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Abstract

Non-small cell lung cancer (NSCLC) patients with activating EGFR mutations are often 

successfully treated with EGFR tyrosine kinase inhibitor (TKI) such as erlotinib; however, 

treatment resistance inevitably occurs. Given tumor metabolism of glucose and therapeutic 

response are intimately linked, we explored the metabolic differences between isogenic erlotinib­

sensitive and -resistant NSCLC cell lines. We discovered that the growth of erlotinib-resistant cells 

is more sensitive to glucose deprivation. Seahorse metabolic assay revealed erlotinib-resistant cells 

have lower spare respiratory capacity (SRC), an indicator of metabolic flexibility, compared to 

erlotinib-sensitive cells. Additionally, we found downstream components of mTORC2 signaling to 

be phosphorylated in erlotinib-resistant cells. Knockdown of an mTORC2 component, Rictor, 

enhanced the SRC and rescued the growth rate of erlotinib-resistant cells during glucose 

deprivation. Among NSCLCs with activating EGFR mutations, gene sets involved in glucose 

metabolism were enriched in patients with high expression of p-NDGR1, a readout of mTORC2 

activity. Furthermore, overall survival was negatively correlated with p-NDRG1. Our work 

uncovers a link between mTORC2 and metabolic reprogramming in EGFR TKI-resistant cells 

and highlights the significance of mTORC2 in the progression of EGFR-mutated NSCLC.
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1. Introduction

Lung cancer is the leading cause of cancer-related death globally [1]. Non-small cell lung 

cancer (NSCLC) comprises 85% of diagnosed lung cancer cases and has a grim 5-year 

survival rate of 18%. Approximately 15% of U.S. and 40% of Asian NSCLC cases harbor 

mutations in the EGFR kinase domain which confer sensitivity to small-molecule EGFR 

tyrosine-kinase inhibitors (TKIs) such as erlotinib [2]. However, in a majority of cases, 

treatment resistance emerges within 1 year despite robust initial response rates [3]. Several 

genetic mechanisms of resistance to EGFR TKIs have been observed clinically and include a 

secondary EGFR mutation (T790 M) and MET amplification [4]. Despite a new generation 

of EGFR TKIs approved to treat patients with EGFR T790 M, studies have shown that 

cancer cells can still develop resistance [5–7]. To improve the outcomes in patients with 

EGFR-mutant NSCLC, it is critical to understand the molecular escape mechanisms to 

EGFR inhibition.

Altered tumor cell metabolism is a hallmark of human cancer and considered to be a 

therapeutic target for treating cancer [8]. Oncogenic pathways have been linked to the 

rewiring of tumor metabolism to support cellular energetics and supply macromolecule 

precursors in cancer. Several studies have shown that NSCLC displays a higher rate of 

glucose metabolism compared to normal lung tissue [9,10]; therefore, there is significant 

interest in identifying metabolic vulnerabilities that can be exploited as new therapeutics. In 

particular, it has been shown that EGFR signaling regulates glucose metabolism in NSCLC 

cells through the PI3K/mTOR pathway [11,12]. mTOR is a crucial regulator of cell growth, 

proliferation and metabolism [13], and mTOR activity is also involved in the development 

and progression of EGFR mutated lung tumors [14]. These results prompted us to explore 

glucose utilization and the mTOR pathway in connection with resistance to EGFR TKIs.

To examine the behavior of EGFR TKI-sensitive and -resistant cells in response to 

environmental perturbations, we previously developed a high-content imaging workflow to 

dynamically phenotype cells in various microenvironmental contexts [15,16]. We used this 

workflow to investigate the impact of glucose deprivation on cell behavior and identified 

differential growth kinetics between erlotinib-sensitive and -resistant isogenic NSCLC 

cells. Given the significant influence of mitochondrial function on the response to glucose 

deprivation [17], we utilized a Seahorse metabolic assay to interrogate the spare respiratory 

capacity (SRC) of the NSCLC cells. SRC is the extra mitochondrial capacity available for 

cells to use in response to stress or increased ATP demand [18] and it has been implicated in 

the ability of cells to cope with oxidative metabolic stress [19]. We demonstrated erlotinib­

resistant cells have less SRC compared to erlotinib-sensitive cells. Interestingly, we found 

that the activity of mTOR2, but not mTORC1, was increased in erlotinib-resistant cells and 

may contribute to the diminished SRC observed in erlotinib-resistant cells. Data from The 

Cancer Genome Atlas (TCGA) Research Network revealed a correlation between mTORC2 

signaling and a shorter overall survival time in patients with EGFR-mutated NSCLC. These 

results indicate that EGFR TKI-resistant cells have distinct metabolic programs that may be 

exploited to predict tumor progression and stratify patients with EGFR-mutated NSCLC for 

better treatment outcomes.
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2. Material and methods

2.1. Cell culture

All NSCLC cell lines used in this study carry EGFR-activating mutations in either exon 

19 or exon 21. The isogenic erlotinib-sensitive and -resistant (R) cell lines (PC9, and 

PC9R-T790 Μ; H3255 and H3255R-T790 M; HCC4011, HCC4011R-MET amplified) were 

originally acquired from Dr. William Pao (while at Vanderbilt University) and cultured 

in RPMI 1640 media. Erlotinib-resistant cell lines were maintained in 1 μM erlotinib as 

previously described [23]. All cell lines were regularly tested for mycoplasma contamination 

using MycoAlert (Lonza #LT07-518) and authenticated by professional authentication 

services (University of Arizona Genetic Core).

2.2. Reagents

Erlotinib (#S1023) was obtained from Selleck Chemicals (Houston, TX, USA). Puromycin 

(#A1113803) was purchased from Life Technologies (Carlsbad, CA, USA). Hoechst 33342 

(#H21492) and propidium iodine (#P1304MP) were acquired from Invitrogen (Waltham, 

MA, USA). The Rictor (#2114), phospho-tyrosine (#5465), phospho-NDRG1 (T346; 

#5482), NDRG1 (#9485), phospho-Akt (S473; #4060), Akt (#9272), phospho-S6 (S240/4; 

#2215), S6 (#2217), phospho-4EBPl (T37/46; #2855), 4EBP1 (#9452), phospho-EGFR 

(Y1068; #3777), EGFR (#4267) and MET (#8198) antibodies were from Cell Signaling 

Technologies (Danvers, MA, USA). Antibodies against β-actin (#A1978) were purchased 

from Sigma (St. Louis, MO, USA).

2.3. High-content screening and image analysis

The effect of environmental perturbation on cell growth was measured as described 

previously [15]. In brief, cells were seeded in 96 well CellCarrier plates (PerkinElmer 

#6005550). 1 day after seeding, cells were treated with the indicated environmental 

perturbations. Each condition was assayed in at least triplicate wells. Prior to imaging using 

the Operetta® High-Content Screening System (PerkinElmer #HH12000000), cells were 

stained with 5 μg/ml of Hoechst 33342 and 5 μg/ml of propidium iodine for 30 min to 

identify live or dead cells, respectively. Image analysis was performed using the Harmony 

3.5.2 software (PerkinElmer #HH17000001).

2.4. Growth rate calculation

The measured live and dead cell counts at various time points under glucose depletion or 

repletion conditions were fit to an exponential growth model [20]. A linear regression of the 

log-transformed data was performed to obtain fitted rates for each condition.

2.5. Agilent seahorse XF metabolic assays

Metabolic analysis of erlotinib-sensitive and -resistant were measured using a Seahorse XFp 

Mito Stress Test (Agilent #103010-100). In brief, 10,000 cells were seeded in each well of 

an XFp cell culture plate. At day 2, real-time oxygen consumption and proton production 

rates were determined, and all the values were normalized to protein concentration using a 

standard BCA protein assay.
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2.6. Western blot

Cells were lysed using radioimmunoprecipitation assay (RIPA) buffer (Sigma #R0278) 

supplemented with halt protease and phosphatase inhibitor cocktail (Thermo Scientific # 

78442). Protein concentrations were determined using the Pierce BCA Protein Assay Kit 

(Thermo Scientific #23223) per the manufacturer’s instructions. Equal amounts of protein 

extracts were separated using 4–15% mini-Protean TGX polyacrylamide gel (Bio-Rad 

#456–1033). Samples were transferred to a Trans-Blot Turbo PVDF membrane (Bio-Rad 

#1704156). The membrane was blocked using Blotting-Grade Blocker (Bio-Rad #170–

6404) dissolved in TBST and probed with varying primary antibodies. The membrane was 

then treated with HRP conjugated secondary antibodies. The immunoreactivity was detected 

with either the Pierce ECL Western Blotting Substrate or the Super Signal West Pico 

Chemiluminescent Substrate (Thermo Scientific). Densitometric analysis was performed 

with ImageJ, and relative values were displayed under respective blots.

2.7. shRNA transfection

Rictor shRNA was a gift from David Sabatini (Addgene plasmid # 1853) [21]. Control 

shRNA was purchased from Santa Cruz (# 108080). Lentivirus-mediated delivery of shRNA 

was performed 24 h after passaging in the presence of 5 μg/ml polybrene (Santa Cruz # 

134220). Cells were selected and maintained in 1 μg/ml puromycin.

2.8. Mining of public datasets

Mutation, mRNA and protein expression data were all downloaded from The Cancer 

Genome Atlas (TCGA) Research Network (http://cancergenome.nih.gov/). Patients within 

the luad_tcga cohort (lung adenocarcinoma TCGA provisional) with mutant EGFR­

driven lung adenocarcinoma and accompanying reverse phase protein array (RPPA) 

and RNAseq data were selected for analysis (Supplementary Table 1). Relative protein 

expression data were obtained from the level 4 RPPA data. Data were normalized and 

batch corrected accordingly [22]. RNAseq profiles were analyzed using the GSEA 3.0 

desktop tool. Patients were divided into two subsets, those with p-NDRG1 expression 

below the cohort median and those above. The log2fold change was calculated using 

DEseq2 and used as input to the pre-ranked algorithm of the GSEA tool using 

the classic enrichment statistic as described http://www.broadinstitute.org/gsea. The 

Hallmark_Glycolysis and _Oxidative Phosphorylation gene sets from the Broad Institute’s 

MsigDB (http://software.broadinstitute.org/gsea/msigdb/index.jsp) were used for gene set 

enrichment analysis. The normalized enrichment score (NES) and false discovery rate 

(FDR) were calculated for comparison. Disease-free survival and overall survival clinical 

data were obtained from TCGA using the cdgsr package in the R statistical programming 

language.

2.9. Statistical analysis

All values were expressed as mean ± SEM. Studen’s t-test (two-tailed) was performed for 

statistical comparison. Asterisk indicates that the values are significantly different (*, P < 

0.05; **, P < 0.01; ***, P < 0.001).
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3. Results

3.1. Doubling time increased under glucose deprivation in EGFR TKI-Resistant cells

For these studies, we used three human NSCLC isogenic erlotinib-sensitive and -resistant 

(R) cell lines (PC9, PC9R; H3255, H3255R;HCC4011, and HCC4011R). PC9 exhibit 

exon 19 in-frame deletions (delE746-A750). H3255 and HCC4011 have exon 21 L858R 

mutations. PC9R and H3255R contain an additional EGFR mutation T790 M. HCC4011R 

has MET amplification. The growth of PC9R, H3255R, and HCC4011R was not affected 

under 1 μM Erlotinib treatment (Fig. S1A). T790 M mutation was validated through 

sequencing of EGFR exon 20 (Fig. S1B). Consistent with previous observations, PC9R 

cells showed further EGFR amplification, and HCC4011R cells exhibit an increase in MET 

expression while decreasing EGFR expression (Fig. S1C) [23].

Traditional cell growth assays (e.g. MTT) often use metabolic activity as a surrogate 

measurement of cell number. Although these assays are routinely employed, they may 

fail to provide an accurate assessment of cell behavior under certain conditions [24]. 

Therefore, to determine cellular responses to environmental perturbations, we previously 

developed a high-content image-based workflow for quantitatively assessing cell dynamics 

over time [15]. We used this workflow to investigate the effects of glucose deprivation 

on the cell growth kinetics of the three erlotinib-sensitive and -resistant isogenic NSCLC 

cells. In general, we observed erlotinib-resistant cells grew more slowly in glucose depleted 

conditions compared to erlotinib-sensitive cells (Fig. S2). To quantify the effects of glucose 

deprivation and avoid time-dependent bias, we fit the cell counts collected at different 

time points into a mathematical model of exponential growth using CellPD (cell phenotype 

digitizer) [20]. As shown in Fig. 1, erlotinib-resistant cells exhibited a greater increase in 

doubling time under glucose deprivation compared with isogenic erlotinib-sensitive cells. 

The relative doubling time increase under glucose deprivation in PC9 vs. PC9R, H3255 

vs. H3255R, and HCC4011 vs. HCC4011R were 113% vs. 134%, 222% vs. 273%, 130% 

vs. 160%, respectively. This effect was independent of any growth rate differences under 

glucose repletion given the PC9 cells grew faster than PC9R cells while H3255 and 

HCC4011 grew slower than H3255R and HCC4011R cells, respectively. These results 

indicate that the growth of erlotinib-resistant cells was more sensitive to glucose deprivation.

3.2. Erlotinib-resistant cells have lower spare respiratory capacity

Mitochondrial function has been shown to play a pivotal role in the response to glucose 

deprivation [17]. To determine whether the differential growth kinetics of erlotinib-sensitive 

and -resistant cells under glucose deprivation are due to differing mitochondrial functions 

between these cell types, we utilized the Seahorse extracellular flux analyzer platform to 

interrogate the mitochondrial metabolic phenotypes of the isogenic cell lines. Through the 

Cell Mito Stress Test, the ATP-linked oxygen consumption rate (OCR) and SRC can be 

calculated after sequential injections of ATP synthase inhibitor oligomycin, protonophoric 

uncoupler FCCP and electron transport inhibitors rotenone plus antimycin A. The ATP­

linked OCR was calculated by taking the difference between basal OCR and OCR following 

addition of oligomycin while the SRC was determined by taking the difference between 

basal OCR and OCR following addition of FCCP. We found PC9R cells had a 22% decrease 
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in ATP-linked OCR and a 51% diminished SRC compared to the PC9 cells (Fig. 2A and 

B). We observed a 31% and 63% decrease in SRC in H3255R cells and HCC4011R when 

compared to the isogenic H3255 and H4011 cells, respectively (Fig. 2C and D). SRC is 

an indicator of cell metabolic flexibility. Specifically, it is the extra mitochondrial capacity 

available in a cell to produce energy in response to an increase in energy demand. Previous 

work has shown that diminished SRC can impede a cell’s ability to cope with metabolic 

stress [19]. Our results indicate that the lower SRC in erlotinib-resistant cells rendered them 

more susceptible to glucose deprivation.

3.3. mTORC2 contributes to the metabolic reprogramming in erlotinib-resistant cells

Mutant EGFR has been shown to regulate glucose metabolism through activation of PI3K/

mTOR pathway in NSCLC cells [11]. mTOR is a serine/threonine kinase and exists as two 

distinct complexes, known as mTORC1 and mTORC2. mTORC1 promotes the translation 

of genes involved in protein, nucleotide, and lipid synthesis while mTORC2 is thought 

to be implicated in cell survival and proliferation [13]. Recent reports demonstrate that 

mTORC2 activation can drive tumor progression and therapeutic resistance in brain and 

breast cancers [25,26]. These findings led us to address the role of mTORC1 and mTORC2 

in the metabolic reprogramming of erlotinib-resistant cells.

We examined the phosphorylation of ribosomal protein S6 and 4E-binding protein 1 

(4E-BP1) as mTORC1 activity readout and measured the phosphorylation of Akt and 

N-Myc downstream-regulated gene 1 (NDRG1) as a surrogate for mTORC2 activity. 

S6 is phosphorylated by S6K, which is a direct substrate of mTORC1 [27]. 4E-BP1 

is regulated by mTORC1 and is involved in cap-dependent translation [28]. NDRG1 is 

phosphorylated by serum and glucocorticoid-inducible kinase (SGK), which is a direct 

substrate of mTORC2 [29]. Akt is regulated by mTORC2 and promotes cell growth and 

survival [30]. No increase in mTORC1 activity was noted between erlotinib-sensitive and 

-resistant cells (Fig. 3A). In contrast, an increase in phosphorylation of NDRG1 and Akt 

was observed in all the isogenic erlotinib-resistant cells compared to erlotinib sensitive-cells 

(Fig. 3A). These results reveal mTORC2 activation in erlotinib-resistant cells.

While mTORC1 and mTORC2 share some common components, Rictor is a subunit 

specific to mTORC2 [30]. To test whether mTORC2 activation contributes to the metabolic 

reprograming in erlotinib-resistant cells, we used a genetic approach to knockdown Rictor 

expression. After transducing PC9 and PC9R cells with lentivirus encoding Rictor shRNA 

sequences (shRictor), or a scrambled control shRNA sequence (shCon), cells expressing 

shRictor displayed downregulation of Rictor protein and decreased phosphorylation of 

NDRG1 and Akt (Fig. 3B), indicating the inhibition of mTORC2 signaling. Additionally, 

we found Rictor knockdown in PC9R cells resulted in an increase in SRC (Fig. 3C) and 

decreased sensitivity to glucose deprivation compared to PC9R shCon (Fig. 3D and S3). 

It has been shown that glucose withdrawal induces supra-physiological phospho-tyrosine 

signaling that leads to cell death [31]. Consistent with these previous findings, we found 

phospho-tyrosine signaling was increased after glucose withdrawal in the erlotinib-resistant 

cells (Fig. 3E). Moreover, the downstream signaling of mTORC2, but not mTORC1, was 

increased following glucose withdrawal. Notably, Rictor knockdown was able to reduce the 
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glucose-deprived induction of mTORC2 activation (Fig. 3E). Our data collectively suggest 

mTORC2 activation is implicated in the metabolic reprogramming in erlotinib-resistant 

cells.

3.4. mTORC2 activation is associated with glucose metabolism and correlated with 
outcome of patients with EGFR-mutant NSCLC

To investigate the clinical implication of mTORC2 activation in patients with EGFR­

mutated NSCLC, we analyzed publicly available data from TCGA to investigate the 

biological pathways associated with mTORC2 signaling (as measured by p-NDRG1 [32]). 

Based on the cohort median, we divided NSCLC patients with EGFR driver mutations 

into two groups, those with relatively high p-NDRG1 expression and those with relatively 

low expression. We performed gene set enrichment analysis (GSEA) to identify gene 

sets enriched between these two groups. We found genes involved in glycolysis were 

upregulated in the high p-NDRG1 expressing group (Normalized Enrichment Score = 3.360, 

FDR < 0.001) (Fig. 4A). In addition, a panel of oxidative phosphorylation genes were 

downregulated in this group (Normalized Enrichment Score = −2.961, FDR < 0.001) (Fig. 

4B). These results link mTORC2 activation with glucose metabolism in EGFR-mutant 

NSCLC. Within the database, ten patients with follow-up survival data were used for further 

analysis. We found a significant negative correlation between p-NDRG1 expression and 

overall survival (R = −0.0.67, p < 0.05) (Fig. 4C), but no such association was observed 

for mTORC1 readouts (p-S6 and p-4EBP) (Fig. S4). In addition, we did not observe this 

negative correlation in patients with wild-type EGFR (Fig. S5), suggesting the association 

between p-NDRG1 and overall survival is mutant-EGFR dependent. A negative correlation 

was also found between p-NDRG1 expression and progression-free survival, although this 

is not statistically significant, as there are only 7 patients with progression-free survival data 

within the database (R = —0.0.61, p = 0.08; data not shown). These results suggest that 

the expression of p-NDRG1 may be an indicator of tumor progression based on glucose 

metabolism.

4. Discussion

The movement toward precision medicine for cancer treatment has been hindered by 

the emergence of drug resistance to targeted therapy. Although EGFR TKIs are the 

standard of care for patients with EGFR-mutant NSCLC, TKIs are not curative. Several 

resistance mechanisms to first-generation EGFR TKIs such as EGFRT790M and MET 
amplification have been identified and characterized. However, the mechanism underlying 

the evolution of resistance is still unclear. Some studies have suggested that resistant clones 

may be present before treatment and are rapidly selected out during TKI treatment [33–

35]. Other studies suggest that resistance can emerge from drug-tolerant persister cells 

[33,36,37]. Accumulating evidence suggests that EGFR mutations can drive alterations in 

metabolism [12,38], which led us to hypothesize that metabolic reprogramming plays a 

pivotal role in the emergence of EGFR TKI resistance. In the present study, high-content 

imaging enabled us to interrogate and uncover a differential impact of glucose starvation 

on isogenic erlotinib-sensitive and -resistant cell growth. We further demonstrated that 

mTORC2 signaling contributes to the metabolic reprogramming in erlotinib-resistant cells. 
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Through TCGA analysis of human NSCLC specimens with mutant EGFR, we found a 

negative correlation between mTORC2 activity readout p-NDRG1 and patient survival. It 

is noteworthy that most of the patients did not carry known genetic mutations that cause 

resistance to EGFR TKIs; however, GSEA revealed that gene sets involved in glucose 

metabolism are altered between patients with high or low mTORC2 activity. A recent report 

also suggested that metabolic alterations such as lactate utilization can be correlated with 

NSCLC progression after several years of follow up [39]. These results not only indicate 

that metabolic reprogramming could happen before the emergence of genetic resistance 

mutations, but also suggest mTORC2 activation as a novel readout of metabolic changes 

that could be used to predict the progression of NSCLC patients with EGFR-activating 

mutations.

It is well known that mTORC1 controls cell size and growth by regulation of protein 

translation, while the function and regulation of mTORC2 are less clear and still being 

actively explored [13]. Studies have shown that mTORC2 can regulate cell survival and 

stress response by phosphorylating Akt and SGK. Akt integrates signals from PI3K and 

mTORC2 and is frequently activated in NSCLC to promote cell growth and survival. SGK 

phosphorylates NDRG1 and has been demonstrated to promote drug resistance [40,41]. We 

investigated the readouts of mTORC1 and mTORC2 in isogenic EGFR mutated NSCLC 

cells and found that downstream signaling components of mTORC2, but not mTORC1, are 

phosphorylated in erlotinib-resistant cells. Loss of mTORC2 signaling through knockdown 

of Rictor led to the finding that mTORC2 is involved in the metabolic reprogramming 

in erlotinib-resistant cells. Recent studies in glioblastoma also demonstrate a role for 

mTORC2 in controlling aerobic glycolysis and resistance to chemotherapy and targeted 

therapy [26,32,40,42]. Our results corroborate previous findings to suggest mTORC2 acts as 

a central node connecting glucose metabolism with therapeutic resistance.

Our experiments demonstrate that the metabolic reprogramming in erlotinib-resistant cells 

results in lower SRC to cope with glucose deprivation-mediated environmental stress. SRC 

is an indicator of mitochondria energetic status in cells; substrates such as pyruvate, amino 

acids, and fatty acids are thought to play a critical role in regulating SRC [18]. Pyruvate 

dehydrogenase converts pyruvate to acetyl-CoA for entry into the TCA cycle and oxidative 

phosphorylation [43]. Amino acids such as glutamate and aspartate can enter the TCA 

cycle through conversion to α-ketoglutarate and oxaloacetate [44]. Fatty acids can also enter 

TCA cycle through β-oxidation [45]. Whether mTORC2 regulates the substrate supply for 

mitochondria respiration in EGFR TKI-resistant cells is currently under investigation.

Overall, we provide evidence of metabolic reprogramming during EGFR TKI treatment 

mediated through mTORC2 signaling. Additionally, we found EGFR-mutated NSCLC 

patients with mTORC2 activation tend to have worse clinical outcomes. These findings 

suggest stratification of patients with mTORC2 activation could help optimize treatment 

plans to improve therapeutic outcomes for patients with activating EGFR mutation.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
The effects of glucose deprivation on the growth of isogenic erlotinib-sensitive and -resistant 

cells. (A–C) Top panel PC9, PC9R, H3255, H3255R, HCC4011 and HCC4011R cells 

were plated in complete culture media and replaced with complete or glucose-free medium 

the following day. Cell counts were measured at several time points using Operetta® high­

content screening platform. Doubling time was calculated by dividing the natural logarithm 

of 2 by the exponential growth rate. Bottom panel, relative doubling time under glucose 
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deprivation was normalized to the doubling time under complete medium. Data are average 

of three individual experiments. Bars, SEM. **P < 0.01, *P < 0.05.
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Fig. 2. 
Erlotinib-resistant cells have lower spare respiratory capacity. (A) Mitochondrial stress test 

profiles for PC9 and PC9R cells. (B–D) Mitochondrial ATP linked oxygen consumption and 

mitochondrial reserve capacity of PC9, PC9R, H3255, H3255R, HCC4011 and HCC4011R 

cells. Data are average of three individual experiments. Bars, SEM. ***P < 0.001, **P < 

0.01, *P < 0.05.
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Fig. 3. 
Inhibition of mTORC2 signaling increases spare respiratory capacity in erlotinib-resistant 

cells. A) Whole-cell lysates from isogenic NSCLC cell lines were subjected to western 

blotting analysis of mTORC1 and mTORC2 activities. Values below the figures, relative 

changes normalized to isogenic erlotinib-sensitive cells. (B) Whole-cell lysates from PC9 

cells and PC9R cells stably transduced with the control shRNA (shCon) or Rictor shRNA 

(shRictor) were subjected to western blotting analysis of Rictor, p-Akt, p-NDRG1 and 

β-actin. Values below the figures, relative changes normalized to PC9 shCon. (C) The 
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relative spare repository capacity (SRC) of PC9 cells and PC9R cells stably transduced 

with the control shRNA (shCon) or Rictor shRNA (shRictor) were measured by Seahorse 

mito stress assay. (D) PC9 cells and PC9R cells stably transduced with the control shRNA 

(shCon) or Rictor shRNA (shRictor) were cultured in the presence or absence of glucose. 

The relative doubling time was calculated as described in Fig. 1. (E) PC9R cells stably 

transduced with the control shRNA (shCon) or Rictor shRNA (shRictor) were treated with 

complete or glucose-free medium for 24 h. Whole-cell lysates were subjected to western 

blotting analysis. Values below the figures, relative changes normalized to PC9R shCon in 

glucose repletion condition. Bars, SEM. ***P < 0.001.
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Fig. 4. 
p-NDRG1 is able to predict the outcome of EGFR-mutant NSCLC patients. (A and 

B) GSEA revealed an enrichment of glycolytic genes in patients with EGFR-mutant 

NSCLC tumors with high p-NDRG1 expression (A) and an enrichment of oxidative 

phosphorylation genes in EGFR-mutant NSCLC patients with low p-NDRG1 expression 

(B). NES, normalized enrichment score. FDR, false discovery rate. (C) Correlation between 

p-NDRG1 expression and overall survival (OS) in NSCLC patients with EGFR driver 

mutations. The reverse phase protein array (RPPA) data for the relevant patients were 
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downloaded from The Cancer Proteome Atlas (TCGA) database. The X-axis shows batch­

normalized protein expression levels of p-NDRG1. The survival time of each patient is 

shown in the Y-axis in months. Black line denotes the linear fit.
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