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ABSTRACT

Peptide–protein interactions are important to many
processes of life, particularly for signal transmission
or regulatory mechanisms. When no information is
known about the interaction between a protein and a
peptide, it is of interest to propose candidate sites of
interaction at the protein surface, to assist the design
of biological experiments to probe the interaction, or
to serve as a starting point for more focused in sil-
ico approaches. PEP-SiteFinder is a tool that will,
given the structure of a protein and the sequence of
a peptide, identify protein residues predicted to be at
peptide–protein interface. PEP-SiteFinder relies on
the 3D de novo generation of peptide conformations
given its sequence. These conformations then un-
dergo a fast blind rigid docking on the complete pro-
tein surface, and we have found, as the result of a
benchmark over 41 complexes, that the best poses
overlap to some extent the experimental patch of in-
teraction for close to 90% complexes. In addition,
PEP-SiteFinder also returns a propensity index we
have found informative about the confidence of the
prediction. The PEP-SiteFinder web server is avail-
able at http://bioserv.rpbs.univ-paris-diderot.fr/PEP-
SiteFinder.

INTRODUCTION

Peptide–protein interactions are natural events of life, in-
volving several well-known peptide categories such as hor-
mones, peptides of the central nervous system (1), venom
peptides (2), to cite some. In the recent years, peptide–
protein interactions have also found an interest in stud-
ies targeting protein–protein interactions. For instance,
protein–protein interactions can be mediated by short lin-
ear peptides that are present in disordered regions of pro-
teins partners (3). There is also a large interest in the design

of peptides extracted from structures to mimic protein epi-
topes in a therapeutic perspective (4), or to design peptide
ligands from protein–protein complexes (5). In a general
manner, peptides have, in the recent years, had a renewed
interest as candidate therapeutics (6,7).

Present in silico approaches to assist the functional char-
acterization of peptide–protein interactions can however be
largely improved (5,8). Several docking approaches have
been developed to predict how a peptide and a protein inter-
act. However, for a majority of these methods, such as Dy-
naDock (9), Rosetta FlexPepDock refinement (10), Rosetta
FlexPepDock ab initio (11), or PepCrawler (12), the opti-
mization of peptide conformation is only performed in the
known binding site. Even the recent HADDOCK peptide
docking protocol (13) also requires, to be successful, that
the initial position of the peptide is within 5 Å from the pep-
tide in the crystal structures of the complexes. Finally and
noteworthy, probably due to large computational costs, only
two web servers are currently available for local refinement
of a peptide docked into the binding site: FlexPepDock (14)
and PepCrawler (12).

When the binding site is not known, a search on the whole
protein surface––global docking or blind docking––must
be performed. A classical docking program like AutoDock,
designed for the small molecules docking, has been shown
efficient for short peptides, such as four residues (15) or
seven residues (16). For longer peptides, specific approaches
have been developed. Dagliyan et al. (17) have shown the
relevance of replica exchange all-atom discrete molecu-
lar dynamics simulations to identify correctly the peptide-
binding sites. Verschueren et al. have proposed a proto-
col to generate models of a peptide at the protein sur-
face, using backbone fragments from the BriX database
(18,19). This method has been applied, successfully in most
cases, on a dataset of 11 unbound complexes involving pep-
tides of size up to 13 amino acids, and a dataset of 26
bound tetrapeptide-PDZ complexes. Although these pro-
grams have demonstrated their ability to carry out blind
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docking for short peptides, to the best of our knowledge,
no web server is currently available.

Instead of performing peptide docking, PepSite (20) aims
at predicting the binding site for peptide on the whole pro-
tein surface, without returning a complete peptide structure.
It is based on spatial position specific scoring matrices (S-
PSSMs) for each of the 20 standard residues and three phos-
phorylated variants. The predicted binding sites for each
amino acid are combined with the distance constraints ac-
cording to the peptide sequence to identify potential bind-
ing site for the complete peptide. An online tool is avail-
able for an updated version of PepSite (21). It accepts pep-
tides with a maximal size of 10 amino acids. Very recently,
PeptiMap, an approach adapting a small molecule hot spot
identification protocol to the identification of peptide bind-
ing site has been proposed (22). It has been calibrated on a
subset of 21 peptide–protein complexes from PeptiDB and
validated using a set of nine complexes. It was possible to
identify the binding site for 19 and seven of these 21 and
nine cases, respectively. It is so far not available online.

Here, we present PEP-SiteFinder, a new tool to identify
the peptide-binding site without any knowledge of the po-
tential interaction site. PEP-SiteFinder combines the 3D
de novo prediction of the peptide structure and the blind
docking of peptide predicted conformations using a coarse
grained representation. It accepts peptides from four to 36
amino acids. We assess its performance on a third party col-
lection of peptide–protein complexes using the conforma-
tion of the unbound protein. We show that PEP-SiteFinder
is able to identify relevant information even in cases un-
dergoing conformational changes upon peptide binding.
Unlike previous tools, PEP-SiteFinder also quantifies the
propensity of protein residues to be at the peptide interface,
which we find to correlate with the experimental observa-
tions.

MATERIALS AND METHODS

Dataset

To benchmark the performance of PEP-SiteFinder, we have
used the PeptiDB dataset (23). PeptiDB consists in 103
high-resolution peptide–protein complexes (holo confor-
mation), resolved using X-ray diffraction, with a resolu-
tion lower than 2 Å and presenting no sequence iden-
tity between two protein monomers more than 70%. The
bound peptides have a size between five and 15 amino acids.
The protein uncomplexed (apo) conformation is available
for 78 complexes and PeptiDB defines a core set of 41
non-redundant complexes, an additional set of 26 com-
plexes structurally redundant with the core set according
to Class-Architecture-Topology-Homologous superfamily
(CATH) structural classification (24), and a subset of 11
complexes for which large conformational changes occur.
Details about the dataset are provided in the Supplementary
data. We have performed our tests using the apo conforma-
tions and the peptide sequences as input of PEP-SiteFinder
and PepSite, and compared the residues predicted in inter-
action with those at peptide–protein interface in the com-
plexes.

Figure 1. PEP-SiteFinder flowchart.

Protein–peptide interactions

Figure 1 depicts a flowchart of PEP-SiteFinder. It consists
in three main steps detailed hereafter.

Peptide 3D conformation generation. A first step is the pre-
diction of an ensemble of conformations from the peptide
sequence, independently of the protein. It is achieved using
PEP-FOLD (25–27). PEP-FOLD relies on the concept of
structural alphabets, a generalization of the concept of sec-
ondary structure extending the number of states from three
(helix, strand, coil) up to 27 in our case. The states describe
the conformation of fragments of four amino acids, which
corresponds to the smallest peptide size PEP-SiteFinder can
process. Given a peptide sequence, the probabilities of the
states are predicted at each position of the peptide, and
the states associated with the largest probabilities are se-
lected. The 3D assembly is then performed from the pro-
totype fragments associated with each of the states, using
the coarse grained force field sOPEP (26). PEP-FOLD has
been shown to be efficient for the de novo generation of pep-
tides in solution up to 36 amino acids, which corresponds
to the present upper peptide size for PEP-SiteFinder. For
such sizes, the lowest energy conformations deviate, on av-
erage by 2.5 Å from the Nuclear magneticresonance (NMR)
rigid cores (27).

Since peptides are known to possibly undergo conforma-
tional changes upon protein binding, it can be penalizing
to consider only the lowest energy conformation. For PEP-
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SiteFinder, we use a modified version of PEP-FOLD that
allows to sample the sub-optimal conformations. This ver-
sion revisits the 3D generation procedure to return, given a
peptide sequence, a diverse collection of conformations in-
stead of searching for the lowest energy conformation. In
practice, for each peptide, we generate 200 suboptimal con-
formations that are then clusterized. The centroids of up to
the 20 clusters of lowest energy are selected for the docking
step.

Peptide–protein blind rigid docking. For each generated
peptide structure, systematic rigid docking is performed us-
ing the ATTRACT docking protocol (28) using the version
2 of the ATTRACT forcefield (29) as implemented in the
PTools library (30). The ATTRACT docking protocol has
been described previously (28) and only a brief description
of the method is given here.

The first step of the method is the translation of the pro-
tein and the peptide into a reduced coarse-grained represen-
tation. In this second version of the ATTRACT forcefield,
all atoms from the backbone are kept while side chains are
represented by up to two pseudo-atoms. The energy func-
tion is the sum of two contributions, the electrostatic energy
and a pairwise soft Lennard-Jones potential (29).

After this reduction step, starting points are regularly po-
sitioned around the protein, at a distance of two times the
radius of the peptide from the protein surface and about
10 Å from each other. For each starting point, 260 peptide
orientations are generated and an energy minimization is
performed, allowing the peptide to move only in transla-
tional and rotational degrees of freedom (rigid-body dock-
ing). Since all starting positions are independent, this step
is performed in parallel on our cluster on up to (arbitrarily)
180 cores, allowing us to perform a blind docking simula-
tion usually in less than a minute for most targets. Mini-
mized structures are then ranked by energy after merging
the results from all calculating processes.

At the end of the process, up to 20 systematic rigid dock-
ing simulations have been performed. Redundant solutions
are filtered out by a fast clustering procedure. Poses are
ranked by energy and are picked one after another start-
ing with the ligand with the lowest energy. If a ligand has
a Root-Mean-Square Deviation (RMSD) of less than 1 Å
with respect to previously found clusters this ligand is con-
sidered to be redundant and is discarded. Otherwise this lig-
and is considered to represent a new cluster. To keep the al-
gorithm in O(n) with respect to the number of poses, only
the latest 50 clusters are compared to a new ligand.

After this clustering step, the best solutions from each
docking simulation are aggregated and ranked by their en-
ergy of interaction with the protein.

Residues at peptide–protein interface. A last step consists
in assessing the propensities of protein residues to interact
with the peptide. These are defined over the 50 best poses
ranked according to the ATTRACT2 force field. For each
pose, protein residues at the peptide interface are defined as
the residues having at least one heavy atom at a distance of
less than 5 Å of any peptide heavy atom. The propensity of
a residue r is then calculated as the fraction of times it has
been at the peptide–protein interface: pr = 100

∑50
i=1 pi

r/50

where i corresponds to the 50 best poses and pi
r is one of (0,

1), 1 meaning the residue r is at peptide–protein interface
for pose i.

Comparison with PepSite

To compare our results with those of PepSite (21), we have
submitted the complete collection of peptides to the Pep-
Site2 web server. Results were returned for only the subset
of peptides of size less than 11 amino acids. To assess the
residues predicted at protein–peptide interface, we have pro-
ceeded in a similar way than for the calculation of residue
propensities to be at the interface. However, since PepSite
only returns one centroid per residue, and since we could
not find a clear equivalence in terms of atomic position of a
residue, we have, in order to keep the comparison as fair as
possible, identified the protein residue contacted consider-
ing only the peptide alpha-carbons for PEP-SiteFinder and
the centroids for PepSite, using a distance threshold or 6.5
and 10 Å, respectively. Only protein heavy atoms have been
considered.

Comparison with a pocket binding site identification method

We have used the fpocket (31) pocket detection software
on all protein, using the apo conformations, to identify
small compound binding pockets. Since fpocket has been
reported to identify the pockets in interaction with small
ligands at a success rate over 90% in the best three pockets,
we have estimated the fraction of protein residues interact-
ing with the ligand and belonging to the three top pockets
identified.

WEB INTERFACE

Input

PEP-SiteFinder takes as an input a protein structure (PDB
format) and a peptide sequence. The size of the input se-
quence must be between four and 36 amino acids (see ‘Ma-
terials and Methods’ section). There is in theory no limit
about the protein size, but proteins including non polypep-
tidic chains (e.g. nucleic acids) are presently not accepted.
Also note that the docking process discards all the hetero
atoms of the input file. To test the service, the user can
run a pre-configured test (GRIP1 PDZ domain in complex
with liprin C-terminal peptide in interaction with the 8-mer
peptide ‘ATVRTYSC’ which corresponds to the chain D of
1N7F). Even though both PEP-FOLD and rigid docking
steps are rather fast, a typical run of PEP-SiteFinder re-
quires up to 30 min and more, depending on the size of the
protein, the number of peptide conformations generated us-
ing PEP-FOLD and the server load. Information about the
job progress is periodically updated.

Output

PEP-SiteFinder provides several outputs. The first consists
in an interactive page allowing to browse the 3D struc-
ture of the best complexes generated, to identify the pro-
tein residues close to the different peptide poses sorted ac-
cording to their ATTRACT2 scores, or the protein residues
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Figure 2. PEP-SiteFinder interactive page for the exploration of the best
poses for the PriA helicase––SSB peptide complex (PDB code: 4NL8). Pro-
tein residues are colored according to their predicted propensities, from
blue (0) to red (100).

having large predicted propensities to be at peptide–protein
interface. This facility depends on Jmol (32) and thus re-
quires a Java plug-in to be installed. The user can also down-
load the PDB files corresponding to the protein with the
interaction propensities set in the temperature factor field
(columns 61–66), and to the peptide poses, organized as a
multiple model PDB, together with a PyMOL script to drive
the off-web analysis of the results. Finally, a file listing the
propensities per residue is also returned.

RESULTS

Example application on the PriA deoxyribonucleic acid
(DNA) helicase––ssDNA-binding proteins (SSB) peptide in-
teraction

We illustrate the interest of PEP-SiteFinder in the con-
text of the Critical Assessment of Predicted Interactions
(CAPRI) contest (33) target 66. Its object was the complex
between the PriA DNA helicase and a SSB peptide. Be-
fore the completion of replication, collisions between cel-
lular DNA replication machinery (replisomes) and dam-
aged DNA or immovable protein complexes can occur and
dissociate replisomes. This potentially lethal problem is re-
solved by the PriA DNA helicase which identifies replica-
tion forks via structure-specific DNA binding and interac-
tions with fork-associated ssDNA-binding proteins (SSBs).
The characterization of the interaction between PriA and
SSBs is thus of particular interest. However, the mecha-
nism by which PriA binds replication fork DNA and co-
ordinates subsequent replication restart reactions have re-
mained unclear until high resolution structural informa-
tion was obtained by crystallography (34). Given the se-
quence of a SSB peptide and the structure of PriA DNA
helicase, Figure 2 shows the 10 best poses of a SSB peptide
of sequence ‘WMDFDDDIPF’ (shown in green) bound
to PriA Helicase returned by PEP-SiteFinder, as could
be explored in the PEP-SiteFinder result page. The col-
ors of residue propensities to interact vary from red (large

Figure 3. PEP-SiteFinder (A) and PepSite (B) performance over the Pep-
tiDB core subset. Fraction of residues of the binding site contacted by the
10 best poses. (C) Probability that a residue is in the binding site (correct
prediction) as a function of the propensity. The error bars correspond to
the standard deviation estimated over five independent runs.

propensities––100) to blue (low propensities––0). The best
spot returned corresponds, for this complex, to the actual
interaction site.

Tests on the PeptiDB dataset

We have assessed the performance of PEP-SiteFinder over
the complete PeptiDB collection (see Supplementary data),
by searching on the surface of the unbound protein confor-
mation the experimental peptide binding site. We first focus
on the results obtained for the PeptiDB core subset of 41
complexes, and we first analyze how the 10 best poses gener-
ated by PEP-SiteFinder target the actual interaction patch
(summarized Figure 3A). A major result is that the 10 best
poses generated by PEP-Sitefinder fail to match any of the
protein residues interacting with peptide for only four cases,
i.e. for only 10% of the cases. For all other complexes, the
10 best poses generated by PEP-SiteFinder return, to differ-
ent extents, relevant information about candidate residues
at peptide–protein interface. Actually, piling up the analy-
ses of the 10 best poses allows to identify >50% of the inter-
acting residues for as much as 71% of the complexes. This
strongly suggests, firstly, that the best poses, even starting
with de novo predicted conformations can target the right
protein patch and secondly, that piling up the best poses
can have added value. We have also looked at the impact
of the peptide conformation on the correct identification of
the binding site. Overall, we find that the 20 conformations
generated by PEP-FOLD approximate the conformation of
the peptide in the complex at 3.5 Å RMSD, on average. The
corresponding value is of 3.4 Å for the peptides of the 10
best poses and no significant deviation was observed for
targets for which PEP-SiteFinder failed. This suggests that
the quality of the PEP-FOLD conformations is intrinsically
sufficient for the blind identification of the binding site, al-
though the exact quantification of the minimal approxima-
tion to allow it is the matter for further investigation.

On the same data, PepSite returned results for only 29
complexes (peptide size upper limit of 10 amino acids), and
could not identify any residue in the correct region for eight
complexes, i.e. 27% of the cases. We also find that PepSite
could identify more than 50% of the interacting residues
among the 10 best poses for 48%. This highlights the added
value of the PEP-SiteFinder 3D approach by comparison
with a knowledge based approach such as PepSite. How-
ever, PepSite and PEP-SiteFinder both fail, for only one tar-
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get suggesting added value could be found in a combination
of the two approaches.

Interestingly as well, we found that the top three pock-
ets identified by a pocket identification program such as
fpocket do not correspond to the peptide binding site for
11 cases. For all these cases, PEP-SiteFinder returned rel-
evant information. Supplementary Figure S1 depicts one
such case. Despite fpocket top three pockets match to some
extent the peptide binding site for four cases where PEP-
SiteFinder fails, this highlights the interest of a peptide-
specific approach.

Supplementary Figure 3C shows, as averaged over five in-
dependent PEP-SiteFinder runs, that large propensity val-
ues are associated with large probability values that the
residues are located at the peptide–protein interface. The
observed probability that a residue is actually at peptide–
protein interface is of over 80% for propensity values >80%.
Over all the 41 complexes, we find that the fraction of cases
for which it would be possible to identify a residue at the
peptide–protein interface considering the residue with the
largest propensity is of 56%, increasing up to 71 and 73%
considering the five and 10 best propensities, respectively.
Interestingly also, increasing the distance cutoff to identify
the residues contacted by the poses to 10 Å, the correspond-
ing fractions are of 73, 76 and 78% suggesting some of the
residues with the best propensities are in the vicinity of the
binding site. However, we recall that presently the propen-
sities are estimated residue per residue, i.e. not considering
the proximity of the residue on the protein surface. To sum-
marize, our results show that the combined analysis of the
best scored poses and the propensities can be of great inter-
est to identify candidate residues on the protein surface.

Finally, we briefly comment on the results obtained for
PeptiDB complexes annotated as undergoing large confor-
mational changes and for which the peptide binding site is
accessible. Most often, the conformational changes corre-
spond to the conformational modification of one or sev-
eral loops upon peptide binding. Interestingly, we observe
that PEP-SiteFinder is able to propose valuable predictions
for all such cases. In our understanding, the diversity of
the peptide conformation used by PEP-SiteFinder can ac-
commodate such structural differences. Two such examples
are depicted in the Supplementary data. These few cases
also suggest that PEP-SiteFinder should be able to provide
confident prediction with low quality conformations such
as could be built by homology modeling, although this re-
mains the subject for further investigation.

CONCLUSION

PEP-SiteFinder is a tool to predict peptide-binding sites
given a protein structure and a peptide sequence. Its strat-
egy is to generate 3D conformations of the peptide from
its sequence and then to use a rigid docking approach that
scans the complete protein surface to extract information
about the protein residues likely to be located at peptide–
protein interface. Though PEP-SiteFinder relies on approx-
imate peptide conformations, our results show that such an
approach is effective, and performs, on average, better than
a knowledge based approach such as PepSite. A counter-
part of such strategy is that it is much more computer in-

tensive. Nevertheless, being much slower than PepSite, it
remains fast enough for a 3D approach, typical execution
times being on the order of 30 min to 1 h. Several direc-
tions can be considered to improve PEP-SiteFinder, rang-
ing from the identification of the patches of protein residues
with large propensities, to revisiting the generation of the
3D conformations or enhancing complex scoring. However
PEP-SiteFinder, in its present version, already provides use-
ful information to guide mutagenesis experiments to probe
peptide–protein interactions or to provide starting points
for more accurate peptide–protein docking experiments.
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