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Background: Rapid eye movement sleep behavior disorder (RBD) is thought to be a

prodromal symptom of Parkinson’s disease (PD). RBD is also thought to be involved in

cognitive decline and dementia in PD. In PD, although the relationship between RBD

and cognitive dysfunctions was confirmed by considerable studies, whether RBD was

associated with distinct types of cognitive defects is worth of study.

Objectives: This systematic review summarizes the evidence relating to cognitive

dysfunction in PD patients with RBD (PD-RBD) and those without and explores their

specificity to cognitive domains.

Methods: A meta-analysis using a random-effects model was performed for 16

different cognitive domains, including global cognitive function, memory (long-term

verbal recall, long-term verbal recognition, long-term visual recall, short-term spatial

recall, and short-term verbal recall), executive function (general, fluid reasoning,

generativity, shifting, inhibition, and updating), language, processing speed/complex

attention/working memory, visuospatial/constructional ability, and psychomotor ability.

The cognitive difference between the groups of patients was measured as a standardized

mean difference (SMD, Cohen’s d). PD-RBD patients were classified into Confirmed-RBD

(definite diagnosis with polysomnography, PSG) and Probable-RBD (without PSG

re-confirmation). In some domains, RBD patients could not be analyzed separately due to

the exiguity of primary studies; this analysis refers to such RBD patients as “Mixed-RBD.”

Results: Thirty-nine studies with 6,695 PD subjects were finally included.

Confirmed-RBD patients showed worse performance than those without in global

cognitive function, long-term verbal recall, long-term verbal recognition, generativity,

inhibition, shifting, language, and visuospatial/constructional ability; Probable-RBD, in

global cognitive function and shifting; and Mixed-RBD, in long-term visual recall,
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short-term spatial recall, general executive function, and processing speed/complex

attention/working memory.

Conclusion: This meta-analysis strongly suggests a relationship between RBD,

Confirmed-RBD in particular, and cognitive dysfunctions in PD patients. Early and

routine screening by sensitive and targeted cognitive tasks is necessary for all PD-

RBD patients because it may offer the therapeutic time window before they evolve to

irreversible dementia.

Keywords: rapid eyemovement sleep behavior disorder (RBD), parkinson’s disease (PD), dementia, meta-analysis,

cognitive dysfunction

INTRODUCTION

Rapid eye movement sleep behavior disorder (RBD) is
characterized by loss of the normal skeletal muscle atonia
during rapid eye movement (REM) sleep, such that patients
appear to act out the content of their dreams (1). Based on
the third edition of the International Classification of Sleep
Disorders (ICSD), the criteria for RBD were: (1) repeated
episodes of behavior or vocalization that are either recorded by
polysomnography (PSG) to arise from REM or are presumed
to arise from REM based on reports of dream enactment and
(2) evidence of REM sleep without atonia (RWA) on PSG
(2). RBD has been linked to neurodegenerative pathology like
Parkinson’s disease (PD) (3). RBD was also identified as a key
prodromal symptom of PD by the Movement Disorder Society
(4). Approximately 75% of individuals who suffer from RBD
progress to PD within 10 years (5, 6). Thus, the majority of
patients manifesting RBD in sleep clinics are actually in the
prodromal stages of PD.

Considerable studies suggested that RBD could be a key
marker of a special subset of PD characterized by a non-
tremor-dominant motor subtype or a kinetic-rigid motor
phenotype (7–9) and symmetric disease (10, 11). RBD may also
precede severe non-motor symptoms like increased autonomic
dysfunction (12–15) and visual hallucinations (16–20). Of great
interest, a concept— “RBD-PD phenotype” —was advanced.
Poorer performance in memory, executive function (EF), and
visuospatial abilities and a significantly greater risk of dementia
were observed in PD patients who carry GBA gene mutations
(21–23). GBA mutation carriers have a higher risk of developing
probable RBD among PD patients (24). A study consisting 76 PD
patients who were followed for an average of 4.5 years uncovered
that the rate of deterioration was faster in the patients with RBD,
mild cognitive impairment (MCI), and orthostatic hypotension
at baseline (25). The similar conclusion that RBD is one of the
most crucial prognosis determinants of PD was demonstrated by
another follow-up study involving 421 PD patients for 32.8± 9.3
months (26). But two studies quarreled with this concept because
neither significant gait disturbances and postural impairment nor
specific worsening over time was observed in PD patients with
RBD (27, 28).

Beyond these non-motor symptoms just mentioned, RBD
usually predates, either by years or decades, the cognitive
impairment or the diagnosis of MCI, which are the transitional

states between normal aging and dementia in patients with PD
(29, 30). Moreover, RBD increased the risk of cognitive decline
and even dementia in PD patients (31–35). Considerable work
reported an association between RBD and cognitive dysfunction
and even dementia in PD [reviewed in (36)], but few suggested no
significant declines in some targeted cognitive domains (37, 38)
in PD patients with RBD.

The representative lineup includes RBD, “mild parkinsonian
signs,” typical features of PD, PD with MCI, and a full dementia
syndrome (PDD) (30), although not all of the patients follow
this course of the disease. The endpoint of cognitive decline,
PDD, is miserable and irreversible. These symptoms tend to
appear in time intervals from months to years (39–41). The
high conversion rate and the long latency of RBD to cognitive
dysfunctions in PD patients make this study necessary and
meaningful: cognitive dysfunction patients who suffer from both
PD and RBD may be given opportunities for prevention and
interventions before they progress to dementia.

Thus, this meta-analytic review was designed to shed light on
the relationship between RBD and cognition in PD patients, as
well as which cognitive domains are impaired. We also examined
the influence of demographic and clinical confounders, like
clinical stage, on cognitive performances in PD individuals.

MATERIALS AND METHODS

Search Strategy
Consistent with PRISMA’s suggestions (42), a systematic
literature search was performed by two independent reviewers
(JM and JY) up to 04 April 2020 using PsycInfo (PROQUEST),
PubMed, Cochrane, and Embase. Searches were constructed
using subtext headings and key words based on the following
terms: RBD, cognitive impairment, and PD. For a detailed
statement of the search, see Supplementary Table 1. The search
was supplemented by hand searches of the reference lists cited in
the original articles and review papers.

Study Eligibility Criteria
Inclusion Criteria
This systematic review included studies investigating the effects
of RBD in patients with PD on cognitive functions, published
in peer-reviewed journals in English. Participants needed to be
adults diagnosed with idiopathic PD based on any established
international clinical criteria (43–47). RBD should ideally be

Frontiers in Neurology | www.frontiersin.org 2 November 2020 | Volume 11 | Article 577874

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


Mao et al. RBD and Cognition in PD?

diagnosed with PSG, while validated questionnaires or targeted
interviews were also acceptable. The comparison had to be
performed between parkinsonians with and without RBD (PD-
RBD and PD-NRBD, respectively). Moreover, only studies
assessing cognitive domains through standardized tests were
included and the results had to be reported as the mean and
standard deviation (SD) or the corresponding original data to
allow the calculation of these values. When more than one study
was published by the same authors, we checked the independence
of samples or used the study with the largest sample size.

Exclusion Criteria
Proceedings, commentaries, letters to the editor, theses, studies
performed on animals, and single case studies were all
unacceptable. Studies that recruited atypical PD or parkinsonian
syndromes were excluded. Cognition measured by subjective
report or ratings-based methods or did not report the
performance data for each cognitive task were discarded. Studies
that concentrated on cognitive functions without linking them
directly to RBD in PD or reported a comparison between PD
patients and healthy participants were also unacceptable.

Outcomes
For each study, the primary outcomes were cognitive test
scores. Our main objective was to meta-analyze these scores
to determine whether RBD in PD was associated with distinct
types of cognitive defects. We categorized the cognitive tests
following the approach described by Litvan et al. (48), Wallace
and Bucks (49), and Olaithe and Bucks (50) or the indication
provided in the primary studies. Subsequently, seven major
cognitive categories were analyzed to organize the findings
of this meta-analysis: global cognitive function, memory, EF,
language, processing speed/complex attention/working memory,
visuospatial/constructional ability, and psychomotor ability.
Memory was further divided into long-term verbal recall, long-
term verbal recognition, long-term visual recall, short-term
spatial recall, and short-term verbal recall. EF was subdivided
into the following: general EF, fluid reasoning, generativity,
inhibition, shifting, and updating. Therefore, in total, 16
cognitive domains were compartmentalized, and the following
analyses were carried out, respectively, in these segmentations.
With several previous meta-analyses available for consultation
(51–53) or the instructions of the included tests, we categorized
the cognitive tests and listed them in Table 1.

Cognitive domains assessed by only one study could not
be included. When a cognitive function was explored by more
than one test in a primary study, two different strategies were
adopted by previous meta-analyses: some extracted data from
the most sensitive and relevant instrument (52, 53), while some
aggregated the results into a single effect size (ES) (83–85). These
two strategies are both valid and have their own advantages;
the first solution diminishes the risk of type II errors, while the
second strategy decreases bias of a certain test. We decided to
follow the first solution. As for the criteria for the “most sensitive
and relevant instrument,” the sensitivity and relevance in the PD
population of each test were checked on the basis of already-
published research first, and preference was given to the highest

sensitivity and/or relevant test if more than one test assessing
the same cognitive domain were adopted in a primary study. If
the sensitivity and/or relevance was not available, the most used
test was analyzed in this domain. Thus, sensitivity, relevance, and
popularity, in this order, are what we considered in choosing
assessable tests. This criterion was consistently used across all
domains in this meta-analysis.

Data Extraction and Coding
Data extracted and coded from the primary studies included:
(1) characters of the publication (e.g., authors and year of
publication); (2) diagnoses of PD and RBD; (3) characteristics of
the sample [e.g., sample size, gender, age at evaluation, disease
duration, education, severity of motor symptoms evaluated
by the Unified Parkinson’s Disease Rating Scale (UPDRS-
III), stage of PD evaluated by Hoehn and Yahr (H&Y),
and the levodopa equivalent daily dose (LEDD)]; and (4)
cognitive tests.

Statistical Analysis
All statistical analyses were performed using RevMan 5.3
(The Nordic Cochrane Centre, The Cochrane Collaboration,
Copenhagen, Denmark) and Stata/SE version 15 (StataCorp,
College Station, TX, USA).

SMD was used as the outcome measure because, although the
included studies all assessed the same cognitive function within
one meta-analysis, different cognitive tests were employed. ESs
were categorized using Cohen’s d as 0.2, indicating a small
effect, 0.5, a medium, and 0.8, large. When calculating ESs,
the PD-NRBD scores were always subtracted from the PD-
RBD scores. Cognitive tests broadly fit into two categories:
one where higher scores indicate better performance, namely
milder damage, and the other where higher scores conversely
represent greater impairment. A negative ES in the former
tests indicates that the PD-RBD participants were more
impaired than the PD-NRBD participants, as opposed to
the latter cases. Random-effects models were applied to all
cognitive domains.

The methodological quality of the enrolled cohort and case–
control studies was evaluated with the Newcastle–Ottawa Scale
(86) and the cross-sectional studies with themodified Newcastle–
Ottawa Scale (87). Reports that scored≥6 points were considered
to be of good quality. The quality assessment was performed
independently by two authors (JM and JY) and disagreements
were resolved by discussion.

Prior defined subgroup analyses were performed based
on whether the diagnosis of RBD was confirmed by PSG.
Hence, studies were placed in the “Confirmed-RBD” subgroup
if the RBD patients met the ICSD criteria where PSG is
mandatory. Conversely, studies were placed in the “Probable-
RBD” subgroup if the diagnosis was made by questionnaires
and/or interviews. In some domains, RBD patients could not
be analyzed separately due to the exiguity of the primary
studies in which they were enrolled, and they were referred
to as “Mixed-RBD.” Concretely, in a certain domain, only one
primary study used PSG to confirm RBD; therefore, patients
from this study were Confirmed-RBD patients. Meanwhile,
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TABLE 1 | Cognitive domains and neuropsychological tests included in the primary studies.

Categories Tests Included studies

Global cognitive function MMSE↑ Arnaldi et al. (54)a, Duarte Folle et al. (55)a, Ford et al. (56)a, Gagnon et al. (57)a,

Gaudreault et al. (58)a, Gjerstad et al. (59)a, Huang et al. (60), Jozwiak et al. (5)a,

Kamble et al. (61), Kim et al. (62)a, Kim et al. (63)a, Lavault et al. (28)a, Lee et al.

(8)a, Lim et al. (64)a, Mahale et al. (65)a, Marques et al. (66)a, Naismith et al.

(34)a, Nardone et al. (67)a, Nomura et al. (15)a, Nomura et al. (68)a, Nomura et al.

(69), Nomura et al. (70)a, Plomhause et al. (71), Plomhause et al. (72), Postuma

et al. (73), Rolinski et al. (33), Sinforiani et al. (19)a, Sixel-Doring et al. (16)a,

Vendette et al. (35)a, Zhang et al. (74)

MOCA↑ Ba et al. (75)a, Boucetta et al. (76)a, Chahine et al. (31)a, Huang et al. (60)a,

Kamble et al. (61)a, Kotagal et al. (77)a, Liu et al. (78)a, Nomura et al. (69)a,

Pagano et al. (79)a, Postuma et al. (73)a, Rahmani et al. (80)a, Rolinski et al.

(33)a, Zhang et al. (74)a

STMS↑ Meral et al. (81)a

MDRS↑ Plomhause et al. (72)a

Long-term verbal recall RAVLT, immediate recall↑ Gagnon et al. (82), Jozwiak et al. (5), Vendette et al. (35), Zhang et al. (74)

RAVLT, delayed recall↑ Gagnon et al. (82)a, Jozwiak et al. (5)a, Vendette et al. (35)a, Zhang et al. (74)a

RAVLT, list B↑ Gagnon et al. (82), Jozwiak et al. (5)

RAVLT, sum of trials 1–5↑ Gagnon et al. (82), Jozwiak et al. (5), Vendette et al. (35)

HVLT, immediate recall↑ Pagano et al. (79)a

HVLT, delayed recall↑ Chahine et al. (31)a

HVLT, total recall↑ Ba et al. (75)a

SRT, immediate recall↑ Kamble et al. (61)

SRT, delayed recall↑ Kamble et al. (61)a

SBST, total recall↑ Meral et al. (81)

SBST, delayed recall↑ Meral et al. (81)a

Word list learning and recall test↑ Marques et al. (66)a, Sinforiani et al. (19)a

Long-term verbal recognition RAVLT, recognition↑ Gagnon et al. (82)a, Jozwiak et al. (5)a, Vendette et al. (35)a, Zhang et al. (74)a

HVLT, recognition↑ Ba et al. (75)a, Pagano et al. (79)a

HVLT-R, recognition↑ Chahine et al. (31)a

SBST, recognition↑ Meral et al. (81)a

Long-term visual recall Wechsler memory scale↑ Meral et al. (81)a, Naismith et al. (34)a

ROCF, immediate recall↑ Jozwiak et al. (5)

ROCF, delayed recall↑ Jozwiak et al. (5)a, Zhang et al. (74)a

Short-term verbal recall Digit span—forward↑ Kamble et al. (61)a, Marques et al. (66)a, Sinforiani et al. (19)a, Zhang et al. (74)a

Short-term spatial recall CBTT↑ Kamble et al. (61)a, Sinforiani et al. (19)a

General executive function FAB↑ Kamble et al. (61)a, Kim et al. (62)a, Lavault et al. (28)a, Sinforiani et al. (19)a

Fluid reasoning Raven’s progressive matrices↑ Sinforiani et al. (19)

Generativity Verbal fluency—semantic↑ Ba et al. (75)a, Boucetta et al. (76)a, Chahine et al. (31)a, Gagnon et al. (82)a,

Jozwiak et al. (5)a, Kamble et al. (61)a, Marques et al. (66)a, Meral et al. (81)a,

Pagano et al. (79)a, Rolinski et al. (33)a, Vendette et al. (35)a, Zhang et al. (74)a

Verbal fluency—letter↑ Chahine et al. (31), Gagnon et al. (82), Jozwiak et al. (5), Marques et al. (66),

Rolinski et al. (33), Vendette et al. (35)

Animal naming test↑ Kamble et al. (61)

Inhibition Stroop task↓ Gagnon et al. (82)a, Jozwiak et al. (5)a, Kamble et al. (61)a, Marques et al. (66)a,

Meral et al. (81)a, Vendette et al. (35)a, Zhang et al. (74)a

Shifting TMT: B↓ Gagnon et al. (82)a, Jozwiak et al. (5)a, Vendette et al. (35)a, Zhang et al. (74)a

TMT: B-A↓ Jozwiak et al. (5)

WCST: Perseveration↓ Meral et al. (81)a, Sinforiani et al. (19)a

Updating Digit span—backwards↑ Gagnon et al. (82)a, Jozwiak et al. (5)a, Kamble et al. (61)a, Marques et al. (66)a,

Naismith et al. (34)a, Zhang et al. (74)a

Language Boston naming test↑ Jozwiak et al. (5)a

Lexis denomination task↑ Plomhause et al. (72)a

Processing speed/Complex attention/Working

memory

LNS↑ Ba et al. (75)a, Chahine et al. (31)a, Marques et al. (66)a, Pagano et al. (79)a

(Continued)
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TABLE 1 | Continued

Categories Tests Included studies

TMT: A↓ Jozwiak et al. (5)a, Vendette et al. (35)a, Zhang et al. (74)a

Visuospatial/Constructional ability BJLOT↑ Ba et al. (75)a, Boucetta et al. (76)a, Chahine et al. (31)a, Meral et al. (81)a,

Pagano et al. (79)a

Clock drawing test↑ Meral et al. (81), Zhang et al. (74)

ROCF, copy↑ Gagnon et al. (82)a, Jozwiak et al. (5)a, Vendette et al. (35)a, Zhang et al. (74)a

Bells test↓ Gagnon et al. (82), Vendette et al. (35)

Block design↑ Gagnon et al. (82), Vendette et al. (35)

BFRT↑ Meral et al. (81)

Psychomotor ability Symbol digit modalities↑ Ba et al. (75)a, Boucetta et al. (76)a, Chahine et al. (31)a, Marques et al. (66)a,

Pagano et al. (79)a, Zhang et al. (74)a

↑ Better performance with higher scores; ↓ Worse performance with higher scores.

MMSE, Mini-Mental State Examination; MOCA, Montreal Cognitive Assessment; STMS, Short Test of Mental Status; MDRS, Mattis Dementia Rating Scale; RAVLT, Rey Auditory–Verbal

Learning Test; HVLT, Hopkins Verbal Learning Test; SRT, story recall test; SBST, sözel bellek surecleri testi; HVLT-R, Hopkins Verbal Learning Test—Revised; ROCF, Rey–Osterrieth

complex figure test; CBTT, Corsi’s block tapping test; FAB, frontal assessment battery; TMT: B, trail making test: part B; TMT: B-A, trail making test: part B–part A; WCST, Wisconsin

Card Sorting Test; LNS, letter–number sequencing; TMT: A, trail making test: part A; BJLOT, Benton judgment of line orientation test; BFRT, Benton’s face recognition test.
aTest is analyzed in a meta-analysis.

the patients included in the other studies were Probable-RBD
patients not confirmed by PSG. Since one study could not be
meta-analyzed, we combined and analyzed the results of all RBD
patients, for both Confirmed-RBD and Probable-RBD, denoted
as “Mixed-RBD.”

Another subgroup analysis was performed considering the
possible differential effects of clonazepam, the major treatment
for RBD, which may deteriorate cognitive dysfunctions (88–
90). Therefore, studies were placed in either the “Mediated
by Clonazepam” subgroup if medicated patients were
recruited or “Unmediated by Clonazepam” subgroup when
mediated patients were excluded or the dose they were taking
was negligible.

Meta-regressions were performed to investigate whether
the outcomes were affected by other characteristics, including
demographic characteristics (age at evaluation, gender, and
education), severity of PD (PD duration, UPDRS-III, H&Y stage,
and LEDD), cognitive tests, and tools used to assess RBD. These
covariates were meta-regressed individually in a random-effects
meta-regression model. According to Borenstein et al. (91),
a meta-regression could be generally conducted for outcomes
where there are 10 samples at a minimum to one covariate.
But given that the majority of domains included <10 reports,
with reference to Taylor et al. (92), we liberalized the restriction
to five.

The heterogeneity test was quantified using the I2 statistic.
The I2 was set as low (25%), moderate (50%), or high (75%).
Sensitivity analysis was conducted for meta-analysis where I2 ≥
50% by omitting the enrolled studies, one at a time, to determine
the effect of any individual study on the synthesized ES and
between-study heterogeneity. Finally, publication bias analysis
was performed with the funnel plot of which the asymmetry
was further statistically confirmed by the Egger’s regression
method and the trim-and-fill procedure in the meta-analyses that
included ≥10 studies.

All statistical tests were two-tailed, and P < 0.05 was
considered significant.

RESULTS

Study Selection and Risk of Bias
A total of 482 papers were produced according to our search
strategy, and 15 additional records were identified from the
references cited in the original articles and review papers.
Following exclusion of duplicates and unrelated studies based on
title and abstract screening, we retrieved 139 papers for full-text
evaluation. The PRISMA flow diagram (Figure 1) summarizes
the selection process. In total, 39 studies were enrolled after
rigorous screening (5, 8, 15, 16, 19, 28, 31, 33–35, 54–82). A
critical appraisal assessment found that all studies exhibited
“good quality,” with the score ranging from 6 to 9, and no studies
were excluded due to quality issues (Supplementary Tables 2, 3).

Characteristics of the Included Studies
The characteristics of the included studies are summarized in
Table 2. Across these 39 studies, 6,695 individuals with PD were
investigated, with the mean age ranging from 57.3 to 76.5 years.
The mean UPDRS-III scores were provided in 30 studies, while
either the mean or median H&Y stage values were reported
in 25. Two studies (63, 66) did not provide either measure of
motor symptoms or disease stage for the entire sample. PSG
was used in 18 studies alone or combined with the clinical
interview (5, 15, 16, 35, 54, 57, 58, 60, 61, 63, 66–68, 70–73,
82). The remainder adopted sleep questionnaires and/or clinical
interviews to identify Probable-RBD. Ten studies (16, 33, 57–
59, 61, 69, 70, 78, 82) particularly pointed out the utilization
of clonazepam.

Some reports (5, 35, 54, 58, 64, 66, 72, 74, 76, 82) also recruited
idiopathic RBD patients and/or health controls in addition to
our targeted individuals and did comparisons between any two,
but we only extracted the statistics from PD-RBD and PD-NRBD
patients. Moreover, PD-RBD patients were further classified into
subgroups in four studies: clinical or subclinical PD-RBD (15, 68)
and PD-RBD with and without visual hallucinations (VH) (19,
81). In the former two studies (15, 68), patients with both RWA
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FIGURE 1 | Search procedure and results according to PRISMA guidelines. RBD, rapid eye movement sleep behavior disorder; PD, Parkinson’s disease.

on PSG and RBD symptoms were classified as the “RBD group”;
patients who only manifested RWA without RBD symptoms
were categorized as the “Subclinical RBD group.” Given that the
rest of the reports did not recruit or subgroup the subclinical
RBD patients, we only extracted data from the “RBD group” and
the “NRBD group” and dropped the data from the “Subclinical
RBD group.” The latter two studies (19, 81) examined VH besides
RBD. Because VH was not the outcome of interest of this review,
the groups were collapsed into RBD+ and RBD–.

Meta-Analytic Results
Global Cognitive Function
The meta-analysis included 17 “Confirmed-RBD” and 21
“Probable-RBD” studies. For the “Confirmed-RBD” subgroup,
PD-RBD patients had significantly lower scores than PD-
NRBD patients, with a medium ES (SMD = −0.41, 95%
CI = −0.66 to −0.16, P = 0.001); heterogeneity was moderate

(I2 = 74%). For the “Probable-RBD” subgroup, PD-RBD patients
also had significantly lower scores than did PD-NRBD patients,
with a medium ES (SMD = −0.24, 95% CI = −0.39 to
−0.10, P = 0.0007); heterogeneity was high (I2 = 78%). No
significant difference between these two subgroups was observed
(Table 3, Figure 2).

Global cognitive function is the only domain where the
second subgroup analysis could be performed. The meta-
analysis included six “Mediated by Clonazepam” studies and
three “Unmediated by Clonazepam” studies. For the “Mediated
by Clonazepam” subgroup, PD-RBD patients had significantly
lower scores than did PD-NRBD patients, with a medium
ES (SMD = −0.31, 95% CI = −0.51 to −0.12, P = 0.001);
heterogeneity was moderate (I2 = 56%). For the “Unmediated
by Clonazepam” group, the ES was not significant. No
significant difference between these two subgroups was observed
(Supplementary Figure 1).
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TABLE 2 | Characteristics of the primary studies included in the meta-analysis.

Study Diagnostic criteria

for PD

RBD assessment Participants

(n men)

Age (years) PD duration

(years)

Edu UPDRS-III H&Y stage LEDD (mg) Analyzed cognitive tests

CONFIRMED-RBD

Arnaldi et al. (54) Clinical criteria

Gelb et al. (43)

PSG + clinical

evaluation (ICSD-2)

24 RBD+ (16) 69.4 ± 6.0 NM 10.3 ± 4.6 14.1 ± 5.7 NM 0 MMSE

16 RBD– (8) 67.2 ± 7.2 NM 11.8 ± 5.0 9.5 ± 3.5 NM 0

Gagnon et al. (57) NM PSG 7 RBD+ (6) 68.4 ± 7.5 5.4 ± 6.0 NM NM 1.8 ± 0.8 313.6 ± 184.8 MMSE

8 RBD– (3) 61.0 ± 7.3 5.5 ± 2.9 NM NM 1.8 ± 0.7 277.3 ± 148.0

Gagnon et al. (82) PDSBB PSG (ICSD-2) 22 RBD+

18 RBD–

66.4 ± 8.5

65.2 ± 8.9

4.9 ± 3.5

5.8 ± 3.2

14.7 ± 3.9

15.4 ± 2.1

18.6 ± 7.7

17.3 ± 11.0

2.0 ± 0.8

2.1 ± 0.8

392.6 ± 363.6

353.6 ± 324.4

RAVLT, delayed recall; RAVLT,

recognition; SVF; DSB; TMT: B;

Stroop errors; ROCF, copy

Gaudreault et al. (58) PDSBB PSG (ICSD-2) 16 RBD+ (11) 64.7 ± 8.0 5.4 ± 3.5 14.8 ± 4.1 18.1 ± 8.6 2.1 ± 0.8 506.1 ± 383.3 MMSE

15 RBD– (9) 63.1 ± 6.0 5.4 ± 3.8 14.5 ± 3.3 20.7 ± 9.7 2.2 ± 0.8 398.4 ± 273.7

Huang et al. (60) PDSBB PSG + clinical

evaluation (ICSD-3)

92 RBD+ (68) 65.1 ± 5.8 3.0 (1.0–5.0)b 8.4 ± 3.5 24.3 ± 10.0 2.0 (1.5–2.5)b 300.0

(100.0–450.0)b
MOCA

82 RBD– (45) 64.0 ± 9.3 3.0 (1.0–5.0)b 8.8 ± 3.2 23.7 ± 11.5 2.0 (1.5–2.5)b 300.0

(100.0–450.0)b

Jozwiak et al. (5) NM PSG (ICSD-2) 53 RBD+ (40)

40 RBD– (21)

68.0 ± 8.4

63.2 ± 8.5

6.1 ± 4.5

6.1 ± 4.3

14.5 ± 3.9

15.1 ± 3.0

23.1 ± 9.5

20.3 ± 9.8

2.5 ± 0.8

2.2 ± 0.9

492.2 ± 402.3

383.7 ± 283.3

MMSE; vocabulary; RAVLT,

delayed recall; RAVLT,

recognition; ROCF, delayed

recall; SVF; TMT: B; Stroop

errors; TMT: A; ROCF, Copy

Kamble et al. (61) PDSBB MSQ + RBDSQ +

PSG

25 RBD+ 60.4 ± 8.2 6.8 ± 4.6 NM 27.4 ± 11.1 NM 535 ± 178.9 MOCA; story recall (delayed);

CBTT; FAB; DSB; SVF; DSF25 RBD– 57.3 ± 6.6 7.5 ± 3.5 NM 32.7 ± 8.22 NM 754 ± 349.7

Kim et al. (63) PDSBB PSG + RBDSQ-K 9 RBD+ (0) 70.1 ± 6.8 1.9 ± 1.5 2.4 ± 2.5 NM NM NM K-MMSE

22 RBD– (10) 67.7 ± 8.4 1.9 ± 1.4 8.5 ± 4.8 NM NM NM

Marques et al. (66) Clinical criteria

Gelb et al. (43)

PSG 10 RBD+ (3)

10 RBD– (3)

64 ± 2.9

59 ± 2.6

7.6 ± 1.7

8.1 ± 3.7

10 ± 0.6

10 ± 0.9

NM

NM

NM

NM

703 ± 157

435 ± 133

MMSE; Number of words

correctly encoded; DSB; LNS;

Stroop color-word; SVF; SDMT;

DSF

Nardone et al. (67) NM PSG + clinical

evaluation (ICSD-2)

10 RBD+ (8) 65.9 ± 6.5 5.0 ± 2.3 10.1 ± 3.8 17.5 ± 4.3 NM 578 ± 2.9 MMSE

13 RBD– (9) 63.7 ± 6.4 6.0 ± 2.8 10.5 ± 3.7 18.3 ± 4.3 NM 627 ± 341

Nomura et al. (15) NM PSG + interview 18 RBD+ (5) 71.3 ± 8.3 9.0 ± 4.7 NM NM 3.0 ± 0.9 408 ± 214 MMSE

23 RBD– (10) 71.5 ± 7.2 5.3 ± 4.8 NM NM 2.7 ± 0.9 347 ± 199

Nomura et al. (68) PDSBB PSG + interview 27 RBD+ (14) 76.5 ± 5.9 8.8 ± 5.2 NM NM 3.0 ± 0.8 455 ± 230 MMSE

32 RBD– (14) 74.5 ± 8.1 7.0 ± 8.2 NM NM 2.5 ± 0.6 233 ± 150

Nomura et al. (70) PDSBB PSG + clinical

evaluation (ICSD-3)

47 RBD+ (26) 73.1 ± 7.3 9.0 ± 6.0 NM NM 3.0 ± 0.8 437 ± 250 MMSE

89 RBD– (35) 71.1 ± 7.8 5.7 ± 6.8 NM NM 2.5 ± 0.7 250 ± 199

Plomhause et al. (71) Clinical criteria

Gibb and Lees (45)

PSG + clinical

evaluation (ICSD-2)

17 RBD+ (8) 65 ± 8 11 ± 4c NM 14 ± 8 NM 0 MDRS

40 RBD– (27) 60 ± 12 15 ± 12c NM 15 ± 6 NM 0

(Continued)
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TABLE 2 | Continued

Study Diagnostic criteria

for PD

RBD assessment Participants

(n men)

Age (years) PD duration

(years)

Edu UPDRS-III H&Y stage LEDD (mg) Analyzed cognitive tests

Plomhause et al. (72) Clinical criteria

Gelb et al. (43)

PSG + clinical

evaluation (ICSD-2)

15 RBD+ (14) 63.2 ± 7.7 7.0 ± 3.7 11.8 ± 3.9 18.8 ± 8.6 NM 435.1 ± 171.1 MDRS; Lexis denomination task

15 RBD– (11) 61.4 ± 7.5 4.1 ± 3.2 10.5 ± 1.7 19.8 ± 6.5 NM 633.0 ± 342.3

Postuma et al. (73) PDSBB PSG + clinical

evaluation (ICSD-2)

27 RBD+ (23) 70.5 ± 7.4 9.7 ± 4.3 NM 34.1 ± 16.5 NM NM MOCA

15 RBD– (11) 67.5 ± 10.5 9.5 ± 4.8 NM 26.2 ± 16.2 NM NM

Sixel-Doring et al. (16) PDSBB PSG 210 RBD+ (62) 69 ± 8 8.7 ± 4.4 5.2 ± 4.6 30 ± 14 3.2 ± 1.1 500.6 ± 375.3 MMSE

247 RBD– (64) 66 ± 11 7.3 ± 5.6 4.2 ± 3.6 28 ± 15 2.9 ± 0.9 422.9 ± 330.4

Vendette et al. (35) PDSBB PSG + clinical

evaluation (ICSD-2)

18 RBD+

16 RBD–

65.61 ± 7.73

65.13 ± 7.69

5.2 ± 2.3

6.0 ± 3.2

15.0 ± 3.7

15.8 ± 1.9

17.3 ± 7.71

15.6 ± 10.71

2.06 ± 0.78

2.22 ± 0.77

417.2 ± 425.6

399.8 ± 315.0

MMSE; RAVLT, delayed recall;

RAVLT, recognition; SVF; TMT: B;

Stroop errors; TMT: A; ROCF,

Copy

PROBABLE-RBD

Ba et al. (75) Clinical criteriaa + DAT

imaging deficit

RBDSQ (>5) 136 RBD+ (92)

214 RBD– (137)

61.2 ± 9.4

60.4 ± 9.9

7.51 ± 6.69c

7.35 ± 6.29c
15.6 ± 2.9

15.6 ± 3.0

21.6 ± 9.4

19.6 ± 8.4

1.6 ± 0.5

1.5 ± 0.5

0

0

MOCA; HVLT, total recall; HVLT,

Recognition; SVF; SDMT; LNS;

BJLOT

Boucetta et al. (76) Clinical criteriaa RBDSQ (≥5) +

positive response to

item 5, 6.3 or 6.4

69 RBD+ (52)

240 RBD– (149)

60.9 ± 9.2

61.6 ± 9.8

6.3 ± 6.6c

6.9 ± 6.7c
15.9 ± 2.3

15.6 ± 2.9

22.5 ± 9.5 NM

NM

0

0

MOCA; SVF; SDMT; BJLOT

Chahine et al. (31) Clinical criteriaa + DAT

imaging deficit

RBDSQ (≥6) 108 RBD+ (79)

315 RBD– (198)

61.9 ± 9.9

61.7 ± 9.7

0.25

(0.17–0.59)b

0.34

(0.25–0.67)b

15.3 ± 2.9

15.6 ± 3.0

22.0 ± 8.8

20.5 ± 8.9

NM

NM

0

0

MOCA; HVLT-R, delayed free

recall; HVLT-R, recognition; SVF;

SDMT; LNS; BJLOT

Duarte Folle et al. (55) NM Interview 160 RBD+

(122)

70.0 ± 9.6 3.5 ± 3.1 14.3 ± 3.7 23.4 ± 2.5 ≥3, N = 25 459 ± 349 MMSE

616 RBD– (371) 70.6 ± 10.4 3 ± 2.5 13.6 ± 4.7 22.6 ± 2.4 ≥3, N = 99 388 ± 332

Ford et al. (56) PDSBB MSQ 46 RBD+ (36) 66.4 ± 9.9 6.5 ± 5.1c 13.0 ± 3.6 26.3 ± 10.0 2.2 ± 0.7 179.2 ± 144.7 MMSE

78 RBD– (48) 65.8 ± 10.9 6.0 ± 4.4c 13.0 ± 4.1 27.3 ± 11.9 1.9 ± 0.6 172.6 ± 128.2

Gjerstad et al. (59) Clinical criteria

(93)

SSQ 34 RBD+ (25) 71.6 ± 7.9 11.1 ± 6.2 NM 29.5 ± 15.8 3.0 ± 1.1 626 ± 312 MMSE

197 RBD– (89) 73.7 ± 8.5 8.6 ± 5.5 NM 28.2 ± 15.9 2.8 ± 1.0 452 ± 236

Kim et al. (62) PDSBB ICSD-R 578 RBD+

(266)

64.6 ± 8.8 7.66 ± 4.66 NM NM 2.25b 795.3 ± 406.2 MMSE; FAB

366 RBD– (182) 62.2 ± 10.0 6.21 ± 3.91 NM NM 2.03b 693.0 ± 421.6

Kotagal et al. (77) PDSBB + DTBZ PET

imaging

MSQ 27 RBD+ (25) 63.4 ± 6.7 6.4 ± 3.7 NM 27.6 ± 10.9 2.3 ± 0.4 NM MOCA

53 RBD– (35) 65.3 ± 7.1 5.8 ± 4.0 NM 25.1 ± 11.2 2.3 ± 0.5 NM

Lavault et al. (28) PDSBB Interview 39 RBD+ (26) 66.6 ± 7.9 7.5 ± 5.1 NM 22.0 ± 12.4 NM 576 ± 353 MMSE; FAB

22 RBD– (13) 60.3 ± 11.1 5.8 ± 3.9 NM 13.5 ± 6.5 NM 649 ± 403

Lee et al. (8) PDSBB ICSD-R 164 RBD+ (79) 65.1 ± 8.4 7.28 ± 5.18 NM 20.3 ± 10.4 2.2 ± 0.7 527 ± 292 MMSE

283 RBD– (128) 63.1 ± 9.6 5.47 ± 4.16 NM 18.2 ± 11.2 2.1 ± 0.6 485 ± 285

Lim et al. (64) PDSBB RBDSQ + PSG

(partial confirmation)

24 RBD+ (12) 69.8 ± 6.4 6.2 ± 2.9 NM 12.4 ± 2.5 1.9 ± 0.4 NM MMSE

14 RBD– (8) 69.7 ± 7.2 4.4 ± 3.7 NM 22.4 ± 10.6 1.6 ± 0.5 NM

(Continued)
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TABLE 2 | Continued

Study Diagnostic criteria

for PD

RBD assessment Participants

(n men)

Age (years) PD duration

(years)

Edu UPDRS-III H&Y stage LEDD (mg) Analyzed cognitive tests

Liu et al. (78) PDSBB RBDSQ (≥5) 31 RBD+ (14) 60.4 ± 10.8 2.71 ± 3.52 9.2 ± 3.8 21.3 ± 9.0 1.9 ± 0.5 0 MOCA

127 RBD– (61) 58.3 ± 10.4 1.90 ± 1.72 10.3 ± 3.9 20.1 ± 10.9 2.0 ± 0.4 0

Mahale et al. (65) Queen Square Brain

Bank criteria

RBDSQ 10 RBD+ (0) 62.5 ± 10.3 4.1 ± 2.8 NM 27.5 ± 9.9 2.4b 675.0 ± 521.5 MMSE

27 RBD– (0) 51.2 ± 10.7 5.3 ± 4.9 NM 31.0 ± 9.7 2.3b 588.5 ± 313.5

Meral et al. (81) PDSBB Interview (ICSD) 36 RBD+ (24)

43 RBD– (26)

66.5 ± 8.79

67.6 ± 8.5

7.27 ± 3.59

5.60 ± 3.65

NM

NM

23.3 ± 11.5

17.5 ± 11.0

NA

NA

423.2 ± 198.8

339.0 ± 245.9

STMS; WMS, delayed recall;

SBST, recognition; SBST,

delayed recall; SVF; stroop error;

WCST, category; BJLOT

Naismith et al. (34) PDSBB RBDSQ (≥5) 51 RBD+

47 RBD–

65.5 ± 7.2

65.0 ± 9.7

6.8 ± 5.7

4.6 ± 4.4

13.3 ± 2.9

14.2 ± 3.3

NM

NM

2.2 ± 0.7

2.2 ± 0.7

773.3 ± 577.7

512.9 ± 551.1

MMSE; Logical memory,

encoding; DSB; TMT: B-A

Nomura et al. (69) PDSBB RBDSQ-J (≥6) 27 RBD+ (15) 68.8 ± 8.6 9.1 ± 7.7 NM NM 2.8 ± 0.7 500 ± 351 MOCA

43 RBD– (16) 69.4 ± 8.6 6.4 ± 5.2 NM NM 2.5 ± 0.9 322 ± 243

Pagano et al. (79) Clinical criteriaa + DAT

imaging deficit

RBDSQ (≥5) 158 RBD+

(109)

263 RBD– (166)

61.8 ± 9.7

61.5 ± 9.8

6.5 ± 6.5c

6.7 ± 6.6c
15.6 ± 2.9

15.5 ± 3.0

20.9 ± 8.8

20.4 ± 8.8

1.54 ± 0.50

1.58 ± 0.51

0 MOCA; HVLT, immediate recall;

HVLT, delayed recognition; SVF;

LNS; SDMT; BJLOT

Rahmani et al. (80) Clinical criteriaa RBDSQ 10 RBD+ (8) 61 ± 8.15 NM 15.8 ± 3.1 18.9 ± 10.8 NM NM MOCA

7 RBD– (6) 64 ± 6.6 NM 14.4 ± 3.4 24.5 ± 6.9 NM NM

Rolinski et al. (33) PDSBB RBDSQ 224 RBD+

(148)

67.5 ± 9.4 1.6 ± 1.0 NM 26.8 ± 10.6 1.9 ± 0.5 345.2 ± 189.6 MOCA; SVF

251 RBD– (144) 67.9 ± 9.5 1.4 ± 1.0 NM 26.9 ± 11.2 1.9 ± 0.5 322.9 ± 196.7

Sinforiani et al. (19) PDSBB Clinical evaluation

(ICSD)

79 RBD+ (46)

31 RBD– (19)

68.0 ± 8.4

63.0 ± 8.2

10.3 ± 4.9

9.5 ± 4.5

NM

NM

47.7 ± 12.6

35.2 ± 10.3

3.5b

3b
1087.9 ± 442.3

1114.5 ± 270.4

MMSE; CBTT; DSF; Logical

memory test; FAB

Zhang et al. (74) PDSBB MSQ + RBDSQ + PSG

(partial confirmation)

32 RBD+ (23)

42 RBD– (20)

64.9 ± 5.2

62.2 ± 8.3

4.0 ± 2.5

4.2 ± 2.7

9.5 ± 2.3

9.8 ± 2.6

19.8 ± 12.0

20.0 ± 9.6

2.0 (1.5–2.5)b

2.0 (1.5–2.5)b
292.3 ± 210.2

298.2 ± 237.2

MOCA; SVF; RAVLT, delayed

recall; RAVLT, recognition; ROCF,

recall; DSB; TMT: B, time; Stroop

time; DSF; TMT: A; SDMT;

ROCF, Copy

Data are shown as the mean ± SD unless otherwise noted.

PD, Parkinson’s disease; RBD, REM sleep behavior disorder; Edu, education; UPDRS III, Unified Parkinson’s Disease Rating Scale, part 3; H&Y stage, Hoehn and Yahr stage; LEDD, levodopa equivalent daily dose; PSG, polysomnography;

ICSD-2, second edition of the International Classification of Sleep Disorders; NM, not mentioned; MMSE, Mini-Mental State Examination; PDSBB, U.K. Parkinson’s Disease Society Brain Bank criteria; RAVLT, Rey auditory–verbal learning

test; SVF, semantic/category verbal fluency test; DSB, digit span backward; TMT: B, trail making test: part B; ROCF, Rey–Osterrieth complex figure test; ICSD-3, third edition of the International Classification of Sleep Disorders; MOCA,

Montreal Cognitive Assessment; TMT: A, trail making test: part A; MSQ, Mayo Sleep Questionnaire; RBDSQ, REM Sleep Behavior Disorder Screening Questionnaire; CBTT, Corsi’s block tapping test; FAB, frontal assessment battery;

DSF, digit span forward; RBDSQ-K, Korean version of REM Sleep Behavior Disorder Screening Questionnaire; K-MMSE, Korean version of the Mini-Mental State Examination; LNS, letter–number sequencing; SDMT, symbol digit

modalities test; MDRS, Mattis Dementia Rating Scale; DAT, dopamine transporter; HVLT, Hopkins Verbal Learning Test; BJLOT, Benton judgment of line orientation test; HVLT-R, Hopkins Verbal Learning Test—Revised; SSQ, Stavanger

Sleepiness Questionnaire; ICSD-R, International Classification of Sleep Disorders—Revised; DTBZ, dopaminergic denervation on [11C]dihydrotetrabenazine; STMS, Short Test of Mental Status; WMS, Wechsler Memory Scale; SBST,

sözel bellek surecleri testi; WCST, Wisconsin Card Sorting Test; TMT: B-A, trail making test: part B–part A; RBDSQ-J, Japanese version of REM Sleep Behavior Disorder Screening Questionnaire.
aAll clinical data were extracted from the PPMI database. Further information is described in detail at http://www.ppmi-info.org.
bMedian (IQR).
cMonths.
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TABLE 3 | Summary of the meta-analytic results of the following cognitive dimensions.

Domains/subgroups K PD-RBD PD-NRBD Effect size Heterogeneity

SMD (P-value) 95% CI I2 (%) P

CONFIRMED-RBD

Global cognitive function 17 625 708 −0.41 (0.001) −0.66 to −0.16 74 <0.00001

Memory—long-term verbal recall 5 128 109 −0.64 (0.02) −1.16 to −0.11 70 0.009

Memory—long-term verbal recognition 3 93 74 −0.50 (0.002) −0.81 to −0.19 0 0.58

Memory—short-term verbal recall 2 35 35 0.15 (0.63) −0.47 to 0.78 36 0.21

EF—generativity 5 128 109 −1.12 (0.002) −1.85 to −0.39 83 0.0001

EF—inhibition 5 128 99 0.63 (0.0007) 0.27–1.00 36 0.18

EF—shifting 3 93 74 0.80 (<0.00001) 0.48–1.12 0 0.66

EF—updating 4 110 93 −0.39 (0.22) −1.01 to 0.23 75 0.007

Language 2 68 55 −0.49 (0.009) −0.85 to −0.12 0 0.93

Visuospatial/constructional ability 3 93 74 −0.61 (0.0001) −0.92 to −0.30 0 0.99

PROBABLE-RBD

Global cognitive function 21 2025 3097 −0.24 (0.0007) −0.39 to −0.10 78 <0.00001

Memory—long-term verbal recall 6 476 714 −0.20 (0.18) −0.49 to 0.09 81 <0.0001

Memory—long-term verbal recognition 5 470 877 0.07 (0.64) −0.21 to 0.34 80 0.0004

Memory—short-term verbal recall 2 111 73 −0.23 (0.24) −0.61 to 0.16 35 0.22

EF—generativity 7 763 1368 0.12 (0.49) −0.22 to 0.45 92 <0.00001

EF—inhibition 2 68 89 0.40 (0.27) −0.31 to 1.11 79 0.03

EF—shifting 4 198 163 0.39 (0.0003) 0.18–0.61 0 0.68

EF—updating 2 83 89 −0.34 (0.11) −0.76 to 0.08 46 0.17

Visuospatial/constructional ability 6 539 1117 −0.04 (0.78) −0.37 to 0.28 88 <0.00001

MIXED-RBD

Memory—long-term visual recall 4 172 172 −0.34 (0.002) −0.55 to −0.12 0 0.70

Memory—short-term spatial recall 2 104 56 −0.65 (0.001) −1.04 to −0.26 19 0.27

EF—general 4 721 444 −0.31 (0.02) −0.57 to −0.06 46 0.13

Processing speed/complex attention/working memory (LNS) 4 412 802 −0.01 (0.95) −0.33 to 0.30 81 0.001

Processing speed/complex attention/working memory (TMT: A) 3 103 98 0.57 (<0.0001) 0.29–0.86 0 0.82

Psychomotor ability 6 464 1084 −0.31 (0.05) −0.62 to 0.01 84 <0.00001

Statistically significant values of effect size are reported in bold.

K, number of studies; PD-RBD, number of PD patients with RBD; PD-NRBD, number of PD patients without RBD; SMD, standardized mean difference; CI, confidence intervals; I2,

heterogeneity statistics; EF, executive function; LNS, letter–number sequencing; TMT: A, trail making test: part A.

Memory—Long-Term Verbal Recall
The meta-analysis included five “Confirmed-RBD” and six
“Probable-RBD” studies. For the “Confirmed-RBD” subgroup,
PD-RBD patients had significantly lower scores than did PD-
NRBD patients, with a medium ES (SMD = −0.64, 95%
CI = −1.16 to −0.11, P = 0.02); heterogeneity was moderate
(I2 = 70%). For the “Probable-RBD” subgroup, the ES was
not significant. No significant difference between these two
subgroups was observed (Table 3, Figure 3A).

Memory—Long-Term Verbal Recognition
The meta-analysis included three “Confirmed-RBD” and five
“Probable-RBD” studies. For the “Confirmed-RBD” subgroup,
PD-RBD patients had significantly lower scores than did PD-
NRBD patients, with a medium ES (SMD = −0.50, 95%
CI = −0.81 to −0.19, P = 0.002); heterogeneity was absent
(I2 = 0%). For the “Probable-RBD” subgroup, the ES was not
significant. The difference between these two subgroups was
significant (P = 0.008) (Table 3, Figure 3B).

Memory—Long-Term Visual Recall
The meta-analysis included one “Confirmed-RBD” and three
“Probable-RBD” primary studies. Given the exiguity of the
primary studies in the “Confirmed-RBD” subgroup, we analyzed
these two subgroups together. PD-RBD patients had significantly
lower scores than did PD-NRBD patients, with a medium
ES (SMD = −0.34, 95% CI = −0.55 to −0.12, P = 0.002);
heterogeneity was absent (I2 = 0%) (Table 3, Figure 3C).

Memory—Short-Term Verbal Recall
This meta-analysis included two “Confirmed-RBD” and two
“Probable-RBD” studies. The ESs for both groups were
insignificant (Table 3, Figure 3D).

Memory—Short-Term Spatial Recall
This meta-analysis included one “Confirmed-RBD” and one
“Probable-RBD” study. Given the exiguity of the primary
studies in both subgroups, we analyzed them together. PD-
RBD patients had significantly lower scores than did PD-NRBD
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FIGURE 2 | Forest plot for global cognitive function with subtotals by the diagnosis of rapid eye movement sleep behavior disorder (RBD) displaying the effect size

calculated using a random-effects model. SD, standard deviation; Std. Mean Difference, standardized mean difference; CI, confidence interval.

patients, with a medium ES (SMD = −0.65, 95% CI = −1.04
to −0.26, P = 0.001); heterogeneity was absent (I2 = 19%)
(Table 3, Figure 3E).

General EF
The meta-analysis included one “Confirmed-RBD” and three
“Probable-RBD” studies. Given the exiguity of the primary
studies in the “Confirmed-RBD” subgroup, we analyzed these

two subgroups together. PD-RBD patients had significantly
lower scores than did PD-NRBD patients, with a medium
ES (SMD = −0.31, 95% CI = −0.57 to −0.06, P = 0.02);
heterogeneity was low (I2 = 46%) (Table 3, Figure 4A).

EF—Fluid Reasoning
The meta-analytic study could not be performed due to the
exiguity of the primary studies (n = 1). PD-RBD patients
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FIGURE 3 | Forest plot for (A) long-term verbal recall with subtotals by the diagnosis of rapid eye movement sleep behavior disorder (RBD), (B) long-term verbal

recognition with subtotals by the diagnosis of RBD, (C) long-term visual recall, (D) short-term verbal recall with subtotals by the diagnosis of RBD, and (E) short-term

spatial recall displaying effect size calculated using a random-effects model. SD, standard deviation; Std. Mean Difference, standardized mean difference; CI,

confidence interval.

Frontiers in Neurology | www.frontiersin.org 12 November 2020 | Volume 11 | Article 577874

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


Mao et al. RBD and Cognition in PD?

FIGURE 4 | Forest plot for (A) general executive function (EF), (B) generativity with subtotals by the diagnosis of rapid eye movement sleep behavior disorder (RBD),

(C) inhibition with subtotals by the diagnosis of RBD, (D) shifting with subtotals by the diagnosis of RBD, and (E) updating with subtotals by the diagnosis of RBD

displaying effect size calculated using a random-effects model. SD, standard deviation; Std. Mean Difference, standardized mean difference; CI, confidence interval.
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performed worse in this domain than did PD-RBD patients,
according to the only primary study.

EF—Generativity
The meta-analysis included five “Confirmed-RBD” and seven
“Probable-RBD” studies. For the “Confirmed-RBD” subgroup,
PD-RBD patients had significantly lower scores than did PD-
NRBD patients, with a large ES (SMD=−1.12, 95% CI=−1.85
to −0.39, P = 0.002); heterogeneity was high (I2 = 83%).
For the “Probable-RBD” subgroup, the ES was not significant.
The difference between these two subgroups was significant
(P = 0.002) (Table 3, Figure 4B).

EF—Inhibition
The meta-analysis included five “Confirmed-RBD” and two
“Probable-RBD” studies. For the “Confirmed-RBD” subgroup,
PD-RBD patients had significantly higher scores than did PD-
NRBD patients, with a medium ES (SMD= 0.63, 95% CI= 0.27–
1.00, P = 0.0007); heterogeneity was low (I2 = 36%). For
the “Probable-RBD” subgroup, the ES was not significant. No
significant difference between these two subgroups was observed
(Table 3, Figure 4C).

EF—Shifting
The meta-analysis included three “Confirmed-RBD” studies and
four “Probable-RBD” primary studies. For the “Confirmed-
RBD” subgroup, PD-RBD patients had significantly higher scores
than did PD-NRBD patients, with a large ES (SMD = 0.80,
95% CI = 0.48–1.12, P < 0.00001); heterogeneity was absent
(I2 = 0%). For the “Probable-RBD” subgroup, PD-RBD patients
also had significantly higher scores than did PD-NRBD patients,
with a medium ES (SMD = 0.39, 95% CI = 0.18–0.61,
P = 0.0003); heterogeneity was absent (I2 = 0%). The difference
between these two subgroups was significant (P = 0.04)
(Table 3, Figure 4D).

EF—Updating
This meta-analysis included four “Confirmed-RBD” and two
“Probable-RBD” studies. The ESs for both subgroups were
insignificant (Table 3, Figure 4E).

Language
This meta-analysis only included two “Confirmed-RBD” studies.
PD-RBD patients had significantly lower scores than did PD-
NRBD patients, with a medium ES (SMD = −0.49, 95%
CI = −0.85 to −0.12, P = 0.009); heterogeneity was absent
(I2 = 0%) (Table 3, Figure 5).

Processing Speed/Complex Attention/Working

Memory
This domain was evaluated by seven studies in total, four of which
used the letter–number sequence (LNS) and three adopted the
trail making test, part A (TMT: A). Since these two tests could
not be combined together, we analyzed them separately.

The meta-analysis focusing only on studies that used LNS
scores included one “Confirmed-RBD” and three “Probable-
RBD” primary studies. Given the exiguity of the primary
studies in the “Confirmed-RBD” subgroup, we analyzed

these two subgroups together. The ES was not significant
(Table 3, Figure 6A).

The meta-analysis focusing only on studies that used TMT: A
scores included two “Confirmed-RBD” and one “Probable-RBD”
primary studies. Given the exiguity of the primary studies in
the “Probable-RBD” subgroup, we analyzed these two subgroups
together. PD-RBD patients had significantly higher scores than
did PD-NRBD patients, with a medium ES (SMD = 0.57, 95%
CI= 0.29–0.86, P < 0.0001); heterogeneity was absent (I2 = 0%)
(Table 3, Figure 6B).

Visuospatial and Constructional Ability
The meta-analysis included three “Confirmed-RBD” and six
“Probable-RBD” studies. For the “Confirmed-RBD” subgroup,
PD-RBD patients had significantly lower scores than did PD-
NRBD patients, with a medium ES (SMD = −0.61, 95%
CI = −0.92 to −0.30, P = 0.0001); heterogeneity was absent
(I2 = 0%). For the “Probable-RBD” subgroup, the ES was not
significant. The difference between these two subgroups was
significant (P = 0.01) (Table 3, Figure 7).

Psychomotor Ability
The meta-analysis included one “Confirmed-RBD” and five
“Probable-RBD” primary studies. Given the exiguity of the
primary studies in the “Confirmed-RBD” subgroup, we analyzed
these two subgroups together. The ES was not significant
(Table 3, Figure 8).

Moderator Analysis
Meta-regression revealed that gender had a significant impact
on the obtained ES for psychomotor ability (K = 6, β = 6.310,
P = 0.001); PD duration for psychomotor ability (K = 6,
β = −0.225, P = 0.005); H&Y for visuospatial/constructional
ability (K = 6, β = −0.835, P = 0.033); LEDD for psychomotor
ability (K = 6, β = −0.003, P = 0.005); cognitive test for global
cognitive function (K = 38, β = 0.221, P = 0.041), long-term
verbal recall (K = 11, β = 0.135, P = 0.039), long-term verbal
recognition (K = 8, β = 0.336, P = 0.000), inhibition (K = 7,
β = 0.558, P = 0.011), and visuospatial/constructional ability
(K = 9, β = −0.576, P = 0.048); and RBD assessment for
generativity (K = 12, β = 1.294, P = 0.013), shifting (K = 7,
β = −0.417, P = 0.033), and psychomotor ability (K = 6,
β = 2.239, P= 0.001). No other demographic and clinical factors
manifested any significant effect on the ES for these outcomes.
Finally, no other aspects had significant impact on the ES for the
remaining outcomes (Supplementary Table 4).

Sensitivity Analysis
No obvious outliers were uncovered by the sensitivity analyses
aiming at determining the effect of any individual study on the
pooled ES, indicating the stability of the meta-analytic findings
(Supplementary Figures 2–9).

Another sensitivity analysis identified that the study
by Marques et al. (66) contributed dramatically to the
heterogeneities in the “Confirmed-RBD” subgroups in the
long-term verbal recall and updating domains, separately. After
excluding this study, all heterogeneities plunged to 0%, and SMD
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FIGURE 5 | Forest plot for language with subtotals by the diagnosis of rapid eye movement sleep behavior disorder (RBD) displaying effect size calculated using a

random-effects model. SD, standard deviation; Std. Mean Difference, standardized mean difference; CI, confidence interval.

FIGURE 6 | Forest plot for processing speed/complex attention/working memory evaluated by the (A) LNS and the (B) TMT: A displaying effect size calculated using

a random-effects model. SD, standard deviation; Std. Mean Difference, standardized mean difference; CI, confidence interval; LNS, letter–number sequence; TMT: A,

trail making test, part A.

decreased from −0.64 (95% CI = −1.16 to −0.11, P = 0.02) to
−0.89 (95% CI = −1.17 to −0.61, P < 0.00001) in long-term
verbal recall and from−0.39 (95% CI=−1.01 to 0.23, P = 0.22)
to −0.71 (95% CI = −1.02 to −0.41, P < 0.00001) in updating.
For the rest of the domains, excluding one single study did not
change the heterogeneity dramatically.

Publication Bias
Global cognitive domain was the only domain where publication
bias analysis could be performed, and the funnel plot for
it suggested symmetry: Egger’s test was insignificant and the

trim-and-fill analysis did not remove any study for both the
Confirmed and Probable-RBD subgroups.

DISCUSSION

Summary of Findings
This study is the first systematic review and meta-analysis of
the association between RBD and cognitive dysfunctions in
patients with PD. This meta-analysis indicates that, relative to
those without RBD, people with PD who were diagnosed with
RBD, as confirmed or probable, demonstrate poorer cognitive
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FIGURE 7 | Forest plot for visuospatial/constructional ability with subtotals by the diagnosis of rapid eye movement sleep behavior disorder (RBD) displaying effect

size calculated using a random-effects model. SD, standard deviation; Std. Mean Difference, standardized mean difference; CI, confidence interval.

FIGURE 8 | Forest plot for psychomotor ability displaying effect size calculated using a random-effects model. SD, standard deviation; Std. Mean Difference,

standardized mean difference; CI, confidence interval.

performance that differs across cognitive domains. Specifically,
Confirmed-RBD patients performed more poorly than those
without RBD in global cognitive function, long-term verbal
recall, long-term verbal recognition, generativity, inhibition,
shifting, language, and visuospatial/constructional ability;
Probable-RBD, in global cognitive function and shifting; and
Mixed-RBD, in long-term visual recall, short-term spatial recall,
general EF, and processing speed/complex attention/working
memory that was evaluated by the TMT: A.

Our results put emphasis on PSG that provides objective
statistics with which to compare subjective accounts in

diagnosing RBD. Regarding the range and degree of cognitive
damage, we found that Confirmed-RBD patients were more
serious than did Probable-RBD patients when both were
compared to PD-NRBD patients. Dream enactment behavior, the
major diagnostic basis of Probable-RBD, is not specific for RBD
(1, 94, 95), and presumably, Probable-RBD patients diagnosed
accordingly are less generalizable to RBD patients. The results
from our analyses clearly present the difference between patients
with PSG-confirmed RBD and those with probable RBD based on
subjective complaints. Although the gold standard for assessing
RBD remains the laboratory PSG, there is heightened growing
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interest in home-based sleep monitoring by portable or wearable
monitoring devices (96, 97). Identification of confirmed RBD
cases will likely grow with advances in technology enabling
home-based PSG assessment.

Clonazepam, the drug of choice in the treatment of RBD, was
reported to deteriorate cognition, as noted above. Although PD-
RBD patients treated with clonazepam performed significantly
worse on global cognitive function compared to PD-NRBD
patients while the unmediated group did not manifest any
difference, the subgroup difference was statistically insignificant.
This seeming contradiction needs to be further explored by
large-sized investigations.

One sensitivity analysis revealed no outlier, and another
identified that the results reported by Marques et al. (66) and
Pagano et al. (79) contributed significantly to the heterogeneities
found in the analysis of long-term verbal recall and updating. The
investigations showed that the results of the tests were conflicting
with the other studies in their respective domains and were
statistically insignificant, which means that the PD-RBD patients
performed insignificantly better than did PD-NRBD patients.
These two primary studies did not mention the reason for these
dissimilar results.

Some demographics and clinical phenomenology of RBD (30)
and PD-RBD (25, 73) were identified, such as male gender,
age at onset, and severity of PD. Therefore, these features
could also affect the relationship between RBD and cognitive
dysfunctions. Moderator analysis supported our hypothesis
that the neuropsychological patterns of PD-RBD patients are
dependent on some demographic and clinical aspects. Moreover,
it also revealed the effects of evaluating cognition or RBD on
some cognitive domains like global cognitive function. However,
considering that the clinical data of patients were not reported
consistently across studies, these results should be interpreted
with more caution and examined further.

Many studies have revealed no relationship between
sleep-related deficits and cognition when insensitive
neuropsychological tests were used. For instance, the Mini-
Mental State Examination (MMSE), designed to detect frank
dementia (98) instead of cognitive dysfunction in PD, possesses
a “strikingly low sensitivity” at only 50% when used to screen
for dementia in people with PD (99). MMSE is thought to be
less sensitive than the Montreal Cognitive Assessment (MOCA)
in detecting MCI in PD patients (100). Although the MMSE
was not recommended to evaluate cognition in PD by the 2010
Movement Disorders Task Force to detect cognitive impairment
in PD (98), it remained the most commonly used global cognitive
test. Impaired global cognitive functions detected mostly by the
MMSE were related to “bad sleep” or “pure apathy” (51, 53) and
were insignificantly associated with impulse control disorders
(52) in PD patients in previous meta-analyses. In our meta-
analysis, the MMSE was used in 22 of the 38 included studies
assessing global cognition. Similarly, the Frontal Assessment
Battery (FAB), designed to recognize frontal lobe dysfunction,
has been validated in frontotemporal dementia, progressive
supranuclear palsy (PSP), and PD. Regression analysis proved
that 69.7% of individuals with PSP and frontotemporal dementia
were classified correctly with FAB, which suggested that deficits

associated with predominantly medial–prefrontal dysfunction
could be captured successfully by FAB (101). However, FAB is
insensitive to cognitive damage in PD because it detects frontal
lobe dysfunction instead of disorders that primarily involve the
dorsolateral and ventrolateral prefrontal cortices in PD (102). A
study identified the sensitivity (66.3%) and specificity (72.3%) of
FAB in detecting dementia in PD at a cutoff of 26 points (103).
All the enrolled studies evaluating general EF used FAB in our
meta-analysis. Thus, these two domains need to be confirmed
by more sensitive tests. Moreover, due to the conflicting results
of the processing speed/complex attention/working memory
domain evaluated with LNS and TMT: A, this domain also need
to be confirmed further.

The Process of Selecting
Neurophysiological Tests
In diagnosing MCI in PD, Litvan et al. (48) suggested that two
highly similar tests (e.g., two list learning tests or two story
recall tests) or highly correlated scores from the same test (e.g.,
immediate and delayed recall of a word list) should not be used
to meet the MCI criterion for two test-score abnormalities. As
mentioned earlier, when a cognitive domain was determined
with more than one test in a study, we extracted and analyzed
data from the most sensitive, relevant, and frequently used tests
and discussed in detail the process of assigning the tests in
these domains.

In the global cognitive function domain, among the enrolled
primary studies, eight (33, 60, 61, 69, 71–74) employed both
the MMSE and MOCA. Because the sensitivity of the MOCA is
higher than that of the MMSE in evaluating cognitive decline
in PD (98–100), we analyzed the MOCA results of these
eight studies.

In the long-term verbal recall domain, the tests used were
several highly similar tests.We extracted the results of the delayed
recall tasks from these tests, like Litvan et al. (48) who suggested
in diagnosing MCI in PD or Jansen et al. (104) who selected
evaluating cognition in individuals with MCI. This criterion was
also applicable to the long-term visual recall domain.

Six studies (5, 31, 33, 35, 66, 82) used both verbal fluency,
semantic and letter, to evaluate the generativity. It is controversial
which aspect of verbal fluency was more affected in PD patients
(105–107). In an attempt to resolve the inconsistency, a meta-
analysis with 2,644 PD patients showed that, although PD
patients manifested greater deficits in semantic than in letter
fluency, the difference was small (108). Because several other
studies only employed semantic verbal fluency, we extracted
semantic results from these six studies and combined them with
the results from other studies in order to minimize heterogeneity.
Kamble et al. (61) used two highly similar tests in this domain, the
semantic verbal fluency and animal naming tests. Similarly, we
extracted the results from the semantic fluency test. This criterion
was also applicable to the shifting domain where two tasks of the
TMT were adopted in a study (5); we analyzed the task employed
by other studies as well. Moreover, two tests, Stroop task and
TMT, can be measure by both speed and accuracy; we extracted
speed data when these are available.
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Concerning the visuospatial and constructional ability, six
different tests were adopted by the enrolled primary studies.
The Benton judgment of line orientation test (BJLOT), one
of the most extensively used visuospatial tasks, was sensitive
to visuospatial deficits in PD (109). The copy of the Rey–
Osterrieth complex figure test is another widely used test
to assess visuo-constructional ability. However, due to its
complexity, EF is also reflected in this test (110–112). Using the
clock drawing test, PD patients manifested a low performance
compared with healthy controls (113). However, the major
reason for clock drawing difficulties in PD with early cognitive
impairment is dysfunctional executive control of memory
retrieval instead of visuospatial impairment (114). Similarly,
the block design measures visual perception and organization
and visual–motor coordination, and also non-verbal reasoning,
analysis, and synthesis (115). The bells test is used to
investigate visual perception, processing speed, and attention
(116). However, it is considered a sensitive test to diagnose
visual hemineglect (117, 118). The sensitivity of Benton’s facial
recognition in PD patients is rarely studied. A study pointed
out that medicated people with PD did not show significant
deficits in this test compared with those untreated (119).
Therefore, in this domain, the BJLOT is our priority when
it exists with other tests of this domain in one study, and
the copy of the Rey–Osterrieth complex figure test is our
second choice.

Possible Mechanisms of “RBD-PD
Phenotype”
Although the relationship between RBD and cognitive
dysfunction in PD was confirmed based on our results, the
mechanisms behind this phenomenon are yet to be elucidated.
The following dysregulations that affect both RBD and cognitive
dysfunction in PD may be the targets.

Cholinergic dysfunction is strongly associated with RBD
and cognitive decline in PD. RBD in the context of α-
synucleinopathies was suggested to be a result of degeneration
of the pontomedullary cholinergic pathways (67, 120, 121).
A smaller volume of the pontomesencephalic tegmentum
was found in PD patients with RBD than in those without
(76). Moreover, dysfunctions of cholinergic systems and their
projections were consistently associated with cognitive damage in
PD (122–127). Cholinergic pedunculopontine nucleus neuronal
loss in PD is believed to be attributable to cognitive damage
(128–130). The decreased volume and the disrupted resting-
state functional connectivity of the basal nucleus of Meynert
(BNM), the main source of cholinergic innervation (131, 132),
were found to be correlated with cognitive decline in PD
(133–135). Rivastigmine, an inhibitor of acetylcholinesterase and
butyrylcholinesterase, is effective in treating RBD and dementia
associated with PD separately (136, 137).

Nigro-striatal dopaminergic impairment, limbic dysfunction,
inflammation, and altered metabolism are also related to RBD
and cognitive damage in PD. In PD-RBD patients, more severe
nigro-striatal dopaminergic damage (138) and greater dopamine
transporter loss (139) were discovered compared with PD-NRBD
patients. A positive relationship between striatal dopamine
transporter availability and fundamental cognitive capability

was determined in PD patients (140). Compared to PD-
NRBD patients, smaller volumes of the hypothalamus, thalamus,
amygdala, anterior cingulate cortex, left posterior cingulate, and
hippocampus were found in PD-RBD patients (64, 76). The
volume loss of the thalamus and the accompanying damaged
functional connectivity were also observed in PD patients with
MCI (141). Elevations of peripheral inflammatory factors were
found in the PD-RBD group compared with the PD-NRBD group
(142). Cognitive damage in PD patients was associated with a
higher level of circulating lymphocytes and—in drug-naive ones
at least—with dysregulation of the T regulatory cells (143). In
addition, an altered brain glucose metabolism was observed in
PD patients with RBD and MCI (138, 144–147).

Therefore, it was previously suggested that PD-RBD
represents a unique subtype of PD with severe non-motor
symptoms. The positive relationship between RBD and cognitive
decline in PD patients according to our results enriched and
expanded this opinion. The above-mentioned dysfunctions
in PD patients accompanied with either RBD or cognitive
decline elucidated this relationship further, thus supplying
possible therapeutic targets. Even though the results are
encouraging, more cases and experiments are needed to confirm
this phenotype.

Strengths and Limitations
This meta-analysis not only confirms the relationship between
RBD and cognitive dysfunction in PD but also specifies
which cognitive domains are involved. In addition, this meta-
analysis scientifically distinguished probable RBD from true RBD
and thus demonstrated the difference between objective and
subjective evaluation of RBD.

However, two limitations warrant consideration when
interpreting our results and designing further studies. The
first is the pooling of other non-motor symptoms such as
hallucinations and depression, which could also affect the
cognitive status of patients with PD. Several longitudinal reports
have revealed that hallucination can be a predictor of cognitive
dysfunction in PD (148–151), specifically in the domain of
EF (152). Moreover, a study confirmed cross-sectionally and
longitudinally that hallucination was significantly related to
the presence and development of dementia (153), and another
separately confirmed the relationships between hallucination
and depression with dementia in PD (154). In addition, the
relationship between depression and cognitive dysfunction in
individuals with PD was also confirmed in several studies, and
the consensus was that PD patients with baseline depression
manifested deteriorated cognition and motor ability (155–157).
Given that nearly 60% of PD patients manifested more than one
non-motor symptom and roughly 25% displayed more than
two (158), the relationship between “pure RBD” and cognitive
decline in PD patients is difficult to detect. The second limitation
is that the symptoms of cognitive damage and RBD can both
fluctuate (28, 59, 159, 160), so studies evaluating them at an
arbitrary time point may not comprehensively and accurately
reflect the condition. In addition to the fluctuation of symptoms,
the effect of the appearance order of RBD and PD symptoms on
cognition is controversial (70, 161).
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Significance and Conclusion
This meta-analysis strongly suggests an association between
RBD and cognitive dysfunctions in PD patients. Early and
routine screening by cognitive tasks is simple and inexpensive
and should be part of the standard assessment of all PD-RBD
patients before they evolve to irreversible dementia in the study
setting. Currently, there are no pharmacological therapeutics that
could slow cognitive decline or dementia (162–164); however,
there is some evidence suggesting that non-pharmacological
interventions, like cognitive training, could enhance cognition
in non-demented early-stage PD patients (165–167). This
underscores the importance of a timely intervention of cognitive
dysfunctions in PD. Our findings should be extended in larger
prospective longitudinal studies to assess the progression of both
cognitive decline and RBD in PD and to identify moderators that
may help in a personalized care approach.
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