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Background: In the realm of Evidence-Based Medicine, introduced by Gordon Guyatt in the early 1990s, the integration of machine
learning technologies marks a significant advancement towards more objective, evidence-driven healthcare. Evidence-Based Medicine
principles focus on using the best available scientific evidence for clinical decision-making, enhancing healthcare quality and
consistency by integrating this evidence with clinician expertise and patient values. Patient-Reported Outcome Measures (PROMs)
and Patient-Reported Experience Measures (PREMs) have become essential in evaluating the broader impacts of treatments, especially
for chronic conditions like HIV, reflecting patient health and well-being comprehensively.

Purpose: The study aims to leverage Machine Learning (ML) technologies to predict health outcomes from PROMs/PREMs data,
focusing on people living with HIV.

Patients and Methods: Our research utilizes a ML Random Forest Regression to analyze PROMs/PREMs data collected from over
1200 people living with HIV through the NAVETA telemedicine system.

Results: The findings demonstrate the potential of ML algorithms to provide precise and consistent predictions of health outcomes,
indicating high reliability and effectiveness in clinical settings. Notably, our ALGOPROMIA ML model achieved the highest
predictive accuracy for questionnaires such as MOS30 VIH (Adj. R? = 0.984), ESTAR (Adj. R? = 0.963), and BERGER (Adj. R? =
0.936). Moderate performance was observed for the P3CEQ (Adj. R? = 0.753) and TSQM (Adj. R? = 0.698), reflecting variability in
model accuracy across instruments. Additionally, the model demonstrated strong reliability in maintaining standardized prediction
errors below 0.2 for most instruments, with probabilities of achieving this threshold being 96.43% for WHOQoL HIV Bref and
88.44% for ESTAR, while lower probabilities were observed for TSQM (44%) and WRFQ (51%).

Conclusion: The results from our machine learning algorithms are promising for predicting PROMs and PREMs in AIDS settings.
This work highlights how integrating ML technologies can enhance clinical pharmaceutical decision-making and support personalized
treatment strategies within a multidisciplinary integration framework. Furthermore, leveraging platforms like NAVETA for deploying
these models presents a scalable approach to implementation, fostering patient-centered, value-based care.

Keywords: machine-learning in healthcare, PROMs-PREMs, chronic HIV management, evidence-based medicine, NAVETA

Introduction

Evidence-Based Medicine (EBM) is a relatively new approach to medical practice introduced by Gordon Guyatt in the
early 1990s. It focuses on using the best available scientific evidence to guide clinical decision-making, rather than
relying solely on intuition, unsystematic clinical experience, or pathophysiologic rationale.' > EBM involves critically
appraising the quality and applicability of research evidence to assess the confidence that can be placed in the findings,

considering factors such as study design, risk of bias, and result precision. This evidence is then integrated with clinician
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expertise and patient values and preferences to make informed care decisions.*> In today’s digital era, the transformation
of the healthcare sector has become a global priority, driven by technological advances that redefine how medical care is
delivered and perceived. These changes aim to enhance both the accessibility and efficiency of healthcare services and to
ensure personalized care based on the best available scientific evidence.®® In this contemporary healthcare context
Value-based healthcare (VBH) has emerged as the paradigm seeking to redefine how the best medical care is delivered
and evaluated, emphasizing the need to focus on outcomes relative to costs.” EBM and VBH are complementary
approaches that work together to improve the quality and cost-effectiveness of healthcare. While EBM provides the
scientific evidence base, VBH focuses on enhancing care that maximizes value for patients. Thus, both approaches
prioritize patient-centered care and shared decision-making between providers and patients.'®'" Patient-Reported
Outcome Measures (PROMs) and Patient-Reported Experience Measures (PREMs), along with their electronic versions
(ePROMs and ePREMs), have become indispensable tools for capturing patients’ perspectives on their health and the
impact of treatment. These measures assess dimensions such as physical state, mental health, social functioning, and

general health perception,'* '

providing essential metrics for evaluating health-related quality of life (HRQoL) and
informing VBH strategies.'>2° Hospital pharmacies, given their significant role in healthcare budgets and the high costs
associated with pharmaceuticals, have rapidly integrated VBH principles alongside ePROMs and ePREMs to ensure cost-
effective, patient-centered care. ePROMs quantify changes in physical symptoms, mental health, functional status, and
HRQoL, thereby evaluating the effectiveness of pharmaceutical interventions. Meanwhile, ePREMs capture patients’
experiences with pharmacy services, such as timeliness, communication, and clarity, helping identify opportunities for
improvement and enhancing the quality of care.?' **

ePROMs and ePREMs are particularly important for people living with chronic conditions like HIV. Due to
significant advances in antiretroviral therapy (ART), HIV has shifted from being a fatal disease to a manageable chronic
condition. As a result, treatment strategies for HIV have evolved accordingly. The effectiveness and widespread
availability of ART have substantially reduced mortality rates, bringing them close to those of the general population.
However, despite these positive developments, the long-term health of people living with HIV (PLHIV) still lags behind
that of the general population. PLHIV continue to face more physical and mental health challenges, as well as social
discrimination. Despite the remarkable progress, the persistent health disparities between PLHIV and the general
population highlight the need for continued efforts to address these issues comprehensively. Addressing both medical
and social factors is essential to improving the overall well-being of PLHIV.?> Emphasizing the importance of equitable
access to treatment, stigma reduction, and attention to psychosocial needs. This holistic approach underscores that
interventions must go beyond clinical care to have a meaningful impact on the quality of life of individuals. In this
scenario, hospital pharmacy plays a crucial role, not only in the dispensing and monitoring of ART but also in patient
education, treatment adherence, and side effect management. This contributes significantly to monitoring and improving
the HRQoL of PLHIV.>*%®

The integration of telemedicine with ePROMs and ePREMs has enabled the application of artificial intelligence (AI)
and Machine Learning (ML) techniques.”’ ML models using ePROMs and ePREMs data alongside clinical, analytical,
sociodemographic parameters can improve follow up, diagnostic accuracy and personalize treatment plans tailored to
individual needs. These data also support monitoring and predicting disease progression or treatment impact on HRQoL
and symptoms over time. Additionally, ePROMs and ePREMs provide valuable outcome measures for evaluating the
effectiveness of Al interventions, ensuring patient-centered care remains a priority in the digitization of healthcare.*°

ML is increasingly used to predict ePROMs and ePREMs scores, leveraging electronic medical records (EMRs) and
patient-specific data to enhance predictive accuracy and treatment outcomes. Studies have shown ML’s effectiveness in
analyzing HRQoL data, particularly in conditions like neurological disorders or cancer.*'* For HIV patients, ML
models outperform traditional methods by predicting risks such as treatment interruptions and failure to achieve viral
suppression, using demographic, clinical, and behavioral data.***> Additionally, significant research has focused on
predicting ART responses through genotypic sequences, employing either rule-based systems or ML models. Rule-based
approaches use expert-curated tables mapping drug resistance to specific mutations, which are then assigned resistance
scores for genotypes.*® In contrast, ML models are trained directly on genotypic data to predict treatment outcomes.>”**
Recent advancements combine drug resistance scores with genotypic data, further enhancing predictive capabilities and
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informing ART strategies.”® These advances promote shared decision-making and personalized care goals, though
challenges remain in data quality, model validation, clinical integration, data interoperability and ethical issues like
privacy and bias. Collaborative efforts among healthcare providers, data scientists, and patients are essential to fully
realizing ML’s potential for patient-centered, VBH.?%40

In this dynamic and transformative context, we have developed a prototype of a predictive model supported by ML
algorithms within the ALGOPROMIA project. The model is designed to predict both subdomains and overall scores of
ePROMs and ePREMs, based on the sociodemographic and clinical characteristics of PLHIV, with a focus on changes in
patient states such as symptoms and HRQoL. This Al-powered model uses data from more than 1200 PLHIV monitored

within the NAVETA system.

Materials and Methods
Database Usage

To conduct this research, we utilized a HRQoL database supplemented by sociodemographic and pharmacological data
collected through various monitoring programs within the NAVETA system.”> NAVETA is an innovative platform
designed to facilitate remote patient monitoring and engagement by collecting both ePROMs and ePREMs data. The
study used the NAVETA telepharmacy care model, developed in collaboration with FARUPEIB and BiblioPRO, to
evaluate the treatment impact on patients’ quality of life and disease symptoms. NAVETA operates independently of
Electronic Medical Records (EMR), ensuring secure data storage in compliance with Spanish and European data
protection standards.*® The system enables standardized and continuous data collection, allowing healthcare providers
to monitor patient-reported outcomes and experiences in real-time. Its robust infrastructure supports the collection of raw
responses and aggregated scores, including subdomain-level and global scores for each ePROMs and ePREMs, making it
an excellent tool for implementing predictive models like ALGOPROMIA.

The database comprised records from 1240 patients, encompassing around 240,000 responses to ePROMs and
ePREMs. The dataset spanned from January 1, 2021, to June 1, 2024, across hospitals within the Spanish public health
system. Prior to data extraction from NAVETA, an anonymization process was implemented to safeguard patient
confidentiality, ensuring that the dataset used for both model training and validation purposes did not contain identifiable
patient information. The dataset included 77.22% of male patients and 20.93% of female patients with chronic HIV who
responded to the standard set of ePROMs and ePREMs designed specifically for the monitoring of PLHIV (see Table 1).
Data collected were analyzed and plotted using Origin (Version 2021, OriginLab Corporation, Northampton, MA, USA).

Table | Frequency and Scope of Patient-Reported Measures (PROMs and PREMs) in the
NAVETA HIV Standard Set

PROMs /| PREMs Dimensions Measured Total responses
MOS30 VIH Health-related quality of life, physical and mental well-being 76,629
HIV S HIV-specific symptoms, emotional well-being 22,232
Morisky-Green Medication adherence 10,488
SMAQ Medication adherence, treatment compliance 5676
P3CEQ Patient care experience, quality of care 5184
WRFQ Work-related functional status 2582
HADS Anxiety and depression levels 2425
ESTAR Antiretroviral treatment satisfaction scale 2244
Escala Berger Burden of symptoms, mental distress 670

(Continued)
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Table | (Continued).

PROMs / PREMs Dimensions Measured Total responses
WHOQoL HIV Bref | Overall quality of life, physical and psychological health 600
EESS Self-reported side effects 135
TSQM Treatment satisfaction, side effects, treatment efficacy 105
EQ5D General health status, usual activities, pain/discomfort 56
PROMIS-29 Physical, mental, and social health 38
MMAS-8 Medication adherence scale 9

Notes: This table displays a list of PROMs and PREMs used in the study, each ranked by the total number of responses
received. It highlights the dimensions each PROM measures, providing insights into the most engaged aspects of patient
health and satisfaction. Frequencies indicate the extent of each PROM’s application, reflecting its relevance and utility in
capturing diverse health outcomes.

Abbreviations: MOS SF-30 hlV, Medical Outcomes Study Short Form 30 hlV; HIV SI, HIV Symptom Index; Morisky-Green,
Morisky Medication Adherence Scale; SMAQ, Simplified Medication Adherence Questionnaire; P3CEQ, Patient Care
Experience Questionnaire; WRFQ, Work Role Functioning Questionnaire; HADS, Hospital Anxiety and Depression Scale;
ESTAR, Antiretroviral treatment satisfaction scale; Escala Berger, Berger’s Symptom Checklist; WHOQoL HIV Bref, World
Health Organization Quality of Life HIV Short Form; EESS, Self-reported side effects scale; TSQM, Treatment Satisfaction
Questionnaire for Medication; EQ5D, EuroQol 5-Dimension Scale; PROMIS-29, Patient-Reported Outcomes Measurement
Information System 29-ltem Profile and MMAS-8, Morisky Medication Adherence Scale 8-ltem Version.

Data Preprocessing and Modeling Preparation
In this study, all ML analyses were conducted using the Python programming language (Version 3.10). The ML pipeline
used in this work is illustrated in Figure 1. To prepare the data for modeling, a preprocessing process was conducted.
Briefly, key variables were selected from the dataset, including features such as disease stage (referring to the phase of
the patient’s treatment), age, body mass index (BMI), gender, employment status, education level, daily activity, physical
activity, balanced diet, patient association membership, marital status, housing situation, alcohol consumption, tobacco
use, caffeine intake, drug allergies, treatment line and the specific questionnaire used.

In this study, a Random Forest Regressor (RF) model was implemented. The RF algorithm is well-established in

machine learning for its capability to build predictive models, first introduced in 2001.**

This supervised learning method
is composed of multiple tree predictors, where each tree is built using values from an independent random vector. All
vectors are created using the same configuration. Random Forests are versatile and can effectively handle both
classification and regression tasks.***’ To optimize the Random Forest model’s performance, we performed
a systematic hyperparameter search using GridSearchCV function from the sklearn.model selection library.

Key hyperparameters commonly optimized for Random Forest models include n_estimators, max_depth, boot-
strap, max_features, min_samples_leaf, criterion, and min_samples_split.*® For this study, we focused on three key
hyperparameters: n_estimators, min_samples leaf, and min_samples_split. The search grid included the following
values: n_estimators: [100, 200, 300, 500], min_samples_leaf: [1, 2, 4], min_samples_split: [2, 5, 10]. The best-
performing combination, selected based on mean cross-validated RMSE, was n_estimators = 300, min_samples_leaf =
1, and min_samples_split = 2. These optimized hyperparameters were subsequently used to train the final model.

Performance metrics such as Mean Squared Error (MSE) (equation 1) and R-squared (R?) were computed to assess
the model’s predictive accuracy on scaled target values (equation 2). To ensure robust evaluation, a stratified 5-fold cross-
validation was performed on the training data, yielding Root Mean Squared Error (RMSE) scores for each fold and
allowing for comparison against the RMSE computed on the test set.

1 n
MSE = =Y (yi — xi)’
n =1
Where, n is the number of observations in the dataset and: The actual observed values for each data point,: The
predicted values from the model for each data point. This formula thus provides a comprehensive measure of the model’s
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Figure | Data Processing and Validation Pipeline for ALGOPROMIA analysis. The workflow of the Machine Learning pipeline used in this study.

prediction accuracy by calculating the average of the squares of the errors, highlighting how closely the model’s
predictions match the actual data points.

SS res

RR=1-
SS tot

Were SSres is the sum of the squared differences between the observed values and the values predicted by the
decision tree and SStot is the sum of the squared differences between the observed values and the mean of the observed
values. For decision tree regression models, a high R-squared value indicates that the model explains a significant portion
of the variance in the data, suggesting a good fit. Conversely, a low R-squared might suggest underfitting, where the
model fails to capture important explanatory information.

Model Training

We select only those questionnaire responses that received at least 100 answers, resulting in a final dataset of 128,970
responses to 12 questionnaires including MOS SF-30 hIV (Medical Outcomes Study Short Form 30 hIV), HIV SI (HIV
Symptom Index), Morisky-Green (Morisky Medication Adherence Scale) 8-Item Version,*** SMAQ (Simplified
Medication Adherence Questionnaire), P3CEQ (Patient Care Experience Questionnaire), WRFQ (Work Role
Functioning Questionnaire), HADS (Hospital Anxiety and Depression Scale), ESTAR (Antiretroviral treatment satisfac-
tion scale), Escala Berger (Berger’s Symptom Checklist), WHOQoL HIV Bref (World Health Organization Quality of
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Life HIV Short Form), EESS (Self-reported side effects scale), and TSQM (Treatment Satisfaction Questionnaire for
Medication). The NAVETA platform collects both raw data and aggregated scores (calculated online based on patient
responses), calculated for each subdomain of the ePROMs/ePREMs as well as their overall composite global scores. For
the ALGOPROMIA model, both subdomain and global scores are included as prediction targets. For instance, the
WHOQoL HIV Bref questionnaire is structured into six specific domains: Physical Health, Psychological Health, Level
of Independence, Social Relationships, Environment, and Spirituality/Religious/Personal Beliefs. Additionally, it
includes general scores for overall quality of life and health. In this study, the model predicts scores for each of these
domains, as well as the overall quality of life score, demonstrating its ability to address both detailed and aggregated
dimensions of patient well-being. To ensure consistency across the diverse scoring methods of the ePROMs and ePREMs
included in this study, all target scores (subdomains and global scores) were normalized using
the StandardScaler function.’’ This transformation scales the scores to have a mean of 0 and a standard deviation of
1, allowing the model to process the data without bias introduced by differences in scoring ranges (eg, scales of 0—10 vs
0-100). The scaling process was applied separately to the training and test sets. Specifically, the scaler was fitted on the
training set and then applied to the test set to avoid information leakage. By normalizing the target variables, the model
achieves better stability and consistency during training, accommodating the heterogeneity of the instruments included in
the dataset.

Subsequently, we split the dataset into two groups, one for training and another for validation, with 80% and 20% of
the total responses, respectively. To prevent data leakage, all responses from the same patient were grouped and assigned
exclusively to either the training or the validation set, ensuring no overlap of patient-specific information between the
two datasets. This strategy helps to mitigate the risk of artificially inflated performance metrics caused by patterns unique
to individual patients.’> Due to data imbalance across different ePROMs/ePREMs (see Table 2), we applied a SMOTE
(Synthetic Minority Oversampling Technique) oversampling process to the training dataset. This process was applied to
all variables in the training data except for the questionnaire variable, which was used as a stratification variable during
the model training to preserve the proportional distribution of ePROMs/ePREMs categories.

Table 2 Demographic and Behavioral Characteristics of Study Participants

BMI Range n % Gender n % Balanced diet n %
Normal weight | 112,933 | 48.24 | Male 180,787 | 77.23 | Regular 118,235 | 50.51
Overweight 77,036 | 3291 | Female 49,002 | 20.93 | Habitual 70,354 | 30.05
Obesity 31,085 | 13.28 | Other 528 | 0.23 Occasional 41,25 | 17.62
Underweight 9,131 | 3.90 Never 4,254 | 1.82
Unclassified 132 | 0.06
Education n % Age Range n % Membership in n %
Level Patient Association
Secondary 69,311 | 29.61 | 4665 129,549 | 55.34 | No 216,02 | 92.28
Degree 58,272 | 24.89 | 21-45 73,324 | 31.32 | Yes 11,926 | 5.09
Professional 54,614 | 23.33 | 66—100 12,956 | 5.53 NR 6,147 | 2.63
Primary 40,937 | 17.49
Doctorate 3,753 | 1.60
None 3,43 | 1.47

(Continued)
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Table 2 (Continued).

Employment | n % Alcohol n % Smoking Status n %

Status Consumption

Employed 146,179 | 62.44 | Occasionally 135,248 | 57.77 | Yes 43,619 | 18.63
Unemployed 43,24 | 18.47 | Never 57,386 | 24.51 | Ex-smoker 37,168 | 15.88
Retired 17,732 | 7.57 | Weekends 25,655 | 10.96 | Never 35,071 | 1498
Disability 12,338 | 527 | Daily 10,383 | 4.44

Temporary 9,791 | 4.18

disability

Student 1,037 | 0.44

Treatment n|% Caffeine n|% Drug Allergies n|%

Line Consumption

First line 146,173 | 62.44 | Regular 118,235 | 50.51 | No 196,463 | 83.93
Second line 34,516 | 14.74 | Occasional 65,426 | 27.95 | Yes 33,389 | 14.26
Third line 29,386 | 12.55 | Never 16,754 | 7.16 | NR 4,241 | 1.81
Fourth line 9,421 | 4.02

Fifth line 8,705 | 3.72

Sixth line 3,632 | 1.55

Seventh line 1,356 | 0.58

Notes: This table presents a comprehensive breakdown of patient data collected in the study, including demographics such as BMI range,
gender, and age, educational attainment, employment status, lifestyle choices like alcohol and caffeine consumption, and treatment line
adherence. It also covers patient responses on dietary habits, smoking status, and allergies to medications. Percentages are calculated based
on the total number of respondents.

Abbreviation: NR, No Response.

Quantitative Assessment of Prediction Discrepancies

Here, an analytical approach was employed to assess the discrepancy between predictions from a random forest regression
model and the descaled actual values of a target variable. To achieve this, model predictions were descaled using an inverse
transformation of the scaling applied during model training, as were the actual test values. Subsequently, these predictions
and actual values were standardized to facilitate a uniform comparison of their differences. To ensure the robustness and
accuracy of the regression fit in our analysis, we employed a linear regression model characterized by the equation 3.

y=a+bxx

The regression was performed using standardized actual values, which helps to eliminate bias and provides a more
precise comparison. Additionally, no weighting was applied during the fitting process, ensuring that each data point
contributed equally to the determination of the model parameters. This strategy allows for a clear and unbiased assessment
of the relationship between the actual values and the predictions generated by the ALGOPROMIA model. The absolute
standardized error was then computed between the standardized predictions and actual values for each group of a relevant
categorical variable. Finally, the standard normal distribution was utilized to determine the probability that the standardized
difference was equal to or less than 0.2. If the probability of keeping the error below the threshold remained above 75%, we
considered the prediction to be sufficiently accurate, indicating good model performance (see Figure 1).
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Results
Cohort of Patients Included in the ALGOPROMIA Study

Responses to HRQoL questionnaires from 1240 PLHIV from the Balearic Islands in Spain, totaling 128,970, were used
for training and validating the predictive model. The data shows that normal weight (48.24%) and overweight (32.91%)
are the most prevalent BMI categories among the participants. Male participants dominate (77.23%) compared to females
(20.93%) and other genders (0.23%). In terms of dietary habits, around half (50.51%) adhere to a habitual balanced diet,
while occasional adherence is noted in 30.05% of respondents. Educationally, secondary education (29.61%) and degrees
(24.89%) are the most common levels achieved, followed by professional training (23.33%) and primary education
(17.49%). Age distribution of participants ranges from 21 to 45 years (31.32%), 46 to 65 years (55.34%), and over 66
years (5.53%). These insights provide a picture of the demographic and lifestyle factors within the surveyed population
(see Table 2).

Model Training and Validation

In the performance analysis of the Random Forest model, notable results were observed across several key metrics,
underscoring its robustness and generalization capabilities. The analysis demonstrates a strong linear relationship
between the real data and the model predictions, corroborated by a high R? value of 0.976. The close clustering of
points along the identity line indicates that the model has high predictive accuracy (2-A), with minimal deviation
between the observed values and predictions. This high R? suggests that approximately 97.6% of the variability in the
real data is successfully explained by the model, confirming its effectiveness. The distribution of model residuals appears
as a narrow, almost normal distribution centered around zero (2-B). This indicates a well-fitted model with symmetrically
distributed errors, showing no obvious signs of bias or skewness. The peak around zero underscores the model’s
accuracy, where most predictions are very close to the true values, leading to small residuals.

The analysis also includes the Root Mean Squared Error (RMSE) for each of the five folds in the cross-validation
process, along with the RMSE on a separate test dataset (2-C). The RMSE values from cross-validation range 0.2548 to
0.3197, with an average RMSE for the training data being approximately 0.2607. The RMSE on the test data is slightly
lower at 0.1613, which is intriguing as it suggests the model may perform slightly better on unseen data compared to
some of the training folds. This could be due to the model’s ability to generalize well or variations in the difficulty of the
test set compared to specific training folds. The difference in RMSE between the average training data (0.2607) and the
test set (0.1613) further supports the idea that the model is not overfitting; rather, it demonstrates an improved
performance on unseen data. This is an excellent sign of the model’s robustness and its capability to generalize beyond
the training dataset. While some variability is observed across different folds of cross-validation, the model demonstrates
reasonable overall performance. This indicates that its reliability is sufficient for practical applications, although further
refinement may be needed to improve consistency across data subsets. Potential factors contributing to this variability, as
well as strategies for refinement, are explored in the discussion section.

Success Rate in Questionnaire Prediction

To ensure the accuracy and effectiveness of our model in making individual-level predictions, we implemented an
analysis that involved a direct comparison between actual values and predictions generated by the model. First, we
analyzed the results of contrasting the actual values with the predicted values (3-A). As shown in Table 3, the table
presents the results of analyzing the relationship between actual values and those predicted by the ALGOPROMIA model
for various questionnaires. Notable performance is observed with the MOS30 VIH questionnaire, which achieves an
Adjusted R-Square (Adj. R?) of 0.984, indicating that the model explains over 98% of the variance in actual values. The
ESTAR questionnaire also demonstrates exceptional performance, with an Adj. R? of 0.963, reflecting its high accuracy.
The BERGER questionnaire achieves an Adj. R? of 0.936 and a Pearson’s r of 0.968, while the HIV SI questionnaire
shows good performance with an Adj. R? of 0.828. In contrast, the TSQM questionnaire, with a Pearson’s r of 0.836 and
an Adjusted R-Square of 0.698, demonstrates a decent linear relationship but with room for improvement. Similarly,
the P3CEQ questionnaire shows a moderately strong fit with an Adj.R2 of 0.753. On the other hand, questionnaires such
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Table 3 Analysis of ALGOPROMIA Model Performance Across Various Questionnaires

Questionnaire Intercept Slope Pearson’s r | R-Square (COD) | Adj. R-Square
ESTAR —0.003 + 0.008 0.98816 + 0.0076 | 0.98119 0.96274 0.96268
BERGER —0.00578 + 0.00268 0.98318 £ 0.00264 | 0.96763 0.93631 0.9363
HIV SI —0.00996 + 0.001 | 0.97333 £ 0.00167 | 0.91022 0.8285 0.8285
WRFQ —0.02968 + 0.0279 0.99557 £ 0.00783 | 0.83702 0.7006 0.70056
MOS30 VIH 0.00847 + 0.00166 0.99924 £ 0.00181 | 0.99217 0.9844 0.98439
WHOQoL HIV Bref | 6.05556E-4 + 4.02643E-4 | 0.98359 + 0.00368 | 0.72835 0.53049 0.53048
HADS —2.55271E-4 + 0.003 0.98636 + 0.00771 | 0.73426 0.53914 0.53911
P3CEQ 7.83007E-4 + 0.00368 0.98639 + 0.01144 | 0.86772 0.75293 0.75283
TSQM —0.02447 + 0.04505 0.99464 + 0.01391 | 0.83568 0.69836 0.69822
SMAQ 9.34924E-4 + 0.00787 0.98975 + 0.01201 | 0.76898 0.59133 0.59124

Notes: The regression analysis results for various questionnaires compare actual values with those predicted by the ALGOPROMIA model.

as HADS, SAMQ and WHOQoL HIV Bref demonstrate lower Adjusted R-Square values of 0.539, 0.591 and 0.530,
respectively, highlighting potential challenges in accurately capturing their variance. These results suggest that further
refinement of the model or additional data preprocessing may be beneficial for these instruments. The metrics such as
intercept, slope, Pearson’s r and Adj.R? collectively demonstrate the model’s robustness in predicting health-related
quality of life measures. For instance, the intercept and slope values indicate a strong linear relationship. High Pearson’s
r values reflect strong correlations, and high R-Square and Adjusted R-Square values underscore the model’s explanatory
power. Overall, these results highlight the ALGOPROMIA model’s potential for accurate and effective predictions in
managing health outcomes for individuals living with HIV.

Next, we calculated the difference between each pair of standardized values, that is, between each actual value and its
corresponding prediction. This standardized difference allowed us to measure the error accurately. We then assessed the
probability that this error would be below a specific threshold, set at 0.2 (see Materials and Methods), to determine the
precision of the predictions. If the probability of keeping the error below the threshold remained above 75%, we
considered the prediction to be sufficiently accurate, indicating good model performance (see Figure 1). This strategy not
only ensures the global validity of the model but also its applicability and precision at the most detailed and practical
level of each individual prediction. Overall, we observed that the probability of keeping the error below 0.2 exceeded
80% in most instruments (Figure 3A, histogram). Specifically, the ALGOPROMIA model demonstrated excellent
performance in predicting the scores, maintaining the error below the threshold, for the SMAQ (100%), Naveta
Satisfaction Form (99.99%), HIV SI (99.24%), WHOQoL HIV Bref (96.43%), MOS30 VIH (93.22%), ESTAR
(88.44%), HADS (86.90%), P3CEQ (79.73%), and (66.14%). However, in the Berger Scale, WRFQ and TSQM
questionnaires, it showed lower performance with probabilities of maintaining the error of the predictions below 0.2 at
66%, 51% and 44%, respectively. These results suggest that, although ALGOPROMIA is capable of predicting 73.83%
of the questionnaires from the standard NAVETA VIH set (3-B), there is still room for improvement.

Discussion

The incorporation of emerging technologies, such as IA and ML, should improve pharmaceutical drug validation, clinical
decision making, drug adherence, drug-drug interaction identification or treatment personalization between others
challenges. In recent years, the integration of ML techniques with ePROMs and ePREMs has significantly advanced
the predictive capabilities in healthcare. Several studies have explored various supervised ML algorithms to effectively
predict patient-specific outcomes from ePROMs data. For instance, these methods have demonstrated substantial success
in predicting outcomes such as unplanned hospital utilization and mortality, highlighting the value of ePROMs in
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enhancing model performance alongside objective clinical data. Furthermore, specific applications of ML algorithms
have been examined for their potential to improve decision-making processes by accurately forecasting diverse ePROMs.
A comprehensive literature review has also noted an increasing trend in leveraging ML approaches to analyze ePROMs
datasets, emphasizing the importance of feature selection, model evaluation, and overall performance metrics.
Additionally, studies have shown promising results in estimating the success of rehabilitation and surgical treatments
based on a combination of clinical assessments and ePROMs inputs. This evolving landscape underscores the growing
recognition of ML as a transformative tool for optimizing healthcare outcomes through detailed and personalized patient
data analysis.>>>°

ML models have shown significant potential in enhancing HRQoL measures for individuals living with HIV. For
instance, predictive models have demonstrated robust performance, achieving AUC metrics as high as 0.76 in predicting
viral load suppression—a critical determinant of quality of life—accurately classifying viral suppression in approxi-
mately three out of four patients.*> Additionally, ML algorithms can precisely identify patients at risk for poor HRQoL
outcomes based on their EMR data, enabling healthcare providers to proactively intervene and improve outcomes in HIV
care.>* However, to date, we are not aware of any system that utilizes an ML system to predict a comprehensive set of
HRQoL questions for HIV patients. The ALGOPROMIA prototype focused on chronic HIV patients also delves into the
goal proposed, of using ePROMs and ePREMs data as a result of predictive models, with the clear intention of improving
patient-centered care.*° In developing the prototype, we utilized data from more than 1200 PLHIV, a substantially larger
dataset compared to those used in similar studies within the field.”> This substantial patient dataset enhances the
robustness and reliability of our predictive model, which benefits from the extensive and well-structured data available
in NAVETA. Additionally, addressing a common criticism in the field, we ensure transparency in the development,
training, and validation processes of our machine learning models by providing a detailed description of these steps
(Figures 1-3). The results of our work demonstrated that the Random Forest model employed was able to predict with
high accuracy (R? = 0.976) the responses to the HRQoL questionnaires ePROMs and ePREMs in AIDs patients. The
performance analysis revealed the model’s robustness and generalization capabilities, explaining approximately 97% of
the variance in the target variable. Additionally, we compared Random Forest with other ML models, including Gradient
Boosting, Neural Networks, and Linear Regression. Random Forest outperformed these approaches, achieving an MSE
0f 0.026 and an R? of 0.976, compared to Gradient Boosting (RMSE: 0.068, R%: 0.937), Neural Network (RMSE: 0.167,
R2: 0.847), and Linear Regression (RMSE: 0.912, R2: 0.166). While Gradient Boosting provided competitive results, the
Random Forest model displayed slightly better predictive accuracy and consistent performance across different subsets of
data, suggesting a stronger generalization ability. This supports its selection as the foundation for the ALGOPROMIA
model, which aims to reliably predict HRQoL outcomes and support personalized care strategies for HIV patients.
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Figure 2 Analysis of Model Performance and Predictive Accuracy. Panel (A) lllustrates the strong linear relationship between actual data and model predictions, highlighted
by a high R? value of 0.976, indicating that the model explains approximately 97.6% of the data variability. Panel (B) Shows the distribution of residuals, centered around zero
with a nearly normal distribution, emphasizing the model’s precision and the symmetry of prediction errors. Panel (C) Depicts the Root Mean Squared Error (RMSE) across
five folds of cross-validation, ranging from 0.254 to 0.319, alongside a test dataset RMSE of 0.161, demonstrating the model’s consistent performance and effective
generalization from training to unseen data.
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The RMSE exhibited slight variability between training and test data but remained consistent during cross-validation,
reflecting the model’s stability across different data subsets. Moreover, the exceptionally high correlation between actual
and predicted values, with an RMSE of 0.026, underscores the model’s precision and capacity to generalize effectively to
new data (Figure 2). The evaluation of the ALGOPROMIA model includes RMSE for each of the five folds in the cross-
validation process, as well as the RMSE on a separate test dataset. RMSE values from cross-validation range from 0.2177
to 0.3196, with an average RMSE of approximately 0.2607 for the training data. The slightly lower RMSE on the test
data (0.1613) suggests the model performs better on unseen data, likely due to effective generalization. The observed
trends in RMSE, with variability across folds, reflect differences in data distribution and complexity within the dataset.
Such trends are consistent with findings from prior studies, which highlight that fluctuations in cross-validation results
are inherent in heterogeneous datasets and do not imply instability.’®>® Despite these variations, the narrow RMSE range
across folds highlights the model’s reliability and robustness for practical applications.

In the detailed evaluation of the model’s performance for each questionnaire, we observed that in most HRQoL
questionnaires, the model achieves Pearson correlation coefficients above 0.8 in the fit between predicted values and
actual values (Table 3). This indicates a very strong relationship between the two variables, demonstrating that the model
is highly accurate and effective in its predictions. Innovatively, we included a new system for verifying the quality of the
prediction by calculating the standardized difference between the actual value and the prediction. We then assessed the
probability that such an error would remain below 0.2 for each of the questionnaires. The analysis showed that for most
instruments evaluated, the probability of keeping the error below this threshold exceeded 85%, suggesting that the model
is capable of making predictions with a high degree of precision and that deviations from real values are minimal for
most cases. Interestingly, discrepancies arise in some cases, such as the WHOQoL HIV Bref questionnaire. Although this
instrument exhibits a relatively low Adjusted R-Square (0.530), indicating limited variance explained by the model, the
probability of maintaining the prediction error below 0.2 is remarkably high at 96.43%. This highlights an important
nuance: while metrics like Adjusted R-Square evaluate the model’s ability to capture variance, practical performance
measures, such as error thresholds, provide complementary insights into its clinical applicability and precision. These
results reinforce the value of assessing multiple performance metrics to gain a more comprehensive understanding of the
model’s capabilities.

The ALGOPROMIA model is remarkably precise in predicting aspects of HIV treatment adherence, mental health
status, and stigma, demonstrating minimal deviations from actual values across most cases. For instance, in key
questionnaires such as the SMAQ, WHOQoL HIV Bref, HADS, HIV SI and MOS30 VIH, the model achieved nearly
100% accuracy in its predictions. This remarkable precision aids healthcare providers in effectively identifying and
addressing crucial factors that influence treatment outcomes, reduce transmission risks, and enhance the decision-making
process in patient care what may result in a better and more efficient resources use in this setting. By accurately
predicting adherence and mental health challenges, the ALGOPROMIA model enables targeted interventions and
personalized care plans, ultimately leading to improved health outcomes and patient satisfaction within the HIV
community. The insights provided by ALGOPROMIA add to the existing body of predictive models in HIV care,
including those based on rule-based systems and ML approaches for ART response predictions. These models, which
utilize genotypic data and drug resistance scores, have significantly advanced treatment strategies. ALGOPROMIA
contributes further by focusing on patient-reported outcomes and experiences, enriching the decision-making process not
only with insights into HRQoL but also with actionable information on treatment adherence and clinical efficacy.
However, not all instruments demonstrated equally high predictive performance. While the model performed exception-
ally well for the majority of the questionnaires, others, such as TSQM (Adj. R? = 0.698) and WRFQ (Adj. R? = 0.701),
showed relatively lower predictive accuracy and exhibited probabilities of maintaining prediction errors below 0.2 at
44% and 51%, respectively, compared to the consistently high probability observed for instruments like WHOQoL HIV
Bref (96.43%). The lower performance observed in questionnaires such as TSQM and WRFQ may be attributed to
several factors. First, the limited number of responses for these instruments compared to others, such as WHOQoL HIV
Bref, reduces their representation during model training. Second, while SMOTE oversampling partially addresses data
imbalance, it may not fully capture the complexity of underrepresented instruments, potentially leading to less precise
predictions. Additionally, during cross-validation, the smaller sample size for these questionnaires results in higher
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variability and reduced reliability of the model’s performance. Lastly, the dominance of highly represented questionnaires
in the training dataset could skew the model’s predictions towards more common patterns, further impacting the accuracy
for less frequent instruments. Despite this, it is important to note that some questionnaires with lower representation in
the dataset, such as the SMAQ (100% probability of maintaining the error below 0.2) and ESTAR (88.44%), demonstrate
exceptionally high performance. This finding indicates that limited representation is not the sole factor determining the
model’s performance on specific instruments. Other elements, such as the simplicity of the questionnaire, the quality of
its design, and the distribution of responses, may play a crucial role. For example, less complex questionnaires may
facilitate clear predictive patterns even with fewer data points. Similarly, questionnaires that capture redundant or
overlapping information with more represented ones, may benefit from patterns learned across the broader dataset.
These observations suggest that intrinsic factors related to the design and structure of the questionnaires also influence
predictive accuracy and warrant further exploration in future studies.

The integration of ML techniques into the management of chronic conditions, particularly HIV, is revolutionizing
personalized clinical care. EMR-based clinical decision support tools and electronic alerts have significantly improved
outcomes across the HIV care continuum, including diagnosis, retention in care, and viral suppression.** This enhances
patient outcomes and increases the accessibility of healthcare services, ensuring that individuals living with HIV receive
timely and personalized care, regardless of geographic location. The use of technologies like artificial intelligence and
ML not only enhances clinical and pharmaceutical decision-making and treatment personalization but also optimizes
telepharmacy services. This contributes to overcoming geographic barriers, stratify patients and increasing access to
quality pharmaceutical care.**° However, for models like ALGOPROMIA to be successfully expanded to larger and
more heterogeneous populations, it is critical to address barriers and leverage enablers of ePROMs/ePREMs
implementation.”'” Factors such as clinician support, patient involvement, and institutional commitment play a pivotal
role in ensuring broader adoption and scalability, ultimately maximizing the model’s potential to transform patient care
across diverse settings.® In this sense, we have recently published how ML technology can be used to identify patients
with low adherence to follow-up programs via ePROMs, demonstrating that more personalized strategies can enhance
not only the adoption of ePROMs and ePREMs by clinical centers but also patient response rates.®'

In summary, our research underscores the transformative potential of ML in delivering value-based healthcare for
PLHIV through advanced telecare and telepharmacy services, marking the evolution of HIV into a manageable chronic
condition. By leveraging these digital health services, care precision and accessibility are improved, allowing for more
effective remote monitoring and treatment management. This not only elevates healthcare standards but also fosters the
adoption of personalized medicine, leading to better patient outcomes and more efficient healthcare systems. The
ALGOPROMIA project prototype, which utilizes telemedicine-generated data and advanced data analysis techniques
to predict HRQoL measures, exemplifies this shift. It enables a deeper understanding of patient needs and supports
a more tailored therapeutic approach. ML application within the project personalizes treatment plans and enhances the
patient journey, improving clinical outcomes, treatment safety, and patient adherence which result in a more efficient
health resources use. Moreover, this methodology streamlines healthcare professionals’ schedules and boosts patient
satisfaction through shared decision-making, Accurate predictions of ePROMs and ePREMs enable targeted interven-
tions that meet individual patient expectations, ensuring personalized and effective care while also optimizing resource
allocation proactively to meet anticipated needs.

Despite promising results, the study faces limitations, including dependence on data quality and sample representa-
tiveness, as the data comes exclusively from patients within the Balearic Spanish public health system, which may not be
generalizable to other contexts or populations. Additionally, the sample has an overrepresentation of male participants,
which could limit the applicability of the findings to more diverse populations or bias gender. Furthermore, while
machine learning techniques are powerful, they require rigorous validation to ensure that the models are not only
accurate but also free from biases and applicable in real-world clinical practice. Another limitation of the study is the
imbalanced distribution of responses across the various ePROMs and ePREMs instruments included in the dataset.
Although the application of SMOTE oversampling to the training data partially addressed this issue, this method has
inherent constraints, particularly for instruments with very low representation. In this regard, the NAVETA initiative is
actively working to increase response rates to ePROMs and ePREMs, aiming to achieve greater representation by
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designing systems to detect patients at high risk of dropping out from follow-up programs via ePROMs and PREMs.®!
These constraints could impact the model’s ability to produce robust and reliable predictions for such instruments. To
further improve model performance and fairness, future research should explore alternative strategies to address data
imbalance more effectively. Potential approaches include advanced resampling techniques, cost-sensitive learning, or
integrating domain-specific insights to prioritize critical underrepresented data.®®

Conclusions

The results of our ML algorithms demonstrate significant potential for predicting ePROMs and ePREMs in the context of
AIDS care. This study highlights how integrating emerging technologies, such as machine learning, can enhance clinical
and pharmaceutical decision-making and enable personalized treatment within a multidisciplinary framework. However,
successful implementation requires addressing challenges such as handling diverse scoring systems, mitigating biases,
and ensuring generalizability across different populations. Integrating such predictive models into independent platforms
like NAVETA could serve as a crucial first step towards broader adoption and eventual integration with electronic health
record systems. This approach not only facilitates early implementation but also allows for iterative improvements before
scaling to more comprehensive clinical settings. Ultimately, our findings support the ongoing adoption of advanced ML
technologies in healthcare to enhance value-based care and improve health outcomes.
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