arch Neurol.* (2004) 61:1906–11. doi: 10.1001/archneur.61.12.1906
- 152. Creese B, Albertyn CP, Dworkin S, Thomas RS, Wan YM, Ballard C. Executive function but not episodic memory decline associated with visual hallucinations in Parkinson's disease. J Neuropsychol. (2020) 14:85– 97. doi: 10.1111/jnp.12169

- 153. Gryc W, Roberts KA, Zabetian CP, Weintraub D, Trojanowski JQ, Quinn JF, et al. Hallucinations and development of dementia in Parkinson's disease. J Parkinsons Dis. (2020) doi: 10.3233/JPD-202116. [Epub ahead of print].
- 154. Zhu K, van Hilten JJ, Marinus J. Predictors of dementia in Parkinson's disease; findings from a 5-year prospective study using the SCOPA-COG. *Parkinsonism Relat Disord.* (2014) 20:980–5. doi: 10.1016/j.parkreldis.2014.06.006
- 155. Starkstein SE, Mayberg HS, Leiguarda R, Preziosi TJ, Robinson RG. A prospective longitudinal study of depression, cognitive decline, and physical impairments in patients with Parkinson's disease. J Neurol Neurosurg Psychiatry. (1992) 55:377–82. doi: 10.1136/jnnp.55.5.377
- 156. Ng A, Chander RJ, Tan LC, Kandiah N. Influence of depression in mild Parkinson's disease on longitudinal motor and cognitive function. *Parkinsonism Relat Disord.* (2015) 21:1056–60. doi: 10.1016/j.parkreldis.2015.06.014
- 157. Park JH, Lee SH, Kim Y, Park SW, Byeon GH, Jang JW, et al. Depressive symptoms are associated with worse cognitive prognosis in patients with newly diagnosed idiopathic Parkinson disease. *Psychogeriatrics*. (2020). doi: 10.1111/psyg.12601. [Epub ahead of print].
- Khoo TK, Yarnall AJ, Duncan GW, Coleman S, O'Brien JT, Brooks DJ, et al. The spectrum of nonmotor symptoms in early Parkinson disease. *Neurology*. (2013) 80:276–81. doi: 10.1212/WNL.0b013e31827deb74
- 159. Bugalho P, da Silva JA, Neto B. Clinical features associated with REM sleep behavior disorder symptoms in the early stages of Parkinson's disease. J Neurol. (2011) 258:50–5. doi: 10.1007/s00415-010-5679-0
- Oudiette D, de Cock VC, Lavault S, Leu S, Vidailhet M, Arnulf I. Nonviolent elaborate behaviors may also occur in REM sleep behavior disorder. *Neurology.* (2009) 72:551–7. doi: 10.1212/01.wnl.0000341936.78678.3a
- 161. Ferri R, Cosentino FI, Pizza F, Arico D, Plazzi G. The timing between REM sleep behavior disorder and Parkinson's disease. *Sleep Breath.* (2014) 18:319–23. doi: 10.1007/s11325-013-0887-3
- 162. Emre M, Ford PJ, Bilgic B, Uc EY. Cognitive impairment and dementia in Parkinson's disease: practical issues and management. *Mov Disord.* (2014) 29:663–72. doi: 10.1002/mds.25870
- 163. Seppi K, Weintraub D, Coelho M, Perez-Lloret S, Fox SH, Katzenschlager R, et al. The movement disorder society evidence-based medicine review update: treatments for the non-motor symptoms of Parkinson's disease. *Mov Disord.* (2011) 26(Suppl. 3):S42–80. doi: 10.1002/mds.23884
- 164. Emre M, Aarsland D, Albanese A, Byrne EJ, Deuschl G, De Deyn PP, et al. Rivastigmine for dementia associated with Parkinson's disease. N Engl J Med. (2004) 351:2509–18. doi: 10.1056/NEJMoa041470
- Hindle JV, Petrelli A, Clare L, Kalbe E. Nonpharmacological enhancement of cognitive function in Parkinson's disease: a systematic review. *Mov Disord.* (2013) 28:1034–49. doi: 10.1002/mds.25377
- 166. Leung IH, Walton CC, Hallock H, Lewis SJ, Valenzuela M, Lampit A. Cognitive training in Parkinson disease: a systematic review and meta-analysis. *Neurology*. (2015) 85:1843– 51. doi: 10.1212/WNL.00000000002145
- 167. Lawrence BJ, Gasson N, Bucks RS, Troeung L, Loftus AM. Cognitive training and noninvasive brain stimulation for cognition in Parkinson's disease: a meta-analysis. *Neurorehabil Neural Repair*. (2017) 31:597– 608. doi: 10.1177/1545968317712468

Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2020 Mao, Huang, Yu, Chen, Huang, Tang and Guo. This is an openaccess article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.