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Success with B cell depletion using rituximab has proven the concept that B lineage cells 
represent a valid target for the treatment of autoimmune diseases, and has promoted the 
development of other B cell targeting agents. Present data confirm that B cell depletion 
is beneficial in various autoimmune disorders and also show that it can worsen the 
disease course in some patients. These findings suggest that B lineage cells not only 
produce pathogenic autoantibodies, but also significantly contribute to the regulation of 
inflammation. In this review, we will discuss the multiple pro- and anti-inflammatory roles 
of B lineage cells play in autoimmune diseases, in the context of recent findings using 
B lineage targeting therapies.
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iNTRODUCTiON

The presence of autoantibodies is characteristic of most autoimmune diseases and has been 
widely used for diagnosis. Despite this, within the last 10–15  years B  cells have been recog-
nized as therapeutic targets for the treatment of autoimmune diseases. B  cell subtypes, and 
the mechanisms of antibody production and maintenance, are highly diverse, and likewise the 
susceptibility of autoantibody-secreting plasma cells to therapies seems to be dependent on 
their tissue localization (1). Generally, conventional immunosuppressive therapy, using either 
steroids or cytostatic drugs, is commonly used in many autoimmune diseases and partly inhibits 
autoantibody production (2–5). At present, several drugs that specifically target B cells or plasma 
cells are either in clinical use or under development and promise to be very efficient for the 
treatment of various autoimmune diseases (6–8). Among them are (I) monoclonal antibodies 
against CD19, CD20, and CD22 that can directly target multiple B cell subtypes, but not or only 
to a lesser extent mature antibody-secreting plasma cells, (II) inhibitors of B cell activating factor 
(BAFF) and A proliferation-inducing ligand (APRIL), two cytokines which are very important 
survival factors for B cells and plasma cells, respectively, and (III) velcade/bortezomib, a small 
molecule proteasome inhibitor that spares B cells but eliminates both short-lived and long-lived 
plasma cells (9).

B cell directed therapies have proven not only to be therapeutically effective in classic B cell/
autoantibody-driven disorders, such as autoimmune blistering skin diseases, myasthenia gravis, or 
antibody/immune-complex-mediated systemic lupus erythematosus (SLE), but also in diseases that 
are believed to be mainly driven by T cells, most prominently rheumatoid arthritis (RA) or multiple 
sclerosis (MS) (10–12). By contrast, in some cases, therapeutic B cell depletion results in the aggrava-
tion of symptoms. These findings emphasize that B cells play multiple roles that are relevant for the 
onset and clinical outcomes of autoimmune inflammatory disorders.

In this review, we will discuss how B cell targeting therapies may affect distinct B cell and 
plasma cell subpopulations, and how this depletion modulates the outcome of autoimmune 
diseases.
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B CeLLS, PLASMA CeLLS, AND THeiR 
iMPACT ON AUTOiMMUNe DiSeASeS

B Cell Maturation and Subsets
In humans and mice, there are three known functionally and 
phenotypically distinct B cell subsets: B-1, B-2, and marginal zone 
(MZ) B cells (13). While B-1 and MZ B cells can contribute to 
innate and adaptive immunity, “conventional” B-2 cells provide 
adaptive humoral immunity.

B-1 cells arise already early in embryonic development and 
comprised about 5% of all B cells in mice and humans. The B-1 
population is the major source of natural IgM antibodies that 
exhibit reactivity to self and common microbial antigens (14). 
B-2 cells are activated in T-dependent immune responses and 
produce antibodies of all subclasses, and are capable of forming 
memory B cells with increased antibody affinity. MZ B cells are 
found in the marginal sinus of the white pulp of the spleen and 
predominantly produce antibodies that are specific for carbohy-
drate antigens.

While autoantibodies contribute to the pathogenesis of many 
autoimmune disorders, natural autoantibodies can be protective 
(14–16), suggesting that the various B cell subsets play multifac-
eted roles in autoimmune diseases (17).

After birth, large numbers of immature B-2 B  cells are 
continuously formed within the bone marrow (18). During the 
stepwise differentiation of B cell precursors into immature B cells, 
the genes encoding the B cell receptor are reorganized, which at 
the population level generates a heavily diverse antibody reper-
toire. Immature B cells express high levels of functional antigen 
receptors (antibodies) of the IgM subclass on their surface (19). 
Thereafter, based on the specificity and affinity of their individual 
B cell receptors, immature B cell clones are either negatively or 
positively selected (20).

Some immature B cells bearing an autoreactive B cell receptor 
become deleted by central tolerance mechanisms operative in 
the bone marrow. The immigration of immature B cells into the 
spleen occurs through the terminal branches of the central arte-
riole that drains into sinusoids of the MZ (21). After migration 
to the splenic follicles, non-self-reactive IgM+/IgD− immature 
B cells penetrate the MZ sinus to migrate through the interface 
between the periarteriolar lymphoid sheaths and B cell follicles, 
and eventually become IgM+/IgD+ naive mature B-2 or MZ 
B cells. This process is strongly dependent on high concentrations 
of the cytokine BAFF, which is expressed in splenic follicles. Most 
self-reactive immature B cells that passed central tolerance induc-
tion are energized or deleted in the spleen before they reach the 
BAFF-rich follicles. This peripheral tolerance mediating process 
relies on the activation of self-reactive B  cells by autoantigens, 
which results in arrest of migration before these cells can enter the 
splenic follicle, and as a consequence they die as a result of BAFF-
deprivation (21). Despite this, autoantibodies are also found in 
healthy individuals (22, 23), suggesting that some autoreactive 
B cells escape both the central and peripheral tolerance inducing 
mechanisms.

Mature B cells recirculate through the blood and accumulate 
in the follicles of secondary lymphoid tissues (24). Interestingly 
enough, mature B cells express a certain degree of migrational 

diversity. While all mature B  cells are found in systemic and 
mucosal secondary lymphoid tissues, only a subpopulation of 
mature B  cells recirculate through the bone marrow, a process 
of unknown biological significance, but which is clearly well 
controlled. In mice, these B cells express CD22, an Ig superfamily 
member serving as an adhesion receptor for sialic acid-bearing 
ligands. CD22 binds to CD22-ligands specifically present on 
sinusoidal endothelial cells in the bone marrow, but not on 
endothelial cells in other lymphoid tissues (25). A heterogeneous 
population of B  cells also recirculates through the skin, as has 
been shown in animal models (26). These B cells express typical 
skin-homing receptors, e.g., ligands for E-selectin and α-4 and β-1 
integrins, and exhibit a different immunophenotype than lymph 
node B cells. It is thought that these cells activate T cells at the site 
of inflammation and can increase local antibody production (26). 
However, the possibility that skin-homing B cells contribute to 
autoimmune skin diseases remains to be established.

After stimulation with their cognate (self-) antigen, mature 
B  cells eventually may form short-lived plasma cells, memory 
B cells, or long-lived plasma cells (27, 28). As discussed below, these 
cell types markedly contribute to the pathogenesis of autoimmune 
diseases and exhibit a specific response to distinct therapeutic 
approaches.

Memory B Cells
Memory B  cells are formed within germinal centers and differ 
from naive B cells with respect to several features. While many 
human and murine memory B cells still express IgM, a significant 
proportion has already switched to the production of downstream 
antibody subclasses, mainly IgA and IgGs (29–31). Antigen-
mediated crosslinking of membrane IgG provides a much 
stronger activation signal than IgM (32), which contributes to the 
reduced activation threshold observed for memory B cells and 
their capacity to quickly give rise to antibody-secreting plasma 
cells (33–36). Independent from their subclass, memory B cells 
have down-regulated the expression of genes that negatively con-
trol BCR signaling and have up-regulated the expression of their 
counterparts (37, 38). Moreover, memory B  cells also express 
higher affinity B cell receptors, which not only strengthens the 
effector functions of the antibodies secreted by their plasma 
cell progeny, but also allows memory B cells to sense very low 
antigen doses. Consequently, memory B cells resemble very pow-
erful antigen-presenting cells (APCs) (39, 40). While dendritic 
cells definitively represent the most important APC during the 
initiation of the immune response, memory B  cells may take 
over later. Hence, antigen-presentation by memory B cells might 
be of particular importance during the later phases of chronic 
immune reactions, such as autoimmune diseases. Human, but 
not murine, memory B cells show increased expression of CD27. 
The interaction of CD27 with its ligand on T cells, CD70, pro-
motes the differentiation of activated memory B cells into plasma 
cells (41). Compared with naive cells, human memory B  cells 
also exhibit a distinct expression profile of homing molecules; 
these molecules help B cells to interact with T cells and present 
their cognate antigen in the context of MHC class II in an optimal 
manner (42–47). The capacity to efficiently interact with T cells 
is crucial to quickly boosting both the formation of plasma cells 
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and antibody secretion, but likely also increases the capacity of 
memory B cells to modulate T cell responses.

In conclusion, memory B cells are optimized to interact with 
T cells and to yield strong antibody responses even in response to 
relatively little stimulation. Autoreactive memory antibodies are 
likely to contribute to the chronic and progressive course typi-
cally observed for autoimmune disorders (48). High frequencies 
of memory B cells are associated with poor clinical responses to 
RTX treatment (49). RTX treatment results in the efficient deple-
tion of memory B cells in peripheral blood, and relapse after this 
treatment is thought to be associated with the repopulation of 
IgD-CD27− and IgD-CD27+ memory B cells (50). However, RTX 
may not deplete the whole B cell memory compartment. RTX-
treated patients can generate robust recall responses to repeated 
influenza vaccination, as indicated by the increase in serum 
antibody levels and peripheral blood plasmablast frequencies 
(51). This memory response is comparable to that observed in 
healthy controls. Hence, a significant fraction of memory B cells 
seems to be resistant to RTX treatment and is most likely localized 
in lymphoid or inflamed tissues (51). In mice, distinct layers of 
memory B cells have been identified, suggesting that the memory 
compartment is much more complex and diverse than expected 
(52, 53). Similarly, in human donors, distinct subpopulations of 
memory B  cells that distinctly express homing receptors, such 
as CXCR3, have been observed in blood (46, 54). In response to 
IFN-γ, activated B cells upregulate CXCR3, which thereafter is 
stably expressed on their memory B cell progeny (46, 54). These 
findings may indicate that a subpopulation of memory B cells is 
formed under inflammatory conditions, such as during an auto-
immune disease flare-up, which then might be able to migrate 
into inflammatory tissues where they are relatively protected 
from therapeutic intervention.

Short-Lived and Long-Lived Plasma Cells
Successful activation of naive B  cells leads to a massive clonal 
expansion and eventually the formation of short-lived plasma 
cells in the extra-follicular areas of secondary lymphoid tissues 
(55). In mice, these cells exhibit lifetimes of less than a week 
(56). Cytostatic drugs, such as cyclophosphamide, prevent B 
proliferation and the formation of new antibody-secreting cells, 
hence eliminating the short-lived plasma cell compartment 
(57). Simultaneous to the formation of short-lived plasma cells, 
germinal centers may give rise to both memory B  cells and 
long-lived plasma cells. For a brief period following vaccination, 
precursors of long-lived plasma cells (plasmablasts) are found 
in human peripheral blood (54); these cells then give home to 
deposit tissues, such as bone marrow, mucosal tissue, or sites of 
inflammation. The tissue homing of these cells is tightly regulated 
by adhesion molecules, chemokines, and their receptors (58–60). 
In peripheral blood, plasma cell subpopulations are found that 
exhibit different expression profiles of homing receptors. For 
example, migratory plasmablasts, induced by intracutaneous 
vaccination, express L-selectin, which are associated with homing 
to peripheral lymph nodes (61, 62). Similar to the return of locally 
activated plasma cell precursors to mucosal sites, cells that are 
activated in the context of a pro-inflammatory response seem to 
be programmed to relocate to inflamed tissues. Here, the high 

levels of inflammatory cytokines can support plasma cell survival, 
likely enabling these cells survive for the period of inflammation 
(60). These data suggest that plasma cells formed in the course of 
an inflammation-associated immune response can maintain the 
production of antibodies but will disappear when the cause of 
inflammation has resolved (46, 63).

In human tissues, various plasma cell subpopulations exist 
which exhibit different phenotypes and stages of differentiation 
(46, 64, 65). Some plasma cell stages still express CD20, indicat-
ing that they might be susceptible to RTX treatment. However, 
mature human plasma cells have lost CD20 expression (66–68). 
Accordingly, even B  cell depletion has been found to have  no 
impact on the production of human memory antibodies, 
e.g., specific for tetanus toxoid (63). In general, serum antibodies 
of different specificities show a great variety of responses follow-
ing B cell depletion, ranging from no response to depletion below 
the detection limit (69), possibly suggesting that antibodies are 
maintained by various mechanisms, including short-lived plasma 
cell populations that are replenished by various memory B cell 
subsets and by long-lived plasma cells. The notion that long-lived 
plasma cells contribute to the production of autoantibodies (57), 
but are not affected by conventional immunosuppressive drugs 
such as steroids or cyclophosphamide, or by B cell depletion, has 
identified them as a novel target cell requiring specific therapeutic 
approaches (70).

B Lineage Cells exert Multiple Roles That 
Drive Pathogenesis but Also Control the 
Severity of inflammation
B  cells play multiple functions. Following differentiation into 
plasma cells, they secrete huge amounts of antibodies into the 
body fluids. Autoantibodies can contribute to the pathogenesis 
of autoimmune diseases in multiple ways (71). They can initiate 
immune-complex-mediated inflammation, deplete specific cell 
types or modulate important signaling pathways, relevant in 
SLE, antibody-mediated hemolytic anemia or Hashimoto’s thy-
roiditis and Graves’ disease, respectively (72–75). However, more 
recent studies indicate that antibodies can also exert significant 
anti-inflammatory effects, which limit or even inhibit autoim-
mune pathogenesis. The pro- and anti-inflammatory effects of 
antibodies depend on their isotype (76) and on their Fc N-linked 
glycosylation patterns (77, 78). While IgGs with low levels of 
galactosylation promote inflammation, sialylated IgGs have a 
strong anti-inflammatory capacity (79, 80). Highly glycosylated 
IgG antibodies have been shown to inhibit autoimmune inflam-
mation in mouse models (76, 81, 82). Changes in autoantibody 
glycosylation have been observed during the course of human 
autoimmune diseases, possibly providing an interesting novel 
diagnostic tool, but also suggesting that the antibody glycosylation 
pattern can alter the clinical course of autoimmune disorders (83).

B lineage cells can also present antigens in the context of MHC 
II and secrete immunomodulatory cytokines, thereby playing a 
prominent role for the modulation of antigen-specific T  cell 
responses (84–86). B cells probably only play a minor role in T cell 
priming. However, during secondary or chronic immune reac-
tions B cells resemble very potent APCs that drive the expansion 
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of activated T helper cells (87–90). Hence, B  cells are likely to 
be both important antigen-presenting and T cell promoting cells 
during chronic and repeated immune reactions, such as occurs 
during the course of autoimmune diseases.

In addition, various B lineage cells, including those with a 
CD138+ plasmablast/plasma cell phenotype, have been shown to 
express a variety of pro-inflammatory cytokines that can stimulate 
innate effector cells and significantly contribute to inflammation 
and immune protection in murine models (91–93). Moreover, 
while some B lineage cells promote inflammation, others exhibit 
profound immunosuppressive capacities (94). As shown in many 
models, B cells and plasma cells can also suppress autoimmune 
inflammation through the production of cytokines, such as IL-10, 
TGF-beta, or IL-35 (86, 95–98). Interestingly, IL-10 and IL-35 
are produced by B  cells that have different phenotypes (98). 
As discussed below, the therapeutic induction of immunosup-
pressive B  lineage cells may be an interesting direction for the 
development of future therapies.

LeSSONS FROM RTX TReATMeNT 
OF AUTOiMMUNe DiSeASeS

Regarding the clinical use of B  cell targeting therapies, the 
majority of the information comes from studies using RTX. 
This chimeric mouse/human monoclonal antibody targets the 
pan B  cell marker CD20, a transmembrane protein expressed 
on all B lineage cells, from early pre-B to mature B and memory 
B  cells. CD20 has been shown to mediate Ca2+ influx across 
plasma membranes and is important in maintaining intracellular 
Ca2+ concentration and activation of B cells (99). RTX was the 
first anti-CD20 antibody approved by the U.S. Food and Drug 
Administration for medical use in 1997 as Rituxan®, originally 
to treat B cell non-Hodgkin lymphomas (100). Later it was also 
approved for use in RA, granulomatosis with polyangiitis, and 
microscopic polyangiitis and there is growing clinical use of RTX 
in other autoimmune diseases, such as MS, SLE, and autoimmune 
blistering skin diseases (101–105).

Mode of Action of RTX
After binding of RTX to membrane bound CD20 it mediates 
strong complement-dependent cytotoxicity directed to its target 
cell due to the enhanced clustering of antibody Fc regions (106, 
107). Based on its ability to redistribute CD20 into lipid rafts, 
which provides the molecular basis for RTXs engagement of com-
plement factors, RTX is classified as a type I anti-CD20 antibody. 
By contrast, type II antibodies cannot cause this redistribution 
of CD20 (108–111), do not induce complement-dependent cyto-
toxicity to the same extent (111), but appear to induce a greater 
degree of directly induced, non-apoptotic cell death, upon bind-
ing to target cells (112).

CD20 expression is lost during differentiation into mature 
antibody-secreting plasma cells (66–68). This lack of CD20, 
particularly on long-lived plasma cells, explains why RTX treat-
ment does not interfere with the production of memory antibod-
ies, such as anti-tetanus/-measles/-mumps/-rubella (63, 113). 
Depending on the stage of plasma cell differentiation and tissue 
localization, early plasma cells (plasmablasts) exhibit various 

levels of CD20 expression (114). While mature long-lived plasma 
cells are apparently not depleted by RTX, it is not known to which 
extent earlier plasma cell stages are affected.

Independent of disease, RTX leads to the depletion of periph-
eral B cells from approximately 90% to close to 100% (Table 1). 
Despite this fact, the clinical efficacy of RTX varies broadly 
among different autoimmune diseases, and also among individual 
patients. Following withdrawal of RTX treatment, B  cell levels 
recover within 6–20  months, with the rate of recovery greatly 
varying between individual patients (115).

Use of RTX in Pemphigus vulgaris (Pv)
RTX has shown promising results in the treatment of PV, an 
autoantibody-driven blistering skin disease. In three indepen-
dent clinical studies, comprising a total of 43 patients with this 
rare autoimmune disorder, RTX treatment achieved a complete 
remission in over 80–95% of patients (103, 116, 117) who, 
importantly, were refractory to steroid therapy. This impressive 
clinical outcome was achieved in parallel with B  cell deple-
tion close to undetectable levels in almost all patients. One 
study showed that in most, but not all patients, the levels of 
anti-keratinocyte cell-surface IgG4 autoantibodies dropped to 
undetectable  levels (116). In another study, anti-desmoglein 1 
and 3 (Dsg1/3) auto antibodies were measured and found to be 
reduced on average by 65–80% (103). Generally, the response 
to RTX treatment seems to correlate with the extent of B cell 
depletion. However, two treated patients showed clinical remis-
sion despite persistent high levels of anti-Dsg1/3 autoantibodies, 
although remission was delayed compared with that in patients 
who showed remarkably reduced autoantibody levels (103). 
Hence, a reduction in the levels of autoantibodies seems to be a 
major factor in the success of RTX in treating PV. Nevertheless, 
the finding that RTX can improve clinical symptoms in patients 
that still exhibit high levels of anti-Dsg1/3 autoantibodies, sug-
gests that RTX can also act via additional mechanisms. It would 
be interesting to consider this concept while designing future 
clinical studies.

Use of RTX in RA
Studies using RTX in RA have provided additional evidence that 
its therapeutic efficacy is not merely based on the reduction of 
autoantibody levels. In this disease, RTX is recommended for 
use in patients refractory to standard therapy (118). Although 
the B cell depletion rate is almost 100%, a clinical response was 
observed in approximately 60–70% of patients (11, 105, 119). 
Considering that these patients did not respond to other thera-
pies, this was deemed to be a significant success. Results from 
more recent studies have suggested that RTX has better long-term 
efficacy when used in patients with fewer previous treatments and 
lower disease activity (120). Interestingly, the clinical response to 
RTX in RA positively correlates with the presence of anti-CCP 
autoantibodies, but is inversely correlated with the IgG-levels pre-
sent before treatment (121–124). Autoantibodies and IgG-levels 
together with serum IL-33 have also been reported to predict the 
clinical response to RTX (125).

Based on the correlation between serum autoantibodies and 
response to RTX, on first view it seems possible that suppression 
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TABLe 1 | Efficacy of RTX treatment varies.

RA SLe Pv MS

Reference Emery et al. (11); 
Rubbert-Roth et al. (105); 
Haraoui et al. (119)

Rovin et al. (145) Leandro et al. (146); 
Albert et al. (147)

Lu et al. (148) Ahmed et al. (116); Joly et al. 
(103); Pfütze et al. (117)

Dunn et al. (150); 
Cross et al. (104)

Hauser 
et al. (149)

Hawker 
et al. (151)

Patient no. 120/346/465 144 24 50 11/21/11 16/399 104 439

Dose and 
duration

1 mg for 24/48 weeks 1 mg for 52 weeks 1 mg for 6 months 1 mg for 6 months 375 mg/m2 for 6 months 375 mg/m2/0.5–1 mg 
for 6 months

1 mg for 
48 weeks

1 mg for 
96 weeks

Clinical 
improvement

Partial
Complete
No

ACR20/50/70: 
in 54–72/27–48/7–23%
–
in 5%

Proteinurea: 
in 26.4%
in 30.6%
in 43.1%

Proteinurea/BILAG/
SLEDAI: 
in 65–70%
–
–

BILAG: 
in 42%
–
–

Skin lesions: 
in 8.2–20%
in 80–95%
– 

EDSS: 
in 12.5–63.2%
–
in 36.8–81.25%: 
worse in 6.25%

GELN: 
in 80.3%
in 19.7%
–

CDP: 
–
–
in 100%

B cell depletion 
efficacy in 
periphery

Significant depletion 
to 6 cells/μL

Complete 
depletion in 99%

Almost complete depletion 
in 94–96% of patients

Complete depletion in 42%; 
partial depletion in 47% and 
no depletion in 11% of patients

In almost all patients 
complete B cell depletion

Depletion by 95–99.8% 
in all patients; 90% 
depletion in spinal fluid

Over 95% 
depletion in 
all patients

Autoantibody 
involvement

Anti-CCP aab and 
RF reduced by 45%

Anti-dsDNA aab 
reduced by 75%

Anti-dsDNA aab reduced 
by 35%

Anti-dsDNA aab  
reduced by 60%

In 81.8% IgG/IgG4 anti-
keratinocyte cell-surface aab 
undetectable; dramatic decrease 
of IgG/IgG4 anti-Dsg1 (by 80%) 
and Dsg3 (by 65%) aab

Elevated serum anti-
MOG aab

–

Remark HACA in 2.3–7.3% – HACA in 33%, correlating 
with B cell depletion rate

Clear correlation between aab 
and disease

HACA in 24.1–37%, 
correlates with B cell 
depletion rate

HACA in 
24.1% of 
patients

RA, rheumatoid arthritis; SLE, systemic lupus erythematosus; PV, Pemphigus vulgaris; MS, multiple sclerosis; ACR, American College of Rheumatology Criteria, standard criteria to measure the effectiveness of arthritis treatments 
in clinical trials for rheumatoid arthritis, 20/50/70 refers to the improvement in tender or swollen joint counts as a percentage; HACA, human anti-chimeric antibodies; CCP, cyclic citrullinated peptides; RF, rheumatoid factor; MTX, 
methotrexate; MMF, methyl mofetil; Std, standard therapy; BILAG, British Isles Lupus Activity Group, organ-specific 86-question assessment based on the principle of the clinical intent to treat; SLEDAI, SLE Disease Activity Index, a list 
of 24 items (16 clinical items including seizure, psychosis, organic brain syndrome, visual disturbance, other neurological problems, hair loss, new rash, muscle weakness, arthritis, blood vessel inflammation, mouth sores, chest pain 
that worsens with deep breathing, and manifestations of pleurisy and/or pericarditis and fever, and eight laboratory results, including urinalysis testing, blood complement levels, increased anti-DNA antibody levels, low platelet count, 
and low white blood cell count); EDSS, Expanded Disability Status Scale is a method of quantifying disability in multiple sclerosis and monitoring changes in the level of disability; CDP, delayed time to confirmed disease progression; 
Dsg, desmoglein; cANCA, anti-neutrophil cytoplasmic antibodies; MOG, myelin oligodendrocyte glycoprotein; aab, autoantibodies; dsDNA, double-stranded DNA.
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of autoantibodies is a relevant mechanism by which RTX affects 
the clinical outcome of RA. The presence of autoantibodies 
such as rheumatoid factor (RF) and anti-CCP correlate well 
with disease activity in RA patients and indicate the presence 
and activation of autoreactive B cells. Moreover, anti-CCP and 
IgM-RF can enhance pro-inflammatory macrophage functions 
in vitro (126), supporting the idea that these autoantibodies may 
also contribute to RA pathogenesis in vivo. However, the reduc-
tion of serum autoantibody levels in RTX-treated responders 
is only very moderate, i.e., approximately 50 and 30%, for anti-
CCP and RF, respectively, with a high degree of variation being 
observed (69). It seems questionable that such minor reductions 
in autoantibody levels cause the clinical response. Moreover, the 
absolute autoantibody levels persisting in responders after treat-
ment were still two to fivefold higher than in non-responders 
(69). If autoantibodies in responders and non-responders 
exhibit similar pathogenicity, the moderate depletion of autoan-
tibodies in responders to levels above of non-responders would 
not explain the success of the therapy. Other studies have also 
shown very moderate RTX effects on IgA and IgG anti-CCP 
autoantibodies, suggesting that a significant proportion is pro-
duced by long-lived plasma cells (127). The question of whether 
these antibodies contribute to RA pathogenicity remains to be 
addressed.

RTX effects on CD4 T Cells
Alternative explanations for the anti-inflammatory effects of 
RTX  in RA patients include the suppression of inflammatory 
T cells in favor of regulatory T cells subsets, possibly in combina-
tion with an induction of high galactosylated anti-inflammatory 
antibodies. There is good evidence that CD4 T cells can activate 
myeloid and synovial cells, which in turn activate and recruit 
macrophages to synovial tissue, eventually leading to joint inflam-
mation and cartilage destruction, whereas regulatory T cells are 
protective (128–131).

The production of pro- and anti-inflammatory cytokines 
such IFN-γ, IL-17, or IL-10 seems to be key for T cell mediated 
control of RA pathogenesis. There is evidence that the clinical 
response to RTX therapy in RA is associated with lower IFN-γ 
levels (132). Moreover, a study including 52 patients showed 
that RTX often induces a reduction in the number of peripheral 
blood CD4 T cells, an effect that was strongly associated with the 
clinical response (133). It is possible that the depletion of a small 
subpopulation of CD20+ T cells contributes to this effect (134).

However, there is good evidence that B  cells can efficiently 
promote CD4 T  cell functions through antigen-presentation 
and cytokine release. As discussed above, while B cells may play 
only a minor role in T cell priming, during secondary or chronic 
immune reactions, B cells can act as very potent APCs that drive 
the expansion of activated T helper cells (87–89, 135). Hence, 
B cell depletion may impair the formation, clonal expansion, and 
function of T memory cells.

Accordingly, T cell activation in the synovium of RA patients 
has been reported to be dependent on B cells (136). Hence, it is 
highly likely that RTX mediates its beneficial effects in RA at least 
partly through the depletion of T cell stimulating B lineage cells, 
although this remains to be studied further.

effects of RTX Mediated B Cell Depletion 
on Cytokines
Of note, under certain conditions, B  cells can also directly 
promote innate inflammatory effector cells through the produc-
tion of cytokines such as IFN-γ, IL-6, granulocyte-macrophage 
colony-stimulating factor, and IL-17 (91, 93, 137, 138). In mice, 
B cell ablation has been shown to ameliorate autoimmune dis-
eases by depleting IL-6-producing B cells (93). Moreover, a recent 
study has provided evidence that B cells from RA patients show 
abnormal IL-6 signaling and altered cytokine production, and 
that this may contribute to disease (139). Hence, B cells resemble 
an underestimated source of inflammatory cytokines and the 
depletion of such pro-inflammatory cytokine producing B cells is 
likely to contribute to the therapeutic outcome of RTX treatment.

RTX effects on Antibody Glycosylation
T cell help in germinal centers has been found to be important for 
the induction of inflammatory low-glycosylated IgG antibodies 
(82). In particular, the T cell-derived cytokines such as IFN-γ and 
IL-17 are capable of synergistically promoting the production of 
low-sialylated, and potentially pathogenic, antibodies (82, 139). 
Based on the notion that the clinical response to RTX in RA 
is associated with lower IFN-γ levels (132), it is possible that a 
reduction in IFN-γ levels, in turn, leads to alterations in antibody 
glycosylation.

In accordance with the idea that these processes are of patho-
physiological relevance, reduced antibody glycosylation has been 
reported to precede disease onset and to correlate with disease 
activity in RA patients (140). This phenotype is highly prevalent 
in, but not restricted to, autoantibodies (141). Hence, it is possible 
that acting through a reduction in IFN-γ levels, RTX corrects 
the shift toward the production of pro-inflammatory antibodies 
that is observed in RA. Of note, high-glycosylated antibodies 
can  mediate anti-inflammatory effects independent of their 
specificity, as indicated by the therapeutic effects of intravenously 
administered immunoglobulins (142), although antigen-specific 
effects might be considerably stronger and require lower antibody 
concentrations (79, 81, 143). Accordingly, highly glycosylated 
IgGs have been reported to induce antigen-specific tolerance (78). 
Hence, RTX may partly mediate its beneficial effects through 
changes in antibody glycosylation, either via a reduction in 
autoantibody pathogenicity, through the generation of anti-
inflammatory autoantibodies, or by the induction of persistent 
high levels of anti-inflammatory total IgGs that mimic continu-
ous IVIG treatment.

effects of RTX in MS and SLe
Similar to what has been observed in RA, the therapeutic effect 
of RTX in SLE and MS is variable. Its impact on total antibody 
levels as well as on autoantibody levels shows a high degree 
of diversity (Table 1). In a recent study, only 11 out of 32 SLE 
patients with IgG hypergammaglobulinemia before treatment 
showed reduced IgG-levels after 12 months of treatment (144). 
Likewise, a reduction in anti-double-stranded DNA levels was 
incomplete, with high inter-individual variety and differences 
between antibody subclasses (145–148). Despite homogenous 
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B cell depletion rates in MS of over 90 and 95% in spinal fluid 
and in the periphery, respectively, the disease outcome showed 
great variation (104,  149–151). Interestingly, RTX has even been 
found to worsen the clinical outcome of MS (104).

These variable results might be not be surprising in the 
light of the finding that B lineage cells play multiple pro-and 
anti-inflammatory roles in experimental autoimmune encepha-
lomyelitis (EAE), a murine model of MS. B cell-derived IL-6 has 
been shown to be crucial for the initiation of EAE, suggesting that 
B cells can promote MS pathogenesis through the production of 
this pro-inflammatory cytokine (93). However, there is an abun-
dance of evidence that anti-inflammatory B cell subsets can also 
efficiently suppress CD4 T  cells mediating neuroinflammation, 
and that these effects are mediated by B lineage-derived IL-10, 
TGF-β, and IL-35 (98, 152). These findings led to the concept of 
regulatory B cells (Bregs), which, however, have never been clearly 
defined. Recent results indicate that these IL-10+ B lineage cells 
have a plasmablast phenotype (98, 153). Similarly, investigations 
conducted by our group have identified plasmablasts/plasma 
cells as an important source of IL-10, capable of suppressing 
skin inflammation in a murine model of epidermolysis bullosa 
acquisita (EBA) (85). In EAE, B lineage-derived IL-6 and IL-10 
were shown to have an impact on the induction and resolution 
of inflammation, respectively (93, 98, 153). These findings may 
partly explain the heterogeneity of the clinical response to RTX 
observed in MS. Depending on the major role of B lineage cells as 
drivers or inhibitors of inflammation in individual patients, and 
possibly related to timing, RTX may be either beneficial or worse 
for the clinical course of MS.

ALTeRNATive B CeLL TARGeTiNG 
APPROACHeS

Second Generation Anti-CD20 Antibodies
The great clinical success of the chimeric antibody, RTX, has 
stimulated the development of the second generation anti-CD20 
antibodies, ocrelizumab, obinutuzumab, veltuzumab, and ofatu-
mumab (154). These second generation anti-CD20 antibodies 
are humanized or even fully human, exhibit improved effector 
functions, and compared with rituximab show greater potential 
in vitro. Due to these properties, they are expected to be more 
effective, to exhibit lower immunogenicity, and to be better 
tolerated. However, these expectations, which may be validated 
by head-to-head trials of these second generation anti-CD20 
antibodies and RTX, have not been confirmed till date.

Ocrelizumab has recently been approved for the treatment of 
relapsing-remitting MS, and is the first approved treatment for 
primary progressive MS. In RA, however, ocrelizumab seems to 
have no benefit over current treatments, leading to a halt in the 
development of ocrelizumab for the treatment of RA (155).

Clinical trials exploring the use of obinutuzumab, veltuzumab, 
and ofatumumab in autoimmune disorders are at various stages 
of development and have been extensively reviewed by Du and 
colleagues (154). In general, it appears that the new anti-CD20 
antibodies are effective against autoimmune diseases, against 
which RTX is also beneficial, but more studies are needed to 

evaluate their efficiency and long-term safety profiles in greater 
detail.

Antibodies Targeting CD19
Other B cell depleting reagents that promise a great potential for 
the treatment of autoimmune diseases are a series of reagents 
targeting CD19, which are currently under development. These 
include humanized antibodies, “bi-specific T cell engagers,” and 
antibody-drug conjugates, such as inebilizumab, blinatumomab, 
and SAR3419, among several others (156, 157).

CD19 targeting therapeutics generally exhibit a broader target 
spectrum than anti-CD20 based reagents. CD19 is expressed very 
early in B cell development, being evident already on pro-B cells 
and on all later B  cell stages, whereas CD20 is expressed later, 
starting at the immature B cell stage. Possibly of greater impor-
tance for the treatment of autoimmune diseases, in addition 
to all mature B cell subsets, CD19 is expressed on a significant 
proportion of plasmablasts and plasma cells, particularly outside 
the bone marrow (64, 114). Accordingly, CD19 targeting reagents 
have been reported to deplete pre-existing peripheral antibody-
secreting cells, at least in humanized mouse models (158). Hence, 
CD19 targeting reagents might be not only suitable for treating 
B cell malignancies, but also exhibit great potential for therapeu-
tic use in autoimmune diseases, particularly for those diseases 
with a strong involvement of pathogenic antibodies, e.g., SLE, 
pemphigus, and neuromyelitis optica.

BAFF/APRiL Antagonists
An alternative therapeutic strategy to target B cells is the blockade 
of B lineage survival factors, such as BAFF and its homolog APRIL 
and their receptors (159). Together, BAFF and APRIL along with 
their receptors form a complex system, which is very important 
for the survival of mature B cells and plasma cells. There are three 
receptors that bind BAFF and APRIL with different affinities. BAFF 
binds to BAFF-R, transmembrane activator and calcium modula-
tor and cyclophilin ligand interactor, and B cell maturation protein. 
These three receptors are differentially expressed at various times 
during B cell ontogeny (160). Most BAFF circulates as a soluble 
active homo-trimer (161) that binds to BAFF-R and this interaction 
is required for survival of late transitional, MZ, and mature naive 
B cells, all of which are depleted by BAFF-blockade (162, 163).

Several BAFF/APRIL targeting drugs are currently under 
development. The humanized anti-BAFF antibody belimumab 
has already been approved in the EU and the USA for the treat-
ment of adult patients with active, autoantibody-positive, and 
SLE despite standard therapy. It is generally well tolerated with 
low rates of immunogenicity. Belimumab in combination with 
standard therapy reduces the overall disease activity and the inci-
dence and severity of flares, has steroid-sparing effects, and can 
maintain disease control for at least 10 years (164). Interestingly, 
despite its clinical efficiency, belimumab only partly inhibits the 
production of IgG-autoantibodies. While some studies found no 
reduction of IgG-autoantibody levels following treatment with 
belimumab, others have reported a decline of 40–60% within 
2–7 years of treatment (165–167). This is in accordance with the 
finding that belimumab depletes both naive and activated B cells, 
but not memory B cells (165, 167).
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Similar to what has been observed with RTX, B cell targeting 
by blockade of BAFF and APRIL using belimumab, tabalumab, 
or atacicept also shows greatly variable effects on the levels of 
autoantibodies and the clinical outcome of autoimmune diseases 
(118, 168–181), and of note, seem to have only limited effects on 
the production of (auto)antibodies (Table 2).

Generally, B cell targeting represents a powerful strategy for 
the treatment of autoimmune diseases. Its mechanism of action 
seems to be diverse and complex, and needs further elucidation.

DiReCT TARGeTiNG OF PLASMA CeLLS 
BY BORTeZOMiB

As originally shown by us and others, in mice, memory antibod-
ies are secreted by long-lived plasma cells (182, 183). The notion 
that these cells can contribute to the production of autoantibodies 
but do not respond to current therapeutic approaches (57), has 
led to the search for novel plasma cell targeting agents.

The small molecule proteasome inhibitor bortezomib promotes 
plasma cell apoptosis and is approved for the treatment of multiple 
myeloma. Nearly a decade ago, Voll and colleagues reported that 
this drug could also be useful for the treatment of antibody-medi-
ated autoimmune diseases. They demonstrated that bortezomib 
efficiently depletes both short-lived and long-lived plasma cells and 
protects mice with lupus-like disease from nephritis (70). Its efficacy 
was later proven in various models of antibody-mediated autoim-
mune diseases (184–186). There is now increasing evidence that 
bortezomib can also efficiently deplete autoantibodies in patients, 
resulting in the improvement of clinical symptoms, as has been 
described for refractory primary Sjögren’s syndrome, refractory 
SLE, thrombotic thrombocytopenic purpura, and among others 
(9, 187–197). The potential development of severe side effects, 
such as peripheral neuropathies may limit the use of bortezomib 
in autoimmune diseases. However, its unique capacity to deplete 
antibody-producing plasma cells suggests that the safety and efficacy 
of bortezomib should be evaluated in clinical trials including more 
patients who are refractory to standard therapeutic approaches.

iNDUCTiON OF ANTi-iNFLAMMATORY 
B LiNeAGe CeLLS: A PROMiSiNG 
THeRAPeUTiC TReATMeNT OPTiON?

IL-10+ B lineage cells have been known as potent suppressors of 
autoimmune inflammation for decades (198). Over the last dec-
ade, the expansion of IL-10+ B cells using various approaches has 
been shown to efficiently suppress both autoimmune and allergic 
inflammation in numerous models (85, 199, 200). The first report 
that IL-10+ B cells exert a suppressive function was in 2002 by 
Fillatreau and colleagues (86), who showed that chimeric mice 
with a B cell specific IL-10 deficiency do not recover from EAE. 
Later, IL-10+ B cells were termed as Bregs or B10 cells. However, 
no surface marker or transcription factor unique to these cells has 
been identified to date. These cells are only functionally defined 
by their production of anti-inflammatory cytokines such as IL-10, 
and more recently IL-35, and the resulting suppression of inflam-
mation and autoimmune diseases (201, 202).

Phenotype and Origin of Human  
iL-10-Producing B Cells
The combination of markers used to describe “regulatory B cells” 
in human and mice is controversial. The phenotypic identifica-
tion of these B cells and their possible origin and development 
have been excellently reviewed elsewhere (198, 203). In humans, 
the ability to produce anti-inflammatory IL-10 has been 
reported in B cells at various stages of development: immature/
transitional B cells (CD19+ CD38hi CD24hi) (204), plasmablasts 
(CD27int CD38hi) (153, 205), and memory B cells (CD19+ CD27+) 
(206,   207). It is likely that IL-10+ B  cells represent a transient 
stage with a functional program rather than a terminally differen-
tiated stage, and that any B cell can acquire suppressive properties 
within a certain environment. Nevertheless, it is debatable if 
these cells arise from a single shared progenitor, from individual 
progenitors, or are induced under certain environmental stimuli 
(198,  203). Interestingly, in this context autocrine IL-10 can 
promote human IL-10+ B  cells to differentiate into IgG- and 
IgM-secreting plasma cells (208).

iL-10-Producing B Cells in Patients 
Suffering from Autoimmune Diseases
The first report describing human IL-10-producing B lineage 
cells in autoimmune diseases was in 2010 by Iwata et al. (207), 
who described abnormally high frequencies of peripheral IL-10+ 
B cells in various autoimmune diseases, such as SLE, RA, MS, 
Sjögren’s syndrome, and blistering skin diseases. An increase 
in the number of blood IL-10+ CD19+ CD24hi CD38hi cells was 
also found in PV patients, but these B cells were functionally 
unable to suppress Th1 immune responses (209). By contrast, 
several studies on RA (206, 210–212), SLE (204), systemic 
sclerosis (SSc) (213, 214), and MS (215–217) patients have 
shown a reduced number of peripheral IL-10-producing B cells 
compared with that in the controls. This was often accompanied 
by an impaired suppressive capacity of CD4 T cells. An overview 
describing the modulation of human IL-10-producing B lineage 
cells in different autoimmune diseases has been provided by 
Miyagaki et al. (218).

iL-10-Producing B Cell Dynamics 
Following B Cell Targeting Therapy
In myasthenia gravis, depletion of B  cells with RTX showed 
that IL-10+ B  cells can be found to have repopulated in the 
periphery after several months (219). Immunosuppressive 
treatments, TNF-therapy, and BAFF-blockade in RA (206), 
SSc (213), and experimental diabetes mellitus type 1 (220), 
respectively, have shown that IL-10-producing B lineage cells 
enrich after treatment and that their frequency is even higher 
than before treatment. In relapsing-remitting MS, the frequen-
cies of IL-10+ CD19+ B  cells were significantly reduced in 
patients experiencing a relapse compared with that in patients 
in remission (217), indicating that the clinical outcome of the 
disease also depends on the availability of IL-10-producing 
B cells.

Moreover, a “good responder” to RTX in myasthenia gravis 
showed a rapid repopulation of CD19+ IL-10+ B  cells after 
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TABLe 2 | Efficacy of belimumab, tabalumab, and atacicept.

RA SLe SS MS

Atacicept Belimumab Tabalumab Atacicept Belimumab Blisibimod Tabalumab Belimumab Atacicept

Patient no. 311 415 1,041 47/6 1,353 547 1,124 30 255

Duration 38 weeks 24/48 weeks 52 weeks 9/52 weeks 52–76 weeks 24 weeks 52 weeks 52 weeks 36 weeks

Clinical 
improvement

Partial
Complete
No

–
–
ACR20

ACR20:in 41%
–
ACR50+70

ACR20/50/70:in 
70/36/13%
–
–

in 22.2%
in 44.5%
worse in 33% 
stopped

SELENA–SLEDAI/
BILAG:in 46.5/58.6%
–
–

Proteinurea:reduced
–
–

SRI-4:in 49.2%
–
secondary  
end point

EULAR:in 
86.7%
–
–

–
–
Failed and  
even worse

B cell depletion 
efficacy in 
periphery

Circulating mature 
B and plasma cells 
reduced 

B cell depletion 
16–48%; no depletion 
of memory B cells 
and plasma cells

B cell reduction by 
18–40%; no depletion 
of memory B cells

Reduction by 
60%; plasma cells 
depleted

Reduction by 55.7% Significant reduction Significant  
reduction 

Significant 
reduction 

Significant reduction 

Autoantibody 
involvement

RF but not anti-CCP 
levels reduced 

Reduction of RF by 
30%

CRP reduced Reduction of anti-
dsDNA aab by 44–49%

Anti-dsDNA 
decreasedC3 
increased

Anti-dsDNA 
aab significantly 
decreased

Reduction of 
RF by 30%

Remark Serum IgA+M 
(by 19.4%) and 
IgG (by 8.6%) 
modestly reduced

Moderate change 
of total Ig; better 
response in RF+ 
or ACPA+ patients

Total serum Ig 
decline by 11%
Phase III study in 
RA terminated

Seropositive and 
highly diseased 
patients respond better; 
total serum Ig modestly 
reduced by 16%

C3 + C4 
increased; total 
serum Ig reduced; 
development was 
stopped

Total Ig not 
changed

Severe adverse 
events; higher 
relapse rate in treated 
group compared to 
controls

References Genovese et al. (170);
van Vollenhoven  
et al. (171)

Stohl et al. (181) Smolen et al. (168);
Greenwald et al. (169)

Dall’Era et al. 
(176); Lenert et al. 
(177); Ginzler 
et al. (178)

Navarra et al. (172); 
Furie et al. (173)

Furie et al. (175) Merrill et al. (174) Mariette 
et al. (179)

Kappos et al. (180)

RA, rheumatoid arthritis; SLE, systemic lupus erythematosus; SS, Sjörgen’s syndrome; MS, multiple sclerosis; ACR, American College of Rheumatology Criteria, standard criteria to measure the effectiveness of arthritis treatments 
in clinical trials for rheumatoid arthritis, 20/50/70 refers to the improvement in tender or swollen joint counts as a percentage; CCP, cyclic citrullinated peptides; RF, rheumatoid factor; MMF, methyl mofetil; std, standard therapy; 
BILAG, British Isles Lupus Activity Group, organ-specific 86-question assessment based on the principle of the clinical intent to treat; SELENA, Safety of Estrogens in Systemic Lupus Erythematosus National Assessment; SLEDAI, 
SLE Disease Activity Index, a list of 24 items (16 clinical items, including seizure, psychosis, organic brain syndrome, visual disturbance, other neurological problems, hair loss, new rash, muscle weakness, arthritis, blood vessel 
inflammation, mouth sores, chest pain that worsens with deep breathing, and manifestations of pleurisy and/or pericarditis and fever, and eight laboratory results, including urinalysis testing, blood complement levels, increased 
anti-DNA antibody levels, low platelet count, and low white blood cell count); EDSS, Expanded Disability Status Scale is a method of quantifying disability in multiple sclerosis and monitoring changes in the level of disability; aab, 
autoantibodies; C3 + 4, Complement factors 3 and 4; ACPA, Anti-citrullinated peptide/protein antibodies; CRP, C-reactive protein; SRI-4, Systemic Lupus Erythematosus Responder Index for 4-point reduction due to SLEDAI;  
EULAR SS, The European League Against Rheumatism for Sjörgen’s Syndrome; Ig, immunoglobulins; dsDNA, double-stranded DNA.
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from 8 to 9  months compared with a “non-responder,” where 
repopulation was delayed (219). This shows that the kinetics of 
the IL-10+ B cell repopulation is related to the responsiveness to 
RTX. Similarly, Colliou et al. (221) have shown that RTX-treated 
PV patients in complete remission had fourfold higher numbers 
of IL-10+ CD19+ B cells compared with patients in incomplete 
remission. In SLE patients responding well to RTX treatment, 
IL-10+ CD24hi CD38hi B  cells were found to repopulate and 
exhibited a restored suppressive function compared to non-
responders (222).

Differences in IL-10-producing B cells in individual patients 
and types of autoimmune diseases could explain the differential 
outcome and benefit of B  cell specific therapies. For example, 
in SLE and lupus nephritis, pan B cell therapies, such as RTX, 
show only moderate or even no benefit, despite the significant 
role of B cells in this disease (145, 223). The depletion of anti-
inflammatory B cells could contribute to this unexpected result. 
Very few studies to date have included an analysis of the kinetics 
and function of IL-10-producing B  cells after B  cell depleting 
therapy. To better understand the individual clinical outcome 
of the patients and the differences between certain autoimmune 
diseases treated with the same B cell targeting agent, it would be 
of great benefit to include an analysis of IL-10+ B lineage cells in 
further studies.

Challenges Hampering the Development 
of iL-10+ B Cell-Based Therapies
Restoring the regulatory capacity and the number of IL-10+ 
B cells is a promising therapeutic goal for the treatment of auto-
immune diseases. However, currently two unsolved problems 
hamper the development of a therapy based on IL-10+ B cells. 
First, the methods used to generate IL-10+ B cells for therapeutic 
approaches are not suitable for a clinical setting. Second, the 
identity and phenotype of IL-10+ B  cells remain uncertain. 
Nevertheless, recent progress has been made with respect to 
both issues. Giacomini et  al. (224) have shown that stimula-
tion of peripheral blood mononuclear cells (PBMCs) from MS 
patients with thymosin-α1 (Tα1) increases IL-10 and IL-35 
secretion and expands transitional- and plasmablast-like B cell 
populations. Upon exposure to pro-inflammatory cytokines, 
such as IL-21, IL-6, and IL-1β, an expansion of IL-10+ B  cell 
population has been observed. In RA patients, IL-21 increases 
the number of IL-10-producing B cells in the memory compart-
ment and induces IL-10+ plasmablasts (206), whereas in mice, 
gut microbiota-derived IL-1β and IL-6 promote the formation 
of various IL-10+ B lineage cells in the spleen and lymph nodes 
(225). By contrast, the anti-inflammatory cytokine IL-35 can 
also induce human B  cells to produce IL-10 and IL-35 (226). 
Nevertheless, inducing anti-inflammatory B  cells in  vivo via 
inflammatory cytokines bears the risk of undesirable patho-
genic side effects by also activating other effector cell types. If 
not expanded in vivo, IL-10+ B cells could be also induced from 
patient PBMCs in vitro and transferred back. Here, the questions 
of the amount of B cells required to improve clinical symptoms 
and the stability of the IL-10+ phenotype and function arise. 
The difficulties and potential of these therapies were recently 
discussed by Mauri and Menon (227).

induction of iL-10-Producing Plasma 
Cells/Plasmablasts: Potential as a 
Novel Treatment Option
Progress has been made in defining the identity of IL-10+ B cells 
that could be used to develop a novel therapeutic strategy. During 
the last decade, several phenotypically distinct murine B  cell 
subsets have been described that produce IL-10 upon in  vitro 
stimulation, which was able to limit autoimmune diseases (198). 
These cells include B cells with a CD5+ CD1dhi phenotype (B10) 
(228), CD5+ B cells (B1-a) (229), transitional type 2-MZ precur-
sors (230), and MZ B cells (231).

Of note, the surface markers used to characterize the identity 
of the IL-10+ B cells change following activation and might be not 
suitable to define a specific B cell subtype under inflammatory con-
ditions. Interestingly in this context, it has been shown that “B10” 
cells upregulate the expression of the transcription factors Blimp1 
and IRF4 while downregulating that of Pax5, suggesting that these 
cells undergo plasma cell differentiation. Moreover, upon transfer 
into recipient mice, “B10” cells become antibody-secreting cells 
(232). More recently, CD138hi plasmablasts in murine spleen (98) 
or lymph nodes (153) were described as the major producer of anti-
inflammatory IL-10 and IL-35 in vivo with the ability to limit EAE. 
In accordance with these findings, we found that IL-10+ plasma 
cells exhibit profound anti-inflammatory activities in a model of 
EBA, a rare autoimmune skin disease (85). These cells induce IL-10 
expression but reduce IFN-γ production in CD4 T cells, promote 
IL-10 production by CD4+/Foxp3+ Tregs and suppress neutrophil 
functions. Hence, IL-10+ plasmablasts/plasma cells represent an 
important anti-inflammatory B cell subtype.

Identification of the identity of IL-10+ B lineage cells may 
help to develop a novel method to induce these cells in a thera-
peutic setting. Stimulation of B cells with CpG-oligonucleotides 
induces both plasma cell differentiation and IL-10 expression. 
Accordingly, experimental induction of IL-10+ B lineage cells 
by adaptive transfer of CpG-stimulated B cells has recently been 
shown to suppress ongoing EAE inflammation in a therapeutic 
setting (200). This approach may open a novel perspective for the 
treatment of inflammatory autoimmune diseases.

CONCLUDiNG ReMARKS

The success of current B cell targeting therapies emphasizes the 
important roles B cells play in the pathogenesis of autoimmune 
diseases. There is overwhelming evidence from animal models 
indicating that B lineage cells exhibit multiple powerful pro- and 
anti-inflammatory capacities. The current experience with B  cell 
targeting therapies suggests that these findings also hold true in the 
clinic. Hence, therapies that specifically deplete pathogenic B cells 
and plasma cells, or generate immunosuppressive B cells/plasma cells 
could hold great potential for the treatment of autoimmune diseases. 
In an optimal setting, the therapy would be tailored to the individual 
patient based on his/her predicted needs, benefits, and risks.
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