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Summary

Collisions of vehicles with wildlife kill and injure animals and are also a risk

to vehicle occupants, but preventing these collisions is challenging. Surveys to

identify problem areas are expensive and logistically difficult. Computer mod-

eling has identified correlates of collisions, yet these can be difficult for man-

agers to interpret in a way that will help them reduce collision risk. We

introduce a novel method to predict collision risk by modeling hazard (pres-

ence and movement of vehicles) and exposure (animal presence) across geo-

graphic space. To estimate the hazard, we predict relative traffic volume and

speed along road segments across southeastern Australia using regression

models based on human demographic variables. We model exposure by pre-

dicting suitable habitat for our case study species (Eastern Grey Kangaroo

Macropus giganteus) based on existing fauna survey records and geographic

and climatic variables. Records of reported kangaroo–vehicle collisions are

used to investigate how these factors collectively contribute to collision risk.

The species occurrence (exposure) model generated plausible predictions

across the study area, reducing the null deviance by 30.4%. The vehicle (haz-

ard) models explained 54.7% variance in the traffic volume data and 58.7%

in the traffic speed data. Using these as predictors of collision risk explained

23.7% of the deviance in incidence of collisions. Discrimination ability of the

model was good when predicting to an independent dataset. The research

demonstrates that collision risks can be modeled across geographic space with

a conceptual analytical framework using existing sources of data, reducing the

need for expensive or time-consuming field data collection. The framework is

novel because it disentangles natural and anthropogenic effects on the likeli-

hood of wildlife–vehicle collisions by representing hazard and exposure with

separate, tunable submodels.

Introduction

Roads have well-documented negative ecological impacts

(Forman and Alexander 1998; Spellerberg 1998; van der

Ree et al. 2015), including effects on terrestrial fauna.

Road construction and use fragments and destroys habi-

tat, causes pollution (e.g., noise, light and chemical run-

off), and kills and injures animals. Perhaps the most

visible impact is direct mortality through wildlife–vehicle
collisions (WVC) – billions of fauna are killed annually

around the world (Seiler and Helldin 2006). Such an issue

has prompted many road management authorities to rou-

tinely collect animal carcasses struck and killed by moving

vehicles to reduce visual impacts for road travelers (Hui-

jser et al. 2007) and avoid secondary collisions with scav-

enging wildlife species. In addition, many governments

around the world incur significant costs installing wild-

life-proof fencing and under- and overpasses to reduce

the rate of WVC and improve landscape connectivity

(van der Ree et al. 2015).

Worldwide, the frequency, magnitude, and distribution

of WVC have been widely studied. Many such studies

relate rate of collisions to environmental conditions,

anthropogenic variables, and animal biology, behavior,

and characteristics. While many studies have used statisti-

cal modeling to determine hot spots for WVC, most are
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limited to a single stretch of road or small collections of

roads (Gundersen and Andreassen 1998; Clevenger and

Wierzchowski 2001; Clevenger et al. 2003; Ramp et al.

2005; Ramp and Ben-Ami 2006; Gomes et al. 2008; Hur-

ley et al. 2009; Langen et al. 2009; Roger and Ramp 2009;

Hothorn et al. 2012; Markolt et al. 2012; Santos et al.

2013; Seo et al. 2015). These models perform relatively

well at local scales, and some have been employed to

communicate areas of high risk to road managers, but

many cannot extrapolate to other sections of road or

entire networks. We extend this work by developing and

testing a framework that may be applied at much larger

scales, consistent with the boundaries of road authority

jurisdictions (i.e., state/provincial). Clevenger et al. (2015)

assert that the variability of significant predictors among

regions and geographic scales highlights a critical need for

a useful broad-scale conceptual framework to analyze/pre-

dict WVC.

Managers often have limited time and budgets to sur-

vey WVC across large areas or road networks. Many

existing studies utilize data collected at fine spatial scales

to model WVC, which is only feasible for limited areas

because it is prohibitively expensive to collect data at the

required regional scale. Methods to incorporate publicly

accessible, existing sources of data or model data-deficient

parameters are useful to reduce costs. For example, remo-

tely sensed data are useful to determine environmental

influences, while GIS-based census data may be used to

characterize road conditions. Our framework is a desk-

top-based exercise for managers to determine risk across

a large network, with the ability to fine-tune it, based on

available data. Moreover, it can be adapted with addi-

tional or modified data without changing the underlying

methodology.

When modeling is used to determine hot spots for

WVC, predictions are made using single models that

combine both environmental and anthropogenic variables

(Malo et al. 2004; Ramp et al. 2005; Gomes et al. 2008;

Roger and Ramp 2009; Hothorn et al. 2012; Barthelmess

2014; Meisingset et al. 2014; Snow et al. 2014). These

studies are valuable for managers to identify locations for

mitigation or further study; however, they are often lim-

ited in their ability to extrapolate beyond the study area

and do not clearly indicate potential confounding effects

or suggest what mitigation to use (e.g., on the road envi-

ronment or on the species). For example, vegetation on

the road verge is commonly used to model collisions and

has been shown to be an effective predictor in previous

work. But as a single covariate among others in a regres-

sion model, it is difficult to determine whether vegetation

is related to collisions based on its affect on visibility for

drivers or its attraction for animals. We extend the utility

of this research by disentangling the effects of human

activity and wildlife behavior, which has not been

achieved before. We aim to improve the accessibility of

collision analysis and predictions by relating risk to two

components, exposure and hazard. This hierarchical clas-

sification and structure of the predictors enables a more

straightforward calibration and interpretation of the mod-

els – a useful feature for managers – without compromis-

ing predictive performance.

Materials and Methods

Conceptual model framework

Risk (as a rate) of animal collisions can be expressed as a

function of exposure and hazard:

Ri ¼ a � Ei � Hi (1)

where Ri is the risk, Ei is the exposure, Hi is the hazard, a

is a constant of proportionality, and i represents a model-

ing unit (e.g., site, road, road segment, etc.). This equa-

tion is multiplicative and to enable linear analysis, we

logarithmically transform the variables:

lnðRiÞ ¼ lnðaÞ þ lnðEiÞ þ lnðHiÞ (2)

This suggests risk is perfectly related to both exposure

and hazard, and we allow modified responses by express-

ing the constant of proportionality as an intercept and

introducing regression coefficients such that risk is mod-

eled as:

lnðRiÞ ¼ b0 þ b1 lnðEiÞ þ b2 lnðHiÞ (3)

-or equivalently as-

Ri ¼ eb0þb1 lnðEiÞþb2 lnðHiÞ (4)

Here, b1 and b2 indicate the relative influence of each

predictor on risk. This makes inferences on the model fit

more tractable and clearly identifies areas for management

focus (e.g., the exposure or the hazard). If risk is exactly

related to exposure and hazard as in eq. 2, then both

regression coefficients b1 and b2 will equal one.
For this study, we represent exposure with animal pres-

ence, and hazard with both traffic volume and speed as

neither one in isolation would be a realistic threat. We

envisage risk as being measured by the rate of collisions.

Using this configuration, the rate of collisions (Ci) is

modeled as a function of three predictors of (1) species

occurrence, (2) traffic volume, and (3) traffic speed:

Ci ¼ eb0þb1 lnðOiÞþb2 lnðViÞþb3 lnðSiÞ (5)

where Oi is species occurrence, Vi is traffic volume, Si is

traffic speed, in a given place i.

While we consider risk as being measured by the rate

of collisions (e.g., collisions per month), our data consist
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of binary events (observations of individual collisions and

no collisions, coded as ones or zeroes, respectively). If

collisions are treated as events in a Poisson encounter

model, then the probability of no collisions occurring

equals e�Ci Let Yi = 1 indicate a collision occurred at site

i, and Yi = 0 indicate no collision, with pi = Pr(Yi = 1).

The probability of no collision occurring is equal to one

minus the probability of a collision, so it is defined by:

lnð1� piÞ ¼ �eb0þb1 lnðOiÞþb2 lnðViÞþb3 lnðSiÞ (6)

-or equivalently as-

lnð� lnð1� piÞÞ ¼ b0 þ b1 lnðOiÞ þ b2 lnðViÞ þ b3 lnðSiÞ
(7)

The left-hand side of eq. 7 is the complementary log–
log link function, which has similar properties to the

more common logit function of logistic regression. How-

ever, we use the complementary log–log function here,

because it relates more clearly to the rate of collisions

(eq. 5), and to our conceptual risk model (eq. 1). Thus,

cloglogðpiÞ ¼ b0 þ b1 lnðOiÞ þ b2 lnðViÞ þ b3 lnðSiÞ (8)

Information on species occurrence, traffic volume, and

traffic speed is unlikely to be available for every place i

and we propose that this can be modeled. Several trans-

portation modeling methods exist for estimating traffic

patterns: generalized linear modeling (Seaver et al. 2000;

Zhao and Chung 2001), neural network analysis (Duddu

and Pulugurtha 2013), empirical Bayes estimation (Yang

and Davis 2002), universal kriging (Eom et al. 2006; Selby

and Kockelman 2013), and support vector machines (Cas-

tro-Neto et al. 2009). Modeling approaches to estimate

species occurrence include correlative (Guisan and Thuil-

ler 2005; Elith and Leathwick 2009) and mechanistic

(Kearney and Porter 2009) species distribution modeling

(SDM) and extensions of population viability analysis

(PVA) (Gilpin and Soule 1986; Shaffer 1990).

We apply our framework to study vehicle collisions

with kangaroos in Australia using SDM to estimate kan-

garoo occurrence and linear regression to estimate traffic

volume and speed (Fig. 1).

Study area and species

We selected the State of Victoria in southeast Australia as

a study area as its geographic diversity across its area of

227,819 square kilometers (Australian Bureau of Statistics,

2011) provides a good platform to illustrate the frame-

work. Our study combines all sealed roads within the

state (approx. 150,000 km) and predicts collision risk

across six motorway class types. To organize our spatial

data, we overlaid a spatial grid of one square kilometer

resolution on the study area. To produce modeling units

for the collision model, we further segmented the roads

by intersecting all roads and the spatial grid. The

open-source software package “R” (R Development Core

Team, 2004) was used to perform all spatial and statistical

analyses.

We used the native species Eastern Grey Kangaroo

(Macropus giganteus, Shaw, hereafter referred to as

“grey kangaroo”) as the case study species. In Victoria,

the grey kangaroo is the most abundant of the macro-

pod family and frequently involved in WVC. Between

2005 and 2013, over 600 incidents were reported to

the Victorian Police and documented in the VicRoads

crashstats database (VicRoads, 2014). Actual incident

rates, however, are much higher as the largest Victorian

wildlife organization, Wildlife Victoria, received over

5000 reports of grey kangaroo–vehicle collisions over

the same period (Wildlife Victoria, 2014). Grey kanga-

roos are the second largest native terrestrial mammal

in Australia and share many similar characteristics and

management issues with ungulates found in North

America and Europe (Croft 2004; Coulson and Eldridge

2010).

Figure 1. Diagram of modeling framework. Three submodels are

used to generate covariates used in the collision model per the “risk

equals exposure multiplied by hazard” analytical framework.
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Species occurrence submodel

We downloaded survey records of grey kangaroos from

the Victorian Biodiversity Atlas (VBA) occurring in the

period 2000–2014 and spatial accuracy within 500 m

(DELWP, 2015). The presences were both systematic tar-

geted surveys and incidental sightings from data main-

tained by the Arthur Rylah Institute, a division of the

Victorian Department of Environment, Land, Water and

Planning. Kangaroos are generalists and widely dis-

tributed; it was therefore assumed that although abun-

dance may fluctuate based on drought conditions,

distribution would not change significantly from the year

2000. We used data from this period because it improved

the sample size for occurrence modeling. We derived

background data by randomly sampling 10,000 points

across the entire study area. After sampling values from

the covariate rasters and eliminating null values, the final

dataset included 901 species presence and 9957 back-

ground observations.

To estimate occurrence of grey kangaroos, we used

boosted regression trees (BRT) (Friedman 2002). BRT

modeling offers advantages of handling different types of

predictor variables, accommodating missing data and out-

liers, fitting complex nonlinear relationships, and incor-

porating interaction effects between predictors (Elith

et al. 2008). We selected a tree complexity of five (limit

on number of terminal nodes per tree used to include

potential interactions) and a learning rate of .005

(contribution of each tree to the model). Classification

methods have an established use in studies of species dis-

tributions (Walker 1990; Skidmore et al. 1996); however,

our framework is not limited to any particular modeling

method. We selected seven predictors (Table 1) based on

the biology and behavior of grey kangaroos. All of the

species occurrence submodel predictor variables were

below a pairwise correlation threshold of 0.75 to reduce

potential effects of multicollinearity. We predicted relative

likelihood of grey kangaroo occurrence from the model

fit at a one square kilometer resolution across Victoria

(Fig. 2).

Traffic volume and speed submodels

Average annual daily traffic (AADT) represents the sum

of traffic traveling in both directions which pass a road-

side observation point during a full year divided by

365 days for a given road segment. AADT volume is usu-

ally only available for major road segments, and we did

not have data for most local, collector, and subarterial

roads under municipal district control. We predicted vol-

ume estimates for all road segments in the study area

with random forests regression (Breiman 2001). The

dependent variable was 2013 AADT recorded by VicRoads

on 3174 road segments. We included seven predictor vari-

ables (Table 1) that related to processes in traditional

four-step traffic demand modeling (trip generation, trip

distribution, mode choice, and route assignment). All of

Table 1. Variables used in statistical models.

Model Variable Definition

Species occurrence KANG Presences and psuedo-absences of Eastern Grey Kangaroos

ELEV Elevation of terrain in meters above sea level

GREEN Remote-sensed mean seasonal change in greenness (2003–2013) in vegetation

LIGHT Remote-sensed relative artificial light intensity

MNTEMPWQ Mean temperature of wettest quarter in °C

PRECDM Precipitation of driest month in millimeters

SLOPE Slope of terrain in decimal percent rise

TREEDENS Tree canopy coverage within 1 square kilometer in decimal percentage

Traffic volume AADT Average annual daily traffic counts per road segment

KMTODEV Distance in kilometers to urban land use

KMTOHWY Distance in kilometers to major road segments (freeways and highways)

POPDENS 2011 Population divided by area in square kilometers

RDCLASS Road class (“freeway,” “highway,” “arterial,” “subarterial,” “collector,” or “local”) –

proximal measure of intensity

RDDENS Total length in kilometers of road segments within 1 square kilometer

Traffic speed SPEEDLMT Posted speed limit per road segment

RDCLASS Road class (see above)

RDDENS Total length in kilometers of road segments within 1 square kilometer

Collision COLL Presences and psuedo-absences of grey kangaroo–vehicle collisions

EGK Predicted relative likelihood of kangaroo presence

TVOL Predicted traffic volume (number of vehicles per day) per road segment

TSPD Predicted posted traffic speed (kilometers per hour) per road segment
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the traffic model predictor variables were below a pairwise

correlation threshold of 0.7 to reduce potential effects of

multicollinearity. The traffic volume submodel used the

log-link function on the dependent variable (Table 2) due

to the approximate log-normal distribution of AADT. We

predicted AADT to all road segments using the model fit

(Fig. 3).

Traffic speed was modeled and predicted using a simi-

lar methodology to the traffic volume model. As with the

traffic volume data, we did not have access to municipal

records; however, we required speed values for all road

segments across Victoria. We obtained 2014 posted speed

limit data for all major road segments (n = 42,439) and

used road density and road class predictors (Table 1) in a

Figure 2. Predicted relative likelihood of grey kangaroo presence in study area. Darker shades indicate higher relative probabilities of occurrence

(mean: 0.057; range: 0.002–0.986).

Table 2. Statistical models used in framework.

Model type Model

Reduction

in error (%) ROC (AUC)

Species occurrence Pr(KANG = 1) � logit-1(b0 + b1ELEV + b2GREEN + b3LIGHT +

b4MNTEMPWQ + b5PRECDM + b6SLOPE + b7TREEDENS)

30.4 0.88

Traffic volume ln (AADT) � b0 + b1KMTODEV + b2KMTOHWY + b3POPDENS +

b4RDDENS + b5RDCLASS

54.4 –

Traffic speed SPEEDLMT � b0 + b1RDCLASS + b2RDDENS 58.7 –

Collision cloglog(Pr(COLL = 1)) � b0 + b1 ln (EGK) + b2 ln (TVOL) +

b3 ln (TSPD)

23.7 0.81

Alternative collision cloglog(Pr(COLL = 1)) � b0 + b1ELEV + b2GREEN + b3KMTODEV +

b4KMTOHWY + b5LIGHT + b6MNTEMPWQ + b7POPDENS +

b8PRECDM + b9RDCLASS + b10RDDENS + b11SLOPE + b12TREEDENS

24.9 0.84
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random forests regression model (Table 2) to predict

speed for all road segments (Fig. 4).

Collision modeling

To produce a kangaroo–vehicle collision dataset, we

obtained records from the Wildlife Victoria database for a

3-year period between 1 January 2010 and 1 January

2013. The data for collisions were selected from a period

where consistent techniques were used to collect and

record the data. Pre-2010 records exist, however, are

sparse and more prone to error. We first verified all auto-

matically geocoded coordinates for accuracy using an

online latitude/longitude mapping system (Schneider

2015) and excluded all records with a geographical accu-

racy exceeding 300 m. We selected road segments that

were closest to the collision records in space and coded

them with ones. To produce background points, we ran-

domly selected approximately twice the number of colli-

sion-coded road segments and coded them with zeros.

We combined the collision and background segments to

produce a final dataset of 2264 collision and 4489 back-

ground segments. Using the same methodology, we devel-

oped an additional dataset of road segments for a period

of 1 year between 1 January 2013 and 1 January 2014 for

model validation (2125 collision and 4212 background

records). Each segment contained predicted values for

both traffic speed and volume from the previously

described submodels. As species occurrence predictions

were expressed across a one square kilometer raster grid,

we used the midpoint of each road segment for sampling

the species occurrence submodel predictions.

Our collision model fitted predicted values from the

submodels to collision or background occurrences at each

road segment (Table 2). We used the fitted collision

model to predict relative probabilities of collision on all

road segments in the study area and, using symbol classi-

fication (color and line thickness) in Quantum GIS

(QGIS Development Team, 2015), produced a map

(Fig. 5).

To determine the effectiveness of partitioning the vari-

ables into logical submodels, we also modeled collision

risk with a combined set of all variables (Table 2); that is,

we analyzed a logistic regression model that related

collisions directly to the original variables used to model

kangaroo occurrence, traffic volume, and traffic speed.

This emulated past work for purposes of comparison. We

also compiled a list of variables used in 74 wildlife–vehicle

Figure 3. Predicted relative traffic volume in number of vehicles per day per road segment in study area. Darker shades indicate higher predicted

traffic volumes (mean: 4481; range: 274–60850).
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collision modeling papers and verified that nearly all of

our predictors were used in at least five or more pub-

lished studies. The remaining highly used variables were

either irrelevant to our scope or difficult to obtain.

Results

The species occurrence model predicted the relative

likelihood of kangaroo presence to vary (0.002 to

0.986) across the study area using 5400 regression trees.

The deviance explained by the model was approxi-

mately 30.4% (null deviance = 0.572, estimated cross-

validation deviance = 0.398 � 0.008, cross-validation

AUC = 0.878 � 0.006; see Table 2). The three most

influential variables were artificial light (19.6% contri-

bution to model), elevation (18.4%), and precipitation

of the driest month (14.8%). Partial dependence plots

demonstrated plausible relationships between the predic-

tors and grey kangaroo presence (see Fig. S1). We

extended our model predictions to continental Australia

(including areas well beyond Victoria), which aligned

well with known grey kangaroo range (see Fig. S2).

Approximately fifty percent of the grey kangaroo

collision records were within areas where the predicted

probability of grey kangaroo occurrence was above 0.2.

Collision records in areas of lower predicted occurrence

areas may be due to misclassification errors (i.e.,

misidentification of the species of kangaroo), reporting

bias/spatial error in the collision data, or sampling bias

in the data used to train the kangaroo occurrence

model.

The traffic volume model explained 54.4% of the varia-

tion in the AADT data and the traffic speed model

explained 58.7% of the variation in the posted speed limit

data (Table 2). Each model used the default value of 500

trees to fit the data. All predictor variables used in the

traffic models demonstrated plausible relationships to

both AADT and speed (see Fig. S3); traffic volume

increased with decreased road segment distance to activity

centers and major thoroughfares. The most influential

variable for traffic volume was road class (33.8% relative

contribution to reduction of variance), followed by dis-

tance to urban development (19.7%) and distance to free-

ways and highways (16.4%).

The collision model explained 23.7% of the deviance

(Table 2). Using the independent dataset to verify the

Figure 4. Predicted relative traffic speed in kilometers per hour per road segment in study area. Darker shades indicate higher predicted traffic

speeds (mean: 62; range: 42–106).
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predictive accuracy of the model resulted in a receiver

operating characteristic (ROC) score of 0.81. All three

variables were highly significant (table 3) with traffic

speed and grey kangaroo occurrence contributing the

most to overall reduction in deviance; 27.3% and 72.7%,

respectively. The Akaike information criterion (AIC)

score – measuring the quality of the model given the data

and the parameters – was 6579. All predictor variables

demonstrated logical relationships to collision likelihood

in the partial dependency plots (Fig. 6). The rapid ascent

and gradual leveling off of collision risk to increasing traf-

fic volume suggests a threshold of around 2000 vehicles

Figure 5. Map of collision risk per road segment. Darker shades indicate higher relative risk of collisions with kangaroos (mean: 0.24; range:

0.01–0.99).

Figure 6. Effects of predictor variables on relative likelihood of collision. EGK is the relative likelihood of kangaroo occurrence (A). TVOL is the

predicted daily traffic volume in vehicles per day (B). TSPD is the predicted traffic speeds in kilometers per hour (C). Shaded regions indicate

error bounds (95% confidence) on coefficient estimates.
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per day. In very high traffic volume areas, roads may

deter animal movement, thereby lessening potential colli-

sions (Seiler 2005; Seiler and Helldin 2006; Gagnon et al.

2007).

Our alternative collision model (all submodel predictor

variables combined in a single model) explained 24.9% of

the deviance; <2% more than the four-model framework

(Table 3). The model AIC score was 6496.2. The most

influential variables were road class (42.1% relative con-

tribution to reduction of deviance), distance to urban

development (20.8%), elevation (17.3%), and population

density (9.2%). We used the same independent dataset to

verify the predictive accuracy of the alternative model,

resulting in an ROC score of 0.84.

Discussion

This research introduces a new conceptual framework for

predicting risk of WVC. It is distinct from other collision

models in its treatment of the analytical modeling frame-

work. Where other research has related multiple environ-

mental and anthropogenic variables to collision

occurrence in a single statistical model (e.g., Lee et al.

2004; Ramp et al. 2005; Kl€ocker et al. 2006; Litvaitis and

Tash 2008; Gunson et al. 2009; Roger and Ramp 2009)

and predicted risk from model fits (e.g., Malo et al. 2004;

Sudharsan et al. 2009; Gunson et al. 2011), we separate

and develop the predictors in submodels that would most

suitably inform management. Each submodel may be

independently scrutinized for bias, uncertainty, and spa-

tial autocorrelation and tuned accordingly. In this case

study, our approach identifies relationships between, and

effects of, species presence and traffic volume/speed on

collision risk to grey kangaroos. In a similar manner,

Bauduin et al. (2013) developed an index of co-occur-

rence to assess collision risk between manatees and recre-

ational watercraft; however, the management implications

were not extensively discussed. Particular to our study,

road managers and environmental managers may be

interested in whether to reduce collisions by focusing on

the road environment (e.g., Clevenger and Wierzchowski

2001; Jaeger and Fahrig 2004; Bond and Jones 2008,

2013), traffic conditions, or species (e.g., Huijser and

McGowen 2003; Huijser et al. 2006). Both the collision

and alternative collision models had similar fits and made

similar predictions. However, we argue that cause and

effect is easier to interpret when using our proposed

framework. For example, the variable of population den-

sity (human) is shown to contribute to collisions; how-

ever, it is unclear to what degree it is correlated with grey

kangaroo occurrence, traffic conditions, or both, in the

alternative collision model.

The models used in the study were all correlative and

assumed static equilibrium in the environment. Temporal

patterns of WVC exist and would be useful to incorporate

into the collision model, but the variable of time was not

easily integrated into this study. The original collision

dataset indicated that the lowest number of incidents

occurred in summer (December–February) and the high-

est were reported in winter (August). The times of highest

density of reports were consistent with the crepuscular

(most active at dusk and dawn) nature of kangaroo

Table 3. Summary of collision model fit. Coefficients and significance of variables are shown with relative contribution to model fit. Highly signifi-

cant variables are marked with an asterisk. ANOVA contribution of variables are expressed as decimal percent reduction in deviance.

Model type Variable Coefficient SE z-Value Pr(>|z|)

ANOVA

(Contribution)

Collision Intercept �12.82 0.6635 �19.33 <2e-16* –

EGK 0.6583 0.0206 32.01 <2e-16* 0.7268

TVOL 0.2715 0.0252 10.77 <2e-16* 0.0005

TSPD 2.694 0.1308 20.59 <2e-16* 0.2726

Alternative

Collision

Intercept �2.567 0.2642 �9.716 <2e-16* –

ELEV 0.003177 0.0002233 14.23 <2e-16* 0.1729

GREEN 1.405 0.344 4.085 4.42e-05* 0.0011

KMTODEV �0.02784 0.002097 �13.28 <2e-16* 0.2079

KMTOHWY 0.006001 0.004206 1.427 0.1537 0.0004

LIGHT 0.004142 0.002046 2.025 0.043 0.0119

MNTEMPWQ 0.1519 0.01673 9.077 <2e-16* 0.0398

POPDENS �0.0006986 0.00005348 �13.06 <2e-16* 0.0922

PRECDM 0.02573 0.003404 7.559 4.05e-14* 0.0483

RDCLASS �0.4166 0.01467 �28.4 <2e-16* 0.4205

RDDENS 0.02353 0.008762 2.686 0.0072 0.0038

SLOPE 0.008252 0.00739 1.117 0.2641 0.0004

TREEDENS �0.1761 0.1387 �1.27 0.2041 0.0008
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movements (McCullough and McCullough 2000) and

peaked at approximately 7:00 and 17:00 h. Comparing

the model performance on data accounting for time of

day and of year is an area for future research. Other

modeling methods that explicitly address interactions

between space and time exist, such as multidimensional

Poisson process models, and would be useful to incorpo-

rate into the framework.

This study demonstrates the usefulness of existing

sources of data for scientific research and environmental

management. Data provided by non-governmental orga-

nizations, such as Wildlife Victoria, are not only inexpen-

sive to collate, but are also valuable ecological indicators

and sources of information, in particular, on species dis-

tributions. However, it is cautioned that use of such data

should be subject to rigorous quality control and verifica-

tion. A large amount of entered records were not useful

for the scale of this study due to incomplete data or geo-

graphical ambiguity. Fauna atlases have the same poten-

tial issues. Many of the records in the VBA were subject

to geographical bias (e.g., close to roads and towns) and

some potential inaccuracies (e.g., misidentification of spe-

cies or approximate location). Graham et al. (2004) elab-

orates on the use of such data in scientific studies.

Moreover, testing the model with alternative sources of

collision reports (e.g., insurance records) would help

account for biases present in the data. Although underre-

porting of collision data has limited effects on model

robustness, spatial biases can adversely affect model per-

formance (Snow et al. 2015).

Our statistical modeling methods were chosen to

match the data and purpose (as suggested by Wintle

et al. 2005; Guillera-Arroita et al. 2015), and are based

on well-established analyses in the modeling literature.

However, our framework is not restricted to the partic-

ular models that we built; any appropriate statistical

methods may be used for each of the submodels. For

example, BRT are a well developed method for SDM

(Elith et al. 2008) but may also be suited to predict

traffic volume and speed. Further exploration of model-

ing methods, including those based on machine learn-

ing, may result in better calibrated models with less

uncertainty and more robust inferences. Moreover, the

use of mechanistic models to explain population

dynamics (requiring collection of additional information

such as age, sex, and size of species involved in WVC)

may be beneficial as the integration of PVA into species

distribution and collision models can be informative

(Tyre et al. 2001; Elith et al. 2010; Polak et al. 2014).

All of the models with binary dependent variables were

subject to spatial autocorrelation producing potentially

biased standard errors and predictions of grey kangaroo

presence and collision risk. Techniques to incorporate

autocovariates in the models similar to Crase et al. (2012)

might improve the predictive performance but may only

be logical for particular species (e.g., ranging or nomadic

species). Further, we chose to test the model framework

using a binomial dependent variable; however, it can be

adapted to analyze other data types such as non-negative

integers (e.g., number of collisions) or categorical infor-

mation (e.g., groupings of number of collisions). These

alternative methods might usefully identify hotspots (i.e.,

sites with multiple collisions) at smaller scales such as

road segments or simulate effects of planned road expan-

sion projects. For example, population effects on target

species can be quantified and estimated based on predict-

ing the magnitudes of collision hotspots.

Applied management implications

To realize the full potential use by managers, a model

framework must be conceptually simple, flexible, and

adaptable. All of the input data must be accessible, and

the framework must allow inferences which are relevant

and draw conclusions which are tractable. Our study uses

vehicle collisions with grey kangaroos in Australia to

demonstrate this analytic framework; however, we envi-

sion extending the model to (1) explore and predict risk

to other species (e.g., wombats or deer) arising from

vehicle collisions by identifying and quantifying probabil-

ities of occurrence using alternative species distribution

models and (2) quantify risks to wildlife arising from

other anthropogenic threats such as linear infrastructure

(e.g., electrocutions), pollution (e.g., entanglements), or

introduction of domestic predators (e.g., dog and cat

attacks). Managers can use our framework across several

disciplines, and it would benefit from additional testing

across several spatial and temporal scales to determine its

full potential flexibility and generality.
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