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Anaerobic glycolysis is the process by which glucose is broken down into pyruvate and

lactate and is the primary metabolic pathway in sepsis. The pyruvate dehydrogenase

complex (PDHC) is a multienzyme complex that serves as a critical hub in energy

metabolism. Under aerobic conditions, pyruvate translocates to mitochondria, where it

is oxidized into acetyl-CoA through the activation of PDHC, thereby accelerating aerobic

oxidation. Both phosphorylation and acetylation affect PDHC activity and, consequently,

the regulation of energy metabolism. The mechanisms underlying the protective effects

of PDHC in sepsis involve the regulation on the balance of lactate, the release of

inflammatory mediators, the remodeling of tricarboxylic acid (TCA) cycle, as well as on

the improvement of lipid and energy metabolism. Therapeutic drugs that target PDHC

activation for sepsis treatment include dichloroacetate, thiamine, amrinone, TNF-binding

protein, and ciprofloxacin. In this review, we summarize the recent findings regarding

the metabolic regulation of PDHC in sepsis and the therapies targeting PDHC for the

treatment of this condition.
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INTRODUCTION

Sepsis is a major healthcare concern caused by an aberrant response to infection, which is easily
complicated with multiple organ dysfunction syndromes (1–3). Despite the considerable progress
for its clinical management, sepsis-related morbidity and mortality remain high (4), highlighting
the importance of developing new strategies for sepsis prevention and treatment.

Sepsis is characterized by the release of a large number of inflammatory mediators, the
imbalance in energy metabolism and the accumulation of lactic acid. The mechanisms underlying
sepsis pathogenesis and development are complex, and involve inflammation, immunity, and
metabolism, among other processes. Recent studies have shown that in the early stages of sepsis,
high level inflammation relies on anaerobic glycolysis as the key energy source, while in the
recovery stage, inflammation level was lowered and the cells switch to fat oxidation for their energy
supply (5).
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During the process of glycolysis, one molecule of glucose is
broken down into two molecules of pyruvate. Under aerobic
conditions, pyruvate translocates to mitochondria, where it is
oxidized into acetyl-CoA through the activation of the pyruvate
dehydrogenase complex (PDHC), thereby accelerating aerobic
oxidation, whereas under hypoxic conditions, pyruvate produced
through anaerobic glycolysis might result in the generation of
lactic acid (Figure 1).

Although the amount of ATP produced by aerobic oxidation
is significantly higher than that generated through anaerobic
glycolysis, the speed of energy production via the former
mechanism is significantly slower than that via the latter.
Therefore, in the acute stage of sepsis, which is characterized
by high energy consumption and hyper-inflammation, cells
tend to generate energy to meet the significantly increased
energy demands through anaerobic glycolysis, during which
pyruvate converts into lactate. Furthermore, an absence of
acetyl-CoA generated via pyruvate oxidation remodeled the
tricarboxylic acid (TCA) cycle and lipid metabolism, with
accumulation of two intermediates which could be produced
through other pathways other than the physiological TCA
cycle upon sepsis, namely succinate and citrate, both of which
are pro-inflammatory mediators. In macrophages treated with
lipopolysaccharide (LPS), succinate could be produced through
anaplerosis of α-ketoglutarate into the TCA cycle and the
subsequent increased glutamine metabolism. Moreover, LPS
also increases γ-aminobutyric acid and its transporters, thus
producing succinate. Citrate accumulates due to the shunting
of cis-aconitate to itaconate through the enzymatic action
of aconitase decarboxylase. Furthermore, free fatty acids and
glycerol are released abundantly from adipose tissue into
bloodstream, and are taken up by the liver to be oxidized into
β-oxidation with the increase of acetyl-CoA, to produce more
energy and ketone bodies, used as the source of energy by
organs. However, this process is accompanied by the increased
levels of palmitic acid and palmitoyl-carnitine, which might
induce mitochondrial dysfunction. Together, lipotoxicity is also
induced, characterized by the accumulation of malondialdehyde
and 4-hydroxynonenal, which are the end products of lipid
radical reactions and could cause cell death in liver and
kidney (6–9). Following the acute stage of sepsis is the
hypo-metabolic stage, which is characterized by low energy
demand and hypo-inflammation. Cells are reprogrammed to
low-energy state through aerobic oxidation, with the conversion
of pyruvate to acetyl-CoA and the appropriate procession of
TCA cycle and lipid metabolism (10). Switching metabolism to
adjust energy supply and modulate inflammation in response
to different stresses, including sepsis, is known as metabolic
reprogramming. Early metabolic reprogramming in the acute
phase of sepsis may be detrimental (11). Furthermore, early
metabolic reprogramming in sepsis markedly alters lipid
metabolism, resulting in lipotoxicity and glycerol accumulation
(7, 9).

The generation of lactic acid, the major byproduct of
anaerobic respiration, is the most frequently observed metabolic
consequence of sepsis. Lactic acid can, in turn, activate Toll-
like receptor 4 (TLR4) and promote the activation of nuclear

factor-kappa B (NF-κB), as well as the further release of
inflammatory mediators (12). Studies have shown that reducing
lactic acid levels in the early stage of sepsis can improve
the prognosis of patients (13, 14), suggesting that inhibiting
early metabolic reprogramming, and subsequently decreasing
subsequent lactate production and metabolic impairment, may
represent a promising target for preventing the development
of sepsis.

However, switching between these two metabolic pathways
is necessary and might have beneficial effects. It is reported
that, during the early stages of sepsis, metabolism in tubular
epithelial cells can switch from aerobic oxidation to anaerobic
glycolysis, suggestive of metabolic reprogramming (15). This
alteration might enhance the capacity of cells to eliminate
mitochondrial reactive oxygen species (ROS) accumulated due
to aerobic oxidation in sepsis (16). Anaerobic glycolysis can also
promote the pentose phosphate pathway and the production of
NADPH, thus regenerating reduced glutathione, which favors the
elimination of hydrogen peroxide (17). During sepsis, metabolic
reprogramming helps to downregulate major energy sinks such
as ion transport and fuel processes that are necessary for
cell survival, thus contributing to energy maintenance (18).
Furthermore, this switch from aerobic oxidation to anaerobic
glycolysis is beneficial for the development of trained immunity,
which helps build up the innate immune system to defend
against future stresses (16). This study also demonstrated that a
shift from oxidative phosphorylation to anaerobic glycolysis in
glucose metabolism is the metabolic basis for trained immunity
(19). In this context, early metabolic reprogramming and energy
prioritization during sepsis might alleviate the extent of organ
dysfunction, the progression to fibrosis, and the development of
chronic kidney disease (16).

Concerning the wide-ranging effects of metabolic
reprogramming, both beneficial and detrimental, further
work is warranted for an improved understanding of the role of
the different metabolic pathways in sepsis, as well as identifying
strategies to improve outcome in septic patients through the
regulation of metabolism.

A large number of studies have focused on PDHC, the key
regulator of glucose metabolism, in exploring the underlying
pathogenesis of sepsis (20). Accordingly, PDHC has been shown
to regulate critical processes, including lactate production, the
release of inflammatory mediators, TCA cycle, lipid metabolism
and energy production. Here, we provide an overview of recent
findings relating to how PDHC regulates metabolism in sepsis.

FUNCTION AND REGULATION OF PDHC

PDHC, a multienzyme complex composed of pyruvate
dehydrogenase E1 (PDHE1), dihydrolipoamide transacetylase E2
(PDHE2), and dihydrolipoamide dehydrogenase E3 (PDHE3),
serves as the critical hub in energy metabolism. Numerous
studies have shown the positive regulatory role of PDHC in
anaerobic glycolysis in sepsis. One study showed that PDHC
activity was decreased by ∼70% in skeletal muscle cells of septic
rats, leading to cellular hypoxia and dysfunction (21). In terms of
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FIGURE 1 | The role of PDHC in the metabolism of sepsis. During the process of glycolysis, one molecule of glucose is broken down into two molecules of pyruvate.

Inactivation of PDHC results into anaerobic glycolysis, which is the primary metabolic pathway in sepsis. By contrast, activation of PDHC leads to pyruvate

translocation to mitochondrial and the consequent acceleration of aerobic oxidation. A group of drugs that target PDHC activation, including dichloroacetate (DCA),

thiamine, amrinone, ciprofloxacin, and TNF-binding protein (TNFbp), have been shown to ameliorate the symptoms of sepsis.

clinical research, Nuzzo et al. demonstrated that PDHC activity
was significantly lower in peripheral blood mononuclear cells
from sepsis patients than in those of healthy controls, and that
this reduced activity may affect the prognosis of patients with
sepsis (22). This suggests that PDHC activity may serve as a
critical marker for the pathogenesis and development of sepsis.

PDHC is regulated via multiple mechanisms, including
phosphorylation and acetylation. PDH kinase (PDK), consisting
of four isoforms (PDK1–PDK4), acts as an upstream negative
regulator of PDHC and is located in the mitochondrial
matrix (23). PDK can decrease PDHC activity through
the phosphorylation of PDHE1α on Ser293, Ser300, and
Ser232, thereby inhibiting the TCA cycle and resulting in
the accumulation of pyruvate and the production of lactic
acid. In contrast, PDHC activity can be restored via PDH
phosphatase (PDP)-mediated dephosphorylation (24). In skeletal
muscle, the levels of the non-phosphorylated form of PDH
and PDHC activity are both reduced following the induction

of sepsis. Meanwhile, PDHC phosphorylation was reported to
result in hyperlactatemia and disorder in energy metabolism
(21). A different study showed that in LPS-stimulated mouse
digital extensor muscle cells, the PDK mRNA expression level
was upregulated 24-fold, while PDHC activity was decreased
by 65%, resulting in an increase in lactic acid levels (25).
These findings indicate that PDK is an important regulator of
energy metabolism through its capacity to phosphorylate and
inactivate PDHC.

Besides phosphorylation, studies have shown that PDHC
acetylation also affects its activity and exerts a regulatory
effect on energy metabolism (26). Notably, the acetylation
level of PDHC is upregulated by acetyl-CoA acetyltransferase
1 (ACAT1), while PDHC deacetylation is catalyzed by the
deacetylase SIRT3 (27). In skeletal muscle, an increase in
PDHE1α acetylation levels reduces the activity of PDHC and
causes metabolic disorder. That the switch from aerobic to
anaerobic oxidation likely results in lactic acid accumulation
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indicates that PDHE1α acetylation plays a significant role in
the regulation of PDHC activity and energy metabolism (28).
Recent studies have also confirmed that increased levels of
PDHC acetylation can lead to reductions in PDHC activity
and total ATP synthesis, leading to mitochondrial dysfunction
and myocardial damage (29). Consistent with these results,
PDHE3 acetylation levels were sharply increased in a model
of myocardial metabolic remodeling in obese mice, supporting
the pivotal role of PDHE3 acetylation in mediating obesity-
induced myocardial injury (30). However, relatively few studies
have investigated the mechanism underlying the role of PDHC
acetylation in sepsis.

Furthermore, there is crosstalk between the phosphorylation
and acetylation of PDHC. The enhancement of PDHC
acetylation through ACAT1 activation helps recruit PDK to
the phosphorylation sites of PDH, thus inducing a decrease
in PDHC activity, while the blockade of PDHC acetylation
through SIRT3 activation may lead to its dephosphorylation
and activation (31). Together, these results reveal that the direct
targeting of PDHC acetylation or phosphorylation may be a
promising strategy for sepsis management (Figure 2).

PATHOLOGICAL EFFECT CAUSED BY PDH
IMBALANCE

As a critical node in metabolic regulation, PDHC converts
pyruvate to acetyl-CoA in mitochondria, and its inhibition
leads to early metabolic reprogramming in response to sepsis,
resulting in the accumulation of lactic acid, the aggravation of
inflammation, the remodeling of TCA cycle, and the disorder of
lipid metabolism, and the consequence of lower ATP synthesis
relative to ATP demand.

Lactate Accumulation
The inhibition of PDHC activation and the switch from aerobic
oxidation to anaerobic glycolysis in sepsis is known to contribute
to the formation of a large amount of lactic acid and intracellular
acidosis, which can lead to intracellular Ca2+ overload,
mitochondrial membrane damage (32, 33). The persistence of
hyperlactatemia is responsible for arrhythmia, kidney injury,
respiratory failure, central nervous system dysfunction, and
damage to several other organs (34). There is evidence supporting
that lactate triggers innate immune responses via TLR-mediated
enhancement of NF-κB transcriptional activity and subsequent
expression of pro-inflammatory genes in macrophages (12).
Moreover, lactate has also been reported to promote HMGB1
acetylation in macrophages (35). From a clinical perspective,
reducing lactic acid levels in the early stage of sepsis has
been reported to improve the prognosis of patients (36).
Collectively, these findings shed light on how inflammation and
mitochondrial injury might be controlled through the regulation
of lactate release in the treatment of sepsis.

As mentioned above, PDHC is a critical regulator of lactate
levels. Bakalov et al. (20) confirmed that sepsis could lead to
decreased PDHC activity and increased lactic acid levels in the
gross tissues of Drosophila, while the upregulation of PDHC

activity could reduce lactic acid levels and improve the survival
rate of the flies. In a rat model of sepsis, inhibiting PDHC activity
can lead to a significant increase in the level of lactate, illustrating
the negative regulatory effect exerted by PDHC activity on the
level of lactic acid (37). In addition, other studies have found
that in septic mice, the administration of PDHC agonists can
reduce the levels of lactate, thereby improving the disrupted
metabolic regulation in the animals (38). These observations
suggest that PDHC-mediated changes in lactate levels play a key
role in sepsis-related metabolic changes. Accordingly, levels of
PDHC activity and lactic acid may serve as biomarkers for the
occurrence of sepsis.

Aggravation of Inflammation
Anaerobic glycolysis promotes the activation of a variety of
inflammatory cells, including monocytes, dendritic cells, and
macrophages (39, 40). Lactate, as a pro-inflammatory metabolite
that could regulate macrophage polarization and increase the
production of pro-inflammatory factors, is a marker for sepsis
severity (41). Lactate has also been demonstrated to promote
the expression of vascular endothelial growth factor, while
lactate inhibition could block TLR4 signaling and attenuate the
production of pro-inflammatory factors (12). Given that lactate is
the major product of PDHC inactivation in anaerobic glycolysis,
the targeting of PDHC may be a means for controlling lactate
production and downstream inflammation pathways in sepsis.

Studies have confirmed that PDK is involved in the regulation
of macrophage differentiation and glucose metabolism in
bone marrow macrophages of septic mice. PDK1 knockout
reduced the phosphorylation level of PDHE1α and upregulated
the activity of PDHC, thus inhibiting LPS-induced anaerobic
glycolysis and the polarization of macrophages from an M2
to an M1 phenotype and, consequently, reducing the levels
of the inflammatory mediators interleukin (IL)-6, IL-12, and
IL-1β. This finding highlights that PDK inhibition exerts
positive regulatory effects in glycolysis via PDHC, allowing M1
macrophages to be polarized toward the M2 phenotype, thus
tempering the release of inflammatory mediators (42). Bakalov
et al. showed that PDHC activation led to the lowered level
of cecropin-A and defensin, two releasing markers of pro-
inflammatory factors, resulting in the improvement of life span
of septic Drosophila (20). These results indicate that regulation
of PDHC activity may represent a therapeutic target in the
treatment of sepsis.

TCA Remodeling and Lipid Metabolism
Disorders
It is reported that in hepatocytes under septic condition,
multiple TCA cycle-related metabolites, including citrate, cis-
aconitate, and succinate, were markedly upregulated, indicating
the remodeling of TCA (7). Citrate, exported from mitochondria
via the mitochondrial citrate carrier (CIC), is a key molecule
for the generation of energy. After citrate synthesis in the
mitochondrial, citrate can enter the Krebs cycle and promote
oxidative phosphorylation for energy production, which is
required for the production of inflammatory molecules after
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FIGURE 2 | Regulation of PDHC in the metabolism of sepsis. The inactivation of PDHC through PDK-mediated phosphorylation and acetylation by ACAT1 results into

anaerobic glycolysis, thereby inducing accumulation of lactic acid, the aggravation of inflammation, the remodeling of TCA cycle, the disorder of lipid metabolism, and

the consequence of lower ATP synthesis relative to ATP demand. Activation of PDHC instead, via PDP-mediated de-phosphorylation and de-acetylation by Sirt3,

leads to aerobic glycolysis, which is good for amelioration of sepsis.

LPS treatment. In the cytoplasm citrate is cleaved to acetyl-
CoA which is the precursor for fatty acid, or cleaved to
oxaloacetate which is converted tomalate and then pyruvate (43).
Excessive succinate accumulation following TCA remodeling in
sepsis primes inflammation through succinate dehydrogenase
(SDH)-mediated ROS generation and IL-1β production (44).
In addition to TCA remodeling, lipid metabolism is also
reprogrammed in sepsis. Studies showed that the amount of
free fatty acids from the white adipose tissue into bloodstream
was elevated under infection (45). Lipidomic analysis in livers
of septic mice also demonstrated fatty acid uptake and β-
oxidation are upregulated in sepsis to produce ketone bodies
used as an energy source by the brain and other bodies,
leading to excess free fatty acids and triglycerides, causing
lipotoxicity (7, 9). Moreover, the hepatic levels of phospholipids,
including phosphatidylcholine, phosphatidylethanolamine, and
sphingomyelin, were also significantly elevated, all of which
influence energy metabolism and have been linked with sepsis
progression (46).

Given its critical role in the regulation of the TCA cycle

and lipid metabolism, the impairment of which underlies the

organ dysfunction observed in sepsis, PDHC may represent
an effective target for sepsis treatment. The activation of
PDHC significantly restored TCA metabolite levels to those

of control and improved liver function in sepsis (7). PDHC

activation also restored anabolic energy in inflammatory

monocytes while also increasing the abundance of TCA cycle
intermediates and the anaplerotic metabolism of branched-chain
amino acids, thus promoting TCA-driven anabolic energetics
(47). Furthermore, PDHC activation in septic mice reversed
lipid disorder and mitochondrial dysfunction, indicative of
the positive regulatory role of PDHC in lipid metabolism.
Combined, these observations demonstrate that PDHC is
a critical regulator of TCA cycling and lipid metabolism
during sepsis.

Energy Disturbance
PDHC is essential for glucose oxidation through its ability
to promote a switch from the glycolytic to the oxidative
pathway and the subsequent use of substrates through
the respiratory chain in mitochondria. PDHC catalyzes
the oxidative decarboxylation of pyruvate, yielding NADH
and acetyl-CoA, key molecules for mitochondrial ATP
generation (48). During sepsis, the downregulation of PDHC
might contribute to energy metabolism disturbances by
impairing the capacity of mitochondria for energy production.
Furthermore, PDHC inactivation might help to explain
the lower functional capacity of mitochondrial energy in
premature neonates with sepsis compared with older children
patients (49). Studies have shown that PDHC activation
induced by norepinephrine could improve the respiratory
function in mitochondria and attenuate the inflammation
in septic rats (50). These data all support that enhancing
PDHC activity and maintaining metabolism homeostasis can
restore mitochondrial function and inhibit organ dysfunction
in sepsis.

PDHC ACTIVATORS FOR THE
IMPROVEMENT OF SEPSIS

Given its critical role in the metabolism of sepsis, PDHC
may represent an effective target for sepsis management. A
study by McCall et al. (51) confirmed that the promotion
of PDHC activity through PDK inhibition facilitates immune-
metabolic adaptations in sepsis. A group of drugs that
target PDHC activation, including dichloroacetate (DCA),
thiamine, amrinone, ciprofloxacin, and TNF-binding protein
(TNFbp), have been shown to ameliorate the symptoms of
sepsis (Figure 1).
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TABLE 1 | Overview of included studies.

Reference Research object Intervention PDHC activity

change

Major effect on

metabolism in sepsis

Mainali et al. (7) Hepatocytes of male

C57BL/6J

Dichloroacetate ↑ Dysregulated

hepatocyte metabolism

and mitochondrial

dysfunction were

reversed

Bakalov et al. (20) Drosophila Dichloroacetate ↑ Normalized lactate and

TCA metabolites, and

improved lifespan

Vary (21) Hindlimb skeletal

muscle of male

Sprague-Dawley rats

Escherichia coli plus

bacteroides fragilis

↓ Sustained

hyperlactatemia

Vary et al. (37) Hindlimb skeletal

muscle of male

Sprague-Dawley rats

TNF binding protein ↑ Hyperlactatemia were

prevented

L’Her and Sebert (38) Blood from the internal

jugular vein and lateral

gastrocnemius muscle

of male Sprague-Dawley

rats

Dichloroacetate ↑ Lactate content was

decreased and glucose

content was increased

Tan et al. (42) Bone marrow-derived

macrophages from

C57BL/6 male mice

PDK1 siRNA ↑ M1 was diminished,

whereas M2 activation

and mitochondrial

respiration was

enhanced

McCall et al. (51) Splenocyte and

hepatocyte from

C57BL/6 male mice

Dichloroacetate ↑ Mitochondrial oxidative

bioenergetics was

increased, vascular and

organ homeostasis was

promoted, and survival

rate was increased

Giacalone et al. (60) Three patients with

severe lactic acidosis

Thiamine ↑ A rapid and marked

restoration of acid-base

balance

Burns et al. (63) Hearts from adult male

Sprague-Dawley rats

Amrinone or

dichloroacetate

↑ Myocardial ATP levels

were elevated, and

myocardial oxidation of

glucose was enhanced

Vary (64) Hindlimb skeletal

muscle of male

Sprague-Dawley rats

Amrinone ↑ Reduced lactate

concentrations

DCA
DCA is a small-molecule metabolism-regulating drug that
is mainly used in the treatment of diseases related to
mitochondrial defects and lactic acid accumulation (52).

It is well-known as a PDK inhibitor and can reduce the
level of PDHC phosphorylation by inhibiting the activity

of PDK, upregulating the activity of PDHC, and promoting

the entry of pyruvate into mitochondria for oxidative
phosphorylation. Several studies have confirmed that DCA

can activate PDHC, regulate glucose metabolism, and inhibit
lactic acid accumulation in septic cells (53). The activation
of PDHC with DCA significantly restored TCA metabolite
levels to those of control and improved liver function in
sepsis (7).

Furthermore, DCA administration to septic mice reversed
lipid disorder and mitochondrial dysfunction, indicative of the
positive regulatory role of PDHC in lipid metabolism. Similarly,
compared with control septic animals, the activation of PDHC
through DCA infusion led to decreases in plasma lactate
concentrations and glycolytic activity, thus restoring normal
glycolytic function (38).

Notably, clinical studies have also shown that DCA can
promote a switch in glucose metabolism from anaerobic
glycolysis to oxidative phosphorylation in patients with

sepsis, thereby significantly inhibiting the occurrence of

hyperlactatemia (54). These results suggest that DCA can
effectively improve prognosis in septic patients. However, one
randomized controlled study reported that DCA injection
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could significantly reduce lactate levels in sepsis patients, but
did not significantly affect hemodynamics or mortality (55).
Additionally, DCA has been associated with several side effects
(56), highlighting that the clinical application of DCA requires
further extensive verification.

Thiamine
Thiamine, also known as vitamin B1, consists of pyrimidine and
thiazole moieties, and thiamine deficiency can lead to the disease
beriberi (57). Studies have shown that thiamine, a coenzyme of
PDHC, plays an important role in improving the activity of the
latter in sepsis. Between 10 and 30% of patients with critically
illness are deficient in thiamine (58). For patients with sepsis,
thiamine deficiency can lead to the accumulation of pyruvate
and induce the production of a large amount of lactate, thus
significantly increasing the mortality of patients (59). Injecting
thiamine is beneficial for mitigating increases in lactate levels
and can also improve prognosis in sepsis patients (60, 61). Given
the potential health-related significance of thiamine, current
guidelines recommend that patients admitted to ICU should
receive 100–300mg of thiamine daily for the first 3 days to
reduce the potential adverse prognosis of sepsis (62). Important
though thiamine is in clinical drug application, further studies
are required for thiamine dose determination and for identifying
the causal relationship between PDHC activity regulation and the
clinical effect of thiamine.

Other Activators
Amrinone, which was reported to inhibit TNF synthesis, could
prevent alterations in muscle protein metabolism produced by
sepsis. Burns et al. (63) found that in rats with septic shock,
amrinone could induce a 2.5-fold increase in PDHC activity in
cardiac tissue compared with that of control animals, and also
increased the ATP level. Additionally, it has been shown that the
injection of amrinone at a dose of 5 mg/(kg·day−1) for 5 days in
septic rats helped to induce the activation of PDHC in skeletal
muscle and to significantly reduce the level of lactate, suggesting
that amrinonemay be useful for the treatment of hyperlactatemia
in septic patients (64). However, further evidence-based data
are needed before amrinone can be administered clinically to
septic patients.

Ciprofloxacin, a member of the quinolone family, can
downregulate the levels of PDK1, which, in turn, activates PDHC,
reverses the loss of ATP, and decreases the high mortality of mice
exposed to ionizing radiation and trauma (65). It is imperative
to determine whether ciprofloxacin provides therapeutic benefit
for sepsis.

Studies have demonstrated that TNFbp injection can increase
the activity of PDHC in skeletal muscle cells as well as reverse the
increase in lactate levels in septic rats. Investigation of the effects
of TNFbp in sepsis is ongoing (37).

CONCLUSION

Most studies to date have focused on the role of PDHC
phosphorylation in sepsis, while reports on the effect
of acetylation and the crosstalk between these two post-
translational modifications are scarce. While we summarized
the mechanisms underlying the role of PDHC in lactate
production, inflammation, TCA cycle, and in lipid and
energy metabolism (Table 1), whether other mechanisms
are also involved remains to be determined. Regarding to
the targeting treatment, although several drugs have been
reported to improve the prognosis of patients with sepsis
by activating PDHC, evidence-based data are still lacking.
Many unsolved problem remain. Further exploration of the
role of PDHC in sepsis is required for the understanding
of septic pathogenesis and the management of sepsis.
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