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Abstract

Introduction: This study aimed to investigate the feasibility of generating pseudo dual-

energy CT (DECT) from one 120-kVp CT by using convolutional neural network (CNN)

to derive additional information for quantitative image analysis through phantom study.

Methods: Dual-energy scans (80/140 kVp) and single-energy scans (120 kVp) were

performed for five calibration phantoms and two evaluation phantoms on a dual-source

DECT scanner. The calibration phantoms were used to generate training dataset for

CNN optimization, while the evaluation phantoms were used to generate testing data-

set. A CNNmodel which takes 120-kVp images as input and creates 80/140-kVp images

as output was built, trained, and tested by using Caffe CNN platform. An in-house soft-

ware to quantify contrast enhancement and synthesize virtual monochromatic CT

(VMCT) for CNN-generated pseudo DECTwas implemented and evaluated.

Results: The CT numbers in 80-kVp pseudo images generated by CNN are differed from

the truth by 11.57, 16.67, 13.92, 12.23, 10.69 HU for syringes filled with iodine concen-

tration of 2.19, 4.38, 8.75, 17.5, 35 mg/ml, respectively. The corresponding results for

140-kVp CT are 3.09, 9.10, 7.08, 9.81, 7.59 HU. The estimates of iodine concentration

calculated based on the proposed method are differed from the truth by 0.104, 0.603,

0.478, 0.698, 0.795 mg/ml for syringes filled with iodine concentration of 2.19, 4.38,

8.75, 17.5, 35 mg/ml, respectively. With regards to image quality enhancement, VMCT

synthesized by using pseudoDECT shows the best contrast-to-noise ratio at 40 keV.

Conclusion: In conclusion, the proposed method should be a practicable strategy for

iodine quantification in contrast enhanced 120-kVp CT without using specific scan-

ner or scanning procedure.
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1 | INTRODUCTION

Single-energy CT (SECT) scan utilizes a single polychromatic x-ray beam

at energy ranging from 70 to 140 kVp with a standard of 120 kVp. The

image contrast of CT depends on the differences in photon attenuation

of various materials that constitute human body, whereas the degree of

photon attenuation is related to tissue composition and photon energy.

Dual-energy CT (DECT) acquires two images at different energy levels

to use the attenuation difference at different energies for deriving addi-

tional information, such as virtual monochromatic CT (VMCT) and

iodine image.1–3 The VMCT can be customized to a specific energy level

that offers a balance between adequate image contrast and reduced
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image noise to optimize the contrast-to-noise ratio (CNR). Besides

image quality enhancement, DECT also allows quantification of iodine

concentration, which could improve lesion conspicuity due to differ-

ence in iodine content between lesions and normal parenchyma. The

algorithms for DECT acquisition are unique for each CT manufacturer,

so this capability is only available for some specific scanners.4,5 Dual-

source DECT scanners contain two x-ray tubes and detector arrays for

simultaneous acquisition of projection data with the sources operated

at different tube potentials. Fast kilovolt-switching DECT scanners

allow acquisition of dual-energy data bymodulating the voltage of a sin-

gle x-ray generator from low to high kilovolt peaks between alternating

projections. Dual-layered DECT scanners have equipped with a modi-

fied detector with two scintillation layers to receive separate high and

low image data. All these proprietary techniques have posed a burden

on CT system hardware, so DECT scanners are not widely available as

SECT scanner. Moreover, DECT acquisition may increase the radiation

dose to patients. Hence, DECT is not a routine procedure even for con-

trast-enhanced CT scan in our hospital. Machine learning is attracting

growing interest in both academia and industry recently. Furthermore,

deep learning techniques have become the de facto standard for a wide

variety of computer vision problems.6–8 A deep learning model learns

multiple levels of representations that correspond to different levels of

abstraction from the input image to perform prediction. This study

aimed to investigate the feasibility of generating pseudo DECT from

one 120-kVp CT by using convolutional neural network (CNN) to derive

additional information for quantitative image analysis without extra CT

scans through phantom study.

2 | METHODS

2.A | Calibration phantoms

A calibration phantom set which consists of an electron density

phantom and additional annuluses was used to generate training

dataset for CNN optimization (Fig. 1). The electron density phantom

(Model 062; CIRS, Norfolk, VA, USA) which is 18 cm in diameter

and 5 cm in height was covered by four layers of 2.5-cm-thick bolus

(Superflab Bolus; Radiation Products Design Inc, Albertville, MN,

USA) to enlarge the diameter of the calibration phantom from 18 cm

(Cphan18cm) to 23 cm (Cphan23cm), 28 cm (Cphan28cm), 33 cm

(Cphan33cm), and 38 cm (Cphan38cm). The electron density phantom

is made of soft tissue equivalent epoxy resin and houses 4 rod

F I G . 1 . Illustration of the calibration phantoms with five different sizes.
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inserts + 5 syringes. The rod inserts simulate four different soft tis-

sues, including adipose (0.96 g/cc), breast (0.991 g/cc), muscle

(1.062 g/cc), and liver (1.072 g/cc). The plastic syringes (volume:

10 ml; diameter: 2 cm) were filled with iodine solution at concentra-

tion of 2.19, 4.38, 8.75, 17.5, 35 mg/ml.

2.B | Evaluation phantoms

Fig. 2 demonstrates two evaluation phantoms used to generate test-

ing dataset for CNN optimization. The first evaluation phantom

(Ephan1) shown in [Fig. 2(a)] is an electron density phantom (Model

062; CIRS, Norfolk, VA, USA) with dimensions of 33*27*15 cm3.

The elliptical, epoxy resin-based phantom houses 17 rod inserts sim-

ulating lung (inhale: 0.195 g/cc; exhale: 0.51 g/cc), adipose (0.96 g/

cc), breast (0.991 g/cc), plastic water (1.016 g/cc), muscle (1.062 g/

cc), liver (1.072 g/cc), trabecular bone (1.161 g/cc), dense bone

(1.53 g/cc). The second evaluation phantom (Ephan2) shown in

[Fig. 2(b)] has the same dimensions and base material as Ephan1, but

the inserts in Ephan2 are different from those in Ephan1, including

12 rod inserts simulating different tissues and five syringes filled

with iodine solution.

2.C | DECT and SECT scans

All scans were performed on a dual-source DECT scanner (Somatom

Definition Flash, Siemens Healthcare, Forchheim, Germany). The

imaging parameters of DECT and SECT scans used in this study are

shown in Table 1. Attenuation-based tube current modulation (CARE

F I G . 2 . Illustration of two evaluation
phantoms with different rod inserts.
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Dose 4D, Siemens Healthcare, Forchheim, Germany) was applied for

all acquisitions. Each phantom was scanned at 80, 120, and 140 kVp

using 0.5-s gantry rotation time and pitch of 0.6, so 21 CT acquisi-

tions were performed. Scan data were reconstructed at 2-mm nomi-

nal slice width using Filtered Backprojection (FBP) with a medium

smooth reconstruction kernel (B30f). For DECT scan, material-speci-

fic images can be generated through material decomposition to

quantify the presence of particular elements, compounds, or mixture.

With vender’s software, material decomposition was performed for

three basis materials in the image domain.9,10

2.D | Deep learning to generate pseudo DECT

Energy mapping has been widely used in CT-based attenuation cor-

rection for PET which derives μ-map at 511 keV from CT images.

Although this transformation is not linear, it needs small extent of

nonlinear mapping.11 Hence, the deep learning method proposed by

Nie et al. was adapted in this work to generate pseudo DECT imag-

ing from one 120-kVp CT scan.12 Figure 3 demonstrates the struc-

ture of the CNN model. The model consists of three convolutional

stages with deeply supervised nets (DSN) to supervise features at

each convolutional stage, enabled by layer-wise dense connections

in both backbone networks and prediction layers.13 The mean

square error (MSE) was used as the loss function to minimize the

loss between the reconstructed images and the corresponding

ground truth. Using MSE as the loss function favors a high peak sig-

nal-to-noise ratio (PSNR). The input images are prepared as 32*32-

pixel sub-images randomly cropped from the original image. To

avoid border effects, all the convolutional layers have no padding,

and the network produces an output image with 18*18 matrix size.

The training datasets are sub-images extracted from the CT images

of Cphan18cm, Cphan23cm, Cphan28cm, Cphan33cm, Cphan38cm with a

stride of 14. The testing datasets are sub-images extracted from the

CT images of Ephan1 and Ephan2 with a stride of 20. The training

and testing datasets provide roughly 49972 and 8184 sub-images,

respectively. The filter weights of each layer are initialized by using

Xavier initialization, which could automatically determine the scale

of initialization based on the number of input and output neurons.14

All biases were initialized with zero. The model was trained using

stochastic gradient descent with mini-batch size of 128, learning

rate of 0.01 and momentum of 0.9. The CNN model was built,

trained, and tested by using Caffe (Convolutional Architecture for

Fast Feature Embedding) CNN platform (version 1.0.0-rc5 with

CUDA 8.0.61) on an Ubuntu server (version 16.04.4 LTS) with two

RTX 2080 (NVIDIA) graphics cards.

2.E | In-house software to generate VMCT and
iodine image

In the presence of iodine, VMCT created using image-based

method may contain beam-hardening artifacts,15,16 so an in-house

software for realizing the projection-based method proposed by Li

et al. was implemented (Fig. 4).17 The first step in the workflow

was forward projection of CT images reconstructed in mm-1 by

Siddon’s ray tracing algorithm to obtain low-energy projections (L)

and high-energy projections (H).18 Next, two-material decomposi-

tion was performed to estimate the equivalent thickness of basis

materials. Numerous basis materials for soft and bone tissues have

been suggested.19,20 For this study, aluminum was selected for

bone tissues, while acrylic was chosen for soft tissue. The equiva-

lent thicknesses of aluminum (xA) and acrylic (xB) were estimated

based on the following equations:

xA ¼ a0þa1Lþa2Hþa3L
2þa4LHþa5H

2

1þb0Lþb1H
(1)

xB ¼ c0þc1Lþc2Hþc3L
2þc4LHþc5H

2

1þd0Lþd1H
(2)

where the parameters ai, bj ci, dj (i = 0-5; j = 0, 1) represent charac-

teristics of the x-ray beam energy spectrum. In the combination step,

virtual monochromatic projections were synthesized using the

following equation:

TAB L E 1 Imaging parameters of dual-energy and single-energy
scans.

Dual-energy
Scan Single-energy Scan

Tube voltage (kVp) 80 Sn 140 120

Effective tube current-time

product (mAs)a
282 120 175

CTDIvol (mGy)b 12.13 11.83

Field of view (cm) 50 33 50

aEffective tube current-time product = mAs/pitch.

F I G . 3 . Structure of CNN model to generate pseudo 80- and 140-kVp CT from 120-kVp CT.
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Z
μ Eð Þds¼ μA Eð ÞxAþμB Eð ÞxB (3)

where μA(E) and μB(E) are the linear attenuation coefficients of basis

materials at energy E. The mass attenuation coefficients of basis

materials at different energies were obtained from XCOM: Photon

Cross Sections Database by National Institute of Standards and

Technology (NIST), available at http://physics.nist.gov/xcom. Last,

FBP algorithm was used for the VMCT reconstruction. With regards

to the estimation of iodine concentration, the decomposed aluminum

projections were reconstructed by FBP first and then multiplied by a

conversion factor to create iodine images.

The parameters ai, bj ci, dj in [Eq. (1) and (2)] have to be deter-

mined to conduct material decomposition. Hence, a calibration step

wedge which contains two aluminum step wedges and one acrylic

step wedge stacked in an orthogonal pattern was used. The dimen-

sions of the 11-step aluminum wedge (Fluke Biomedical, Everett,

WA, USA) are 139.7 mm in length, 63.5 mm in width and 33 mm in

height. The home-made acrylic wedge contains eight steps, and its

dimensions are 120 mm in length, 152.4 mm in width and 40 mm in

height. Forty-eight regions of interest (ROIs) were placed on the pro-

jections of the calibration step wedge (xA: 0, 6, 12, 18, 24, 30 mm;

xB: 10, 15, 20, 25, 30, 35, 40 mm) to determine image intensity in L

and H. Given xA, xB and their corresponding image intensity in L and

H, the parameters ai, bj ci, dj can be determined by minimizing abso-

lute error fitting. This step is called parameterization. To validate the

results of parameterization, the thicknesses of aluminum and acrylic

step wedges estimated based on [Eq. (1) and (2)] were compared

with those measured using a caliber.

2.F | Quantitative evaluation

The difference between real CT images (Ireal) and pseudo CT images

(Ipseudo) generated by CNN was quantified by using RMSE and

PSNR:

RMSE¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑V

i¼1 Ireal� Ipseudo
� �2

V

s
(4)

where V is the number of voxels within the whole image,

PSNR¼20log10
Imax

RMSE
(5)

CNR¼ CT#�CT#BG

SDBG

����
���� (6)

where CT# is the mean CT number of a specified material, CT#BG

and SDBG are the average and standard deviation of CT numbers of

tissue equivalent background material, respectively.

3 | RESULTS

3.A | Parameterization for material decomposition

According to the calibration step wedge experiment, the parameters

ai, bj ci, dj in [Eq. (1) and (2)] were determined:

xA ¼0:952þ1:116L�2:353H�0:023L2þ0:098LH�0:104H2

1�0:020Lþ0:042H

xB ¼�2:319�2:882Lþ8:509Hþ0:088L2�0:448LHþ0:558H2

1�0:035Lþ0:079H
:

Figures 5(a) and 5(b) demonstrate the illustration of the calibra-

tion step wedge and the corresponding 80-kVp projection with 48

ROIs, respectively. The measured and estimated wedge thickness vs

the image intensity in 80-kVp projection (-ln(IL/I0)) are shown in

[Fig. 5(c)] for aluminum step wedge and [Fig. 5(d)] for acrylic step

F I G . 4 . Workflow to synthesize VMCT based on the in-house
software.
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wedge. The differences between measurements and estimates for

the aluminum step wedge with thickness of 0, 6, 12, 18, 24, 30 mm

are 0.39, 0.66, 0.15, 0.19, 0.07, 0.14 mm, respectively. The differ-

ences between measurements and estimates for the acrylic step

wedge with thickness of 5, 10, 15, 20, 25, 30, 35, 40 mm are 0.99,

0.88, 1.48, 0.42, 0.54, 0.76, 0.77, 0.61 mm, respectively. Figure 6

demonstrates the decomposed projections from basis material

decomposition for aluminum and acrylic step wedges and their cor-

responding illustrations.

3.B | Real DECT images + in-house software

Figure 7 shows CT images of Cphan18cm, Cphan23cm, Cphan28cm,

Cphan33cm, Cphan38cm obtained from real DECT scans. For these

acquired images, the CT numbers of iodine syringes at 80 and

140 kVp are depicted in [Figs. 8(a) and 8(b)], respectively, and their

iodine concentrations estimated by commercial and in-house soft-

ware are depicted in [Figs. 8(c) and 8(d)], respectively. The coeffi-

cients of variation (CVs) of CT numbers at 80 kVp due to different

phantom sizes are 0.196, 0.099, 0.085, 0.081 and 0.076 for syr-

inges filled with iodine concentration of 2.19, 4.38, 8.75, 17.5,

35 mg/ml, respectively. The corresponding CVs for CT numbers at

140 kVp are 0.252, 0.100, 0.075, 0.075, 0.072. With regards to

the iodine concentration estimated by the commercial software, the

estimates averaged over different phantom sizes are differed from

the truth by 0.202, 0.662, 0.784, 1.310, 2.430 mg/ml for syringes

filled with iodine concentration of 2.19, 4.38, 8.75, 17.5, 35 mg/ml,

respectively. The corresponding results for iodine concentration

estimated by the in-house software are 0.276, 0.316, 0.188, 0.574,

0.588 mg/ml.

F I G . 5 . (a) Illustration of the calibration step wedge and (b) the corresponding 80-kVp projection. The red rectangles in (b) are the ROIs used
to depict the image intensity in projection versus the wedge thickness of (c) aluminum step wedge and (d) acrylic step wedge.
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3.C | Pseudo DECT images + in-house software

Figure 9 demonstrates the RMSE and PSNR between real and

pseudo CT for Ephan1 and Ephan2. The pseudo DECT images of

Ephan1 generated by CNN after 107 iterations are compared with

real DECT images in Fig. 10. The corresponding results for Ephan2

are shown in Fig. 11. Since the field of view (FOV) in 140-kVp scan

is 33 cm, the peripheral parts of evaluation phantoms are truncated

F I G . 6 . Decomposed projection from
basis material decomposition (left) and the
corresponding illustration (right) for (a)
aluminum step wedge and (b) acrylic step
wedge.

F I G . 7 . (a) 80-kVp and (b) 140-kVp real CT images of the calibration phantoms with five different sizes (window width/window
level = 1600/0 HU).
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in real 140-kVp CT image [Figs. 10(c) and 11(c)]. For a fair compar-

ison between 80- and 140-kVp images in terms of RMSE and PSNR,

the difference images were masked by a binary image which is the

union of phantom boundary and the 33-cm FOV. To evaluate the

efficacy of our proposed method on quantification accuracy, the CT

numbers of iodine syringes at 80 and 140 kVp are depicted in

[Figs. 12(a) and 12(b)], and the iodine concentrations estimated by

the in-house software are depicted in [Figs. 12(c)]. For 80-kVp CT,

the CT numbers in pseudo images generated by CNN after 107 iter-

ations are differed from the truth by 11.57, 16.67, 13.92, 12.23,

10.69 HU for syringes filled with iodine concentration of 2.19, 4.38,

8.75, 17.5, 35 mg/ml, respectively. The corresponding results for

140-kVp CT are 3.09, 9.10, 7.08, 9.81, 7.59 HU. As for the iodine

concentration estimated by the in-house software with pseudo

DECT generated by CNN after 107 iterations, the estimates are dif-

fered from the truth by 0.104, 0.603, 0.478, 0.698, 0.795 mg/ml for

syringes filled with iodine concentration of 2.19, 4.38, 8.75, 17.5,

35 mg/ml, respectively. With regards to the efficacy of our proposed

method on image quality enhancement, the CNR of VMCT synthe-

sized by the in-house software with real and pseudo DECT are

demonstrated in [Figs. 12(d) and 12(e)] for iodine syringes inserted in

Ephan2.

4 | DISCUSSION

Contrast material enhancement for CT has been used since the mid-

1970s. Besides providing visual enhancement between a lesion and

F I G . 8 . CT numbers of (a) real 80-kVp and (b) real 140-kVp images and iodine concentration estimated based on (c) commercial software
and (d) in-house software with real DECT for iodine syringes inserted in the calibration phantoms with five different sizes.
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the normal surrounding structures, contrast enhanced CT can also be

used for estimating iodine concentration through DECT. Since CT

contrast enhancement in the lesion has close relationship with the

vascular density, the iodine volume is associated with tumor differ-

entiation.21 It has been reported that peak enhancement intensity is

negatively correlated with tumor differentiation based on the density

F I G . 9 . RMSE (left vertical axis, solid blue line) and PSNR (right vertical axis, dashed green line) between real and pseudo CT at 80 kVp (left)
and 140 kVp (right) for (a) Ephan1 and (b) Ephan2.

(a) (b)

(e) (f)

(c) (d)

F I G . 10 . (a) Real 80-kVp CT image, (b) pseudo 80-kVp CT image, (c) real 140-kVp CT image, (d) pseudo 140-kVp CT image for Ephan1
(window width/window level = 1600/0 HU). Intensity profiles of SECT, real and pseudo DECT through the dashed line in (a) are compared in
(e) for 80-kVp images and (f) for 140-kVp images.
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of immature microvessels.22 Determining a scan timing to grab the

right moment of maximal contrast differences between a lesion and

the normal parenchyma is crucial in contrast enhanced CT. However,

the optimal timing varies among patients because it is related to

numerous interacting factors, such as cardiac output, venous access,

renal function, hepatic cirrhosis, and so on.23–25 Consequently, the

reliability of DECT-derived iodine concentration for pathologic stage

classification may be affected by some of the patient-related factors.

Hence, DECT scan which quantifies iodine concentration at one time

point is not used in daily practice for cancer screening and staging in

our hospital. For the detection of hepatocellular carcinoma (HCC),

dynamic scan which acquires 120-kVp SECT images to see the

enhancement in different phases is used instead. The combination of

arterial phase hyperenhancement followed by portal venous phase

washout appearance strongly suggests the diagnosis of HCC.26 How-

ever, triple-phase CT is a qualitative evaluation method and relies

heavily on radiologist’s subjective visual assessment. CT perfusion

imaging represents an important quantitative assessment method for

tumor-related vascularization, which can measure the hemodynamic

parameters at the capillary level, with high temporal and spatial reso-

lution, as well as good reproducibility.27 But the respiratory motion

and high radiation dose are major limitations that need to be over-

come in order for perfusion CT to be used in clinical settings.

In this work, the feasibility of using deep learning method to

generate pseudo DECT based on one 120-kVp SECT scan for quan-

titative image analysis has been investigated through phantom study.

According to Fig. 8, CT numbers for the same iodine syringe vary

with phantom size, which was also observed in estimated iodine

concentrations. Nevertheless, the estimation accuracy of in-house

software was comparable to that of commercial software for real

DECT imaging. Due to beam hardening, a lower CT number was

observed in a larger calibration phantom for the same iodine syr-

inge.28 This phenomenon could increase data diversity to improve

CNN’s generalization accuracy. As shown in Fig. 9, the RMSE

between real and pseudo CT was slightly lower in Ephan1 than that

in Ephan2, although the rod inserts in Ephan1 simulating inhale lung,

exhale lung, trabecular bone and dense bone are not included in the

calibration phantoms. The intensity profiles shown in Figs. 10 and 11

and the CT numbers shown in [Figs. 12(a) and 12(b)] also verify the

effectiveness of the investigated CNN model in energy mapping.

Consequently, the estimation accuracy of in-house software with

CNN-generated pseudo DECT was comparable to that with real

DECT. Besides estimating iodine volume, the proposed method also

creates VMCT. VMCT allows for reconstruction of images at differ-

ent energies, so it could offer better image contrast than 120-kVp

SECT scans after energy optimization. Lowering energy could

(a) (b)

(e) (f)

(c) (d)

F I G . 11 . (a) Real 80-kVp CT image, (b) pseudo 80-kVp CT image, (c) real 140-kVp CT image, (d) pseudo 140-kVp CT image for Ephan2
(window width/window level = 1600/0 HU). Intensity profiles of SECT, real and pseudo DECT through the dashed line in (a) are compared in
(e) for 80-kVp images and (f) for 140-kVp images.
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improve image contrast but would also increase image noise.29 For

VMCT synthesized by using real DECT, the best CNR was found in

60-keV images. However, VMCT synthesized by using pseudo DECT

shows the best CNR at 40 keV. Based on our results, the difference in

CT number between real and pseudo CT was little, but the image noise

in pseudo CT is much lower than that in real CT (see intensity profiles

in Fig. 10 and 11). The difference in noise properties between real and

pseudo CT propagates to the corresponding VMCT, which may explain

the difference in CNR performance shown in [Figs. 12(d) and 12(e)].

Overall, the proposed method should be a practicable workflow for

iodine quantification in contrast enhanced 120-kVp SECT without

using specific scanner or scanning procedure.

Several limitations to this study need to be acknowledged. First,

the data acquisition, processing and reconstruction approaches can

influence the study results. The protocol parameters used in this

study are suggested by the manufacturers and are currently

employed in many centers equipped with the same scanners. Addi-

tional studies assessing the proposed workflow for different DECT

scanners will be needed and valuable. Second, CT images were

acquired either with the calibration phantoms or with the evaluation

phantoms. When the proposed workflow is translated to clinical use,

it is expected that the accuracy of CNN-generated pseudo DECT

determines the performance of the proposed method. Challenges

arise because tissue heterogeneity is not modeled in this phantom

study. In clinical implementation, transfer learning should be per-

formed to retrain the CNN model by using CT images obtained from

patient DECT and SECT scans. The efficacy of the proposed work-

flow on clinical patient data needs to be further investigated.

5 | CONCLUSION

This study investigated the feasibility of generating pseudo DECT

from one 120-kVp CT by using deep learning method to quantify

iodine concentration and synthesize VMCT through phantom study.

Based on our results, the accuracy of iodine concentration estimated

by the in-house software with CNN-generated pseudo DECT imag-

ing was comparable to the commercial software with real DECT

(a) (b)

(d) (e)

(c)

F I G . 12 . CT numbers at (a) 80 kVp and (b) 140 kVp, (c) iodine concentration estimated based on in-house software, and CNR of VMCT
synthesized by in-house software with (d) real DECT and (e) pseudo DECT for iodine syringes inserted in Ephan2.
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imaging. Moreover, the VMCT synthesized by the proposed method

could provide better image contrast than 120-kVp SECT after energy

optimization. In conclusion, the proposed method should be a practi-

cable strategy for iodine quantification in contrast enhanced 120-

kVp SECT without using specific scanner or scanning procedure.
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