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Abstract
Chemotherapy-induced peripheral neuropathy (CIPN) is a common cause
of pain and poor quality of life for those undergoing treatment for cancer
and those surviving cancer. Many advances have been made in the
pre-clinical science; despite this, these findings have not been translated
into novel preventative measures and treatments for CIPN. This review
aims to give an update on the pre-clinical science, preventative measures,
assessment and treatment of CIPN.
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Introduction
The last decade has heralded improvements in cancer survival1. 
However, persistent effects following the treatment of cancer 
can lead to pain and an impaired quality of life long after  
treatment has finished or cancer has been cured2. Chemotherapy-
induced peripheral neuropathy (CIPN) is one of those effects  
that can lead to a continuing symptom burden after treatment3.

CIPN is characterised by the classic “glove and stocking”  
distribution of symptoms. After chemotherapy, 68% of patients 
have painful neuropathy at 6 months, improving to 33% at 1 
year4. Although different chemotherapies have variable charac-
teristics, symptoms tend to be predominantly sensory. Sensory  
toxicity is the predominant feature as dorsal root ganglion  
(DRG), containing the sensory cell bodies, have a fenes-
trated endothelium that is more permeable than that found 
in the spinal cord, where the motor cell bodies lie. Sensory  
features are characterised by so-called “positive” and “negative”  
symptoms. “Negative” symptoms include numbness, loss of  
vibration sense, proprioception and deep tendon reflexes, 
whereas paraesthesia, dysaesthesia, and cold and mechanical  
hypersensitivity are referred to as “positive” symptoms.

The development of pain is also a common reason for dose  
reduction4,5, which may have implications for oncological  
outcome6. The situation is further complicated by the effect of  
“coasting”, whereby the development of pain is delayed until  
after stopping the chemotherapy.

Despite advances in cancer treatment and survival, we still have 
much to learn about CIPN. It is important to recognise that  
CIPN is a heterogeneous population; it may be acute, such as 
the neuropathy commonly experienced with oxaliplatin, or  
chronic, lasting well beyond the end of treatment. Although 
there may be some overlap in features, it is likely that the  
underlying pathophysiology, clinical features and therefore its 
management differ substantially. Furthermore, not all CIPN  
is considered painful. This review will focus on the mechanisms 
but also deliberate on clinical features and treatment of chronic  
painful CIPN.

Animal models
Animal models of CIPN have increased understanding of the 
pathophysiology of CIPN, yet a recent meta-analysis highlights  
problems with the current models and may help deliver 
more robust and valid models7. For example, how do studies  
assessing short-term pain behaviours in animals without 
tumour burden model chronic CIPN? Pre-clinical studies often 
focus on the gain-of-function symptoms rather than the loss of  
function (for example, numbness) more common with chronic 
CIPN. Misrepresentation of the sexes is evident; 83% of  
animals used were male. Newer models have addressed some 
of these criticisms. Griffiths et al. describe a paclitaxel model  
of CIPN for 28 days with ethologically relevant behavioural 
tests that better mirror the clinical picture8. Non-human primate  
models may be more similar to the human condition9 but, owing 
to ethical and pragmatic issues, are not a feasible alternative  
to rodents.

Mechanisms
The main classes of chemotherapeutics that cause neuropathy 
include the platinum-based anti-cancer therapies (oxaliplatin 
and cisplatin), vinca alkaloids (vincristine and vinblastine),  
taxanes (paclitaxel and docetaxel), proteasome inhibitors (bort-
ezomib) and immunomodulatory drugs (thalidomide). These 
classes have differing anti-neoplastic mechanisms and likely  
different mechanisms for neuropathy. Evidence suggests that a 
number of mechanisms are shared between classes of chemo-
therapeutics, and most studies investigate the taxanes and the 
platinums. Currently, these mechanisms can be broadly separated 
into mitochondrial dysfunction and oxidative stress, microtubule 
disruption, neuroinflammation and immunological processes,  
and ion channel dysregulation.

Mitochondrial and oxidative stress
Bioenergetic pathways, predominantly via the oxidation of  
glucose through the Krebs cycle within the mitochondria, are 
responsible for the generation of ATP. Chemotherapeutics  
commonly target nucleolar DNA and may also affect mitochon-
drial DNA. Indeed, targeting mitochondrial DNA as a principal 
therapy is an area of ongoing research10. Whereas nucleolar 
DNA has well-established repair mechanisms, mitochondria do  
not. Flatters and Bennett showed that paclitaxel treatment 
in rats led to swollen vacuolated mitochondria that followed 
the course of pain-like behaviours for almost 3 months11.  
Mitochondrial dysfunction within sensory neurones has also  
been demonstrated by other chemotherapeutics12–15. Krukowski 
et al. found that cisplatin-induced mechanical allodynia is  
associated with mitochondrial damage in DRG but that the loss 
of intra-epidermal nerve fibres (IENFs), seen in patients with  
CIPN, is related to bioenergetic deficits in peripheral nerves16. 
Gregg et al. found that post-mortem platinum concentrations 
in patients who received platinum chemotherapy were highest 
in DRGs and demonstrated a linear relationship between 
DRG levels and cumulative dose17, and levels were higher in 
patients with neuropathy. Animal data suggest a dose-dependent  
accumulation within the mitochondria of DRG neurones18.  
Recently, gene expression analysis further supported mito-
chondrial dysfunction in patients who develop CIPN. Kober  
et al.19 found that breast cancer patients who develop neuropathy 
after paclitaxel demonstrate differential expression in a number 
of pathways implicated in mitochondrial dysfunction, includ-
ing oxidative stress20. Additionally, genetic polymorphisms in  
anti-oxidant pathways have been associated with an increased  
incidence of CIPN21.

Numerous animal studies indicate that chemotherapy worsens 
oxidative stress22,23. Furthermore, anti-oxidants prevent the 
development of mitochondrial dysfunction, IENF loss and  
pain-like behaviours in animal models24,25.

The anti-oxidant alpha-lipoic acid reduces neuropathy in  
patients with diabetes and also animal models of CIPN26.  
Concurrent administration of alpha-lipoic acid reduces neu-
ropathic symptoms secondary to bortezomib with less altera-
tion to chemotherapy regimen secondary to adverse events27.  
However, despite the neuroprotective effects of anti-oxidants  
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in vitro studies28, there is little clinical evidence for other  
nutraceutical anti-oxidants in the prevention of CIPN29. 
Recently, however, a phase I trial showed that calmangafodipir, 
a manganese superoxide dismutase mimic that aids reactive  
oxygen species (ROS) degradation, reduces acute and chronic 
CIPN after oxaliplatin in patients30 without affecting response to  
chemotherapy and life expectancy. Metformin can also 
reduce neuropathic behaviours via a reduction in oxidative  
stress13,31,32. Metformin treatment in 40 patients receiving  
oxaliplatin reduced National Cancer Institute–Common Ter-
minology Criteria for Adverse Events (NCI-CTCAE) grade  
2 and 3 neuropathy with a moderate reduction in neurotoxicity 
score and a modest reduction in pain33.

Mitochondria play a key role not only in ROS regulation 
but in numerous other cellular processes, including calcium  
buffering, apoptosis and energy production via oxidative  
phosphorylation. Duggett et al. have shown that whereas basal 
respiration and ATP turnover were unaffected in DRG mito-
chondria of paclitaxel treated rats, maximal respiration and 
spare reserve capacity were greatly reduced at peak pain  
behaviour12. This indicates a reduced ability of these neurones 
to respond to stress, and the authors postulated that a switch  
to glycolysis could be an adaptive mechanism to reduce harmful 
ROS production.

Schwann cells play a crucial role in the regrowth of periph-
eral axons after injury; however, Nishida et al. found that  
accumulation of platinum compounds within Schwann cells 
was much lower than that in peripheral nerves and DRG18. 
Conversely, Imai et al. suggested that in vitro platinum com-
pounds cause mitochondrial dysfunction in Schwann cells 
at drug concentrations lower than those required to induce  
neurotoxicity34, suggesting a greater role for mitochondrial  
dysfunction in Schwann cells in CIPN.

In animal models, treatment with pifithrin-μ, a molecule that 
suppresses mitochondrial damage, improves mitochondrial  
morphology, bioenergetics and IENF density while reduc-
ing pain behaviours14,35. Combined with evidence that it may 
act synergistically with the anti-cancer mechanisms of chemo-
therapeutics35,36, pifithrin-μ represents an exciting prospect in  
cancer care.

Glia and neuroinflammation
Glia are key in maintaining homeostasis and immunity in 
the central nervous system in both health and disease. In  
models of non-chemotherapy-induced neuropathy, microglia 
have been found to play an integral role in the development of 
the pain state37,38. Oxaliplatin-treated rats displayed persistent 
mechanical allodynia, sensory deficits and decreased density 
of IENFs39. Hu et al. showed a persistent activation of spinal 
cord microglia through strengthening of triggering receptor  
expressed on myeloid cells 2 (TREM2) signalling and  
demonstrated that either inhibiting microglia with mino-
cycline or interrupting TREM2 signalling improved pain-like  
behaviours and IENF density40. Furthermore, an agonist at the  
CB2 cannabinoid receptor, colocalised with spinal microglia,  

inhibited microgliosis and pain behaviours in an animal model  
of paclitaxel-induced neuropathy41.

Despite these findings, astrogliosis rather than microgliosis 
is thought to be of greater importance to the development of  
CIPN42,43, while in some models, astrocyte inhibition with  
minocycline prevented the development of pain-like behaviours. 
But how would astrocyte activation lead to the development 
of CIPN? One proposed mechanism in a rat model of  
oxaliplatin-induced painful neuropathy is dysregulation of  
spinal adenosine kinase expression in astrocytes44. This may 
lead to activation of NRLP3/interleukin 1 beta (NRLP3/IL1β)  
pathway, promoting dorsal horn neuronal excitability with  
concurrent suppression of the anti-inflammatory IL-10 system, 
leading to central sensitisation and pain behaviours44,45. Impor-
tantly, restoration of adenosine signalling with an A3AR 
adenosine receptor agonist prevents the development of 
both astrocytosis and pain behaviours45. Another mechanism  
proposed in rodent models is through the alteration of sphin-
golipid signalling within astrocytes in the superficial layers 
of the dorsal horn of the spinal cord, an area concerned with  
nociceptive transmission46,47. Maladapted sphingolipid metabolism,  
through direct bortezomib effects and increased IL-1β, may  
increase glutamatergic transmission and consequently nociceptive 
transmission and pain behaviours47.

Reasons for the discrepancies in the role glia play in CIPN  
remain unclear but the discrepancies may be due to variations 
in chemotherapy, species, time point and sex studied. Pain  
phenotype differs greatly between male and female patients, and 
the pathophysiology in animal models is also sex-dependent48.  
In animal models of bortezomib-induced peripheral neuropathy, 
modulation of sphingolipid signalling attenuates pain behaviours 
in male but not female rodents47. Additional examples of  
sexual dimorphism are found in paclitaxel-induced peripheral  
neuropathy, and Toll-like receptor 9 (TLR9) expression in  
macrophages infiltrating DRG plays a role in the development 
of pathophysiological changes and behaviours in male mice  
but not females49. Macrophage infiltration into DRG and  
peripheral nerves has been seen in a number of animal models  
of CIPN, and as with other models of neuropathic pain, activation 
of TLR4 seems to be crucial50–52.

Clinically, minocycline treatment reduced only the acute 
pain syndrome associated with paclitaxel infusion but not the  
development of chronic CIPN53. Additionally, in another phase 
2 trial, minocycline failed to prevent oxaliplatin-induced  
peripheral neuropathy54. Despite previous pre-clinical trials  
indicating minocycline’s efficacy at inhibiting astrocyte acti-
vation and pain behaviours, its actions have been ascribed  
predominantly to inhibition of microglia and not astrocytes55,56. 
Given the differential role that microglia may have in CIPN,  
minocycline’s lack of clinical efficacy may be of no surprise and 
neuroinflammation still represents a worthy area for continued 
research in the prevention of CIPN. Fingolimod, a drug used in 
the treatment of multiple sclerosis, downregulates the S1PR1  
receptor found on astrocytes. Antagonism of this receptor has  
been shown to reverse immunochemical and behavioural changes  
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in rodent models47. This presents the exciting prospect of a  
potentially new mechanistic target with a readily available  
therapeutic agent; however, additional trials are required to assess 
both its effects on CIPN and importantly tumour activity.

Ion channels
Pre-clinical studies have highlighted many chemotherapy-induced 
changes in ion channel expression, possibly driving behavioural 
changes in other neuropathic pain states57.

Changes in sodium channel expression and their sensitisation 
increase spontaneous neuronal firing and decrease activation  
threshold58, mechanisms possibly analogous to the allodynia, 
hyperalgesia and paroxysmal sensations of CIPN. In patients, 
sodium channel dysfunction is found in acute oxaliplatin  
toxicity59, and sodium channel polymorphisms may have a  
causal role in the development of acute and possibly chronic 
CIPN60. Furthermore, Na

v
1.7 channel has been found to be  

similarly upregulated in nociceptive neurones in both a rat 
model and patients with chronic paclitaxel-induced peripheral  
neuropathy61. Although dysregulation of other sodium channels 
is seen in pre-clinical studies of CIPN62, the clinical efficacy of 
sodium channel blockers has been disappointing63.

Potassium channel dysregulation is present in animal models 
of CIPN64. Acutely, oxaliplatin leads to the down-regulation of  
potassium channels in animal models62, and Poupon et al.  
found that treatment with a riluzole (a potassium channel  
activator) prevents the development of persistent CIPN in  
mice65. A phase 2 randomised controlled trial (RCT) inves-
tigating the efficacy of riluzole in the prevention of CIPN is 
under way66. Transient receptor potential (TRP) channels are  
critical in temperature transduction. Oxaliplatin treatment leads 
to an increased expression of TRPA1, TRPV1 and TRPM8 in 
sensory neurones67. Interestingly, suppression of TREK-1 and 
TRAAK potassium channels (and an increase in pro-excitatory 
Na

v
1.8 and HCN ion channels) is found on neurones expressing  

TRPM8, a receptor responsive to cold62. This may present a  
mechanism through which menthol provides symptomatic  
relief and oxaliplatin produces cold hypersensitivity acutely.

Although calcium channel modulation has shown promise in  
animal models of CIPN68,69, no direct calcium channel block-
ers are in clinical use for neuropathic pain. Cisplatin causes 
an increase in the calcium channel alpha-2-delta subunit, 
the target of gabapentinoids70, and both topical and systemic  
treatment with gabapentinoids have been found to be beneficial 
in rat models of CIPN71,72. Despite this, treatment with pregabalin  
for 3 days before and after each cycle of oxaliplatin failed to  
prevent CIPN in patients73.

Clinical features
Risk factors
There are many potential predictors in the development of 
CIPN, including patient-related factors, such as increased age, 
pre-existing neuropathy, smoking status, and impaired renal  
function, and chemotherapy-related factors, such as type of  
chemotherapy, cumulative chemotherapy dose, concurrent  
chemotherapy treatment, and duration of infusion74–76. Certain  
cancers may cause a subclinical neuropathy which may predispose 
patients to CIPN and worsen outcomes77.

Genetic markers have been implicated in chemotherapy-related 
toxicity, and a number of genome-wide association studies 
have looked at polymorphisms associated with CIPN. A number 
of polymorphisms have been identified, none of which (at  
present) has sufficient prognostic value to be of use in the  
clinical context78. Argyriou et al.78 called for improved meth-
odology and more standardised diagnostic and severity grading  
to better inform future studies.

Assessment of CIPN
Despite challenges in prevention and treatment, assessment 
for CIPN should occur before, during and after chemotherapy.  
Assessment should include (1) diagnosis (including possible 
differential diagnoses), (2) severity (including functional  
impairment) and (3) time course of symptoms and relationship  
to chemotherapy.

Diagnosis of CIPN requires a full history and examination  
(Table 1). Within the history, it is important to determine  

Table 1. Key elements in history and examination.

History Examination

     •    Details of chemotherapy regimen 

     •    Number of cycles, dose and cumulative dose 
     •    Onset of symptoms in relation to chemotherapy
     •     “Coasting” assessment (neuropathy occurring or 

worsening after chemotherapy cessation)
     •    Evidence of change over time (better or worse) 

Symptoms 
     •    Distribution (hands, feet or more proximal) 
     •    Numbness, paraesthesia, pain, spontaneous or evoked 
     •    Motor or sympathetic dysfunction 
     •    Functionality and interference on activities

Sensation 
     •    Light touch 
     •    Pinprick or painful stimulus 
     •    Vibration sense 
     •    Cold/hot sensation 

Other 
     •    Deep tendon reflexes 
     •    Motor power 
     •    Balance
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pre-existing risk factors for neuropathy such as diabetes, vita-
min deficiency, alcohol use and previous chemotherapy. Blood 
tests, including a full blood count, comprehensive metabolic  
profile, measurement of erythrocyte sedimentation rate, fast-
ing blood glucose, vitamin B

12
, and thyroid-stimulating hormone 

levels, should be considered to help rule out other causative or  
contributory causes for neuropathy.

Painful CIPN is a subset that may benefit from further  
characterisation with multidimensional pain assessment tools. 
The McGill Pain Questionnaire (MPQ) and the Brief Pain  
Inventory (BPI) have been validated for use in cancer pain79 and 
although they both assess sensory aspects, including severity, 
the BPI also assesses impact on function. Likewise, screening  
tools may aid in the assessment of neuropathic pain. Two such 
tools, the Leeds Assessment of Neuropathic Symptoms and  
Signs (LANSS) and Douleur Neuropathique 4 (DN4)80,81, 
have good sensitivity and specificity in cancer pain but are not  
validated in CIPN. Furthermore, although chemotherapy is a  
common treatment for childhood cancers and the subsequent  
neuropathy may differ in phenotype from that of adults82,83, 
there are few validated tools for the assessment of CIPN in  
children. One such score is the paediatric-modified total  
neuropathy score (ped-mTNS), which has been validated in 
a small group of children undergoing vincristine or cisplatin  
chemotherapy for leukaemia84; however, the 2008 Pediatric 
Initiative on Methods, Measurement, and Pain Assessment in  
Clinical Trials (PedIMMPACT) called for the development of  
reliable and valid tools for use in children85.

Numerous tools have been developed for the assessment of  
CIPN; however, there is notable inter-observer variation  
between these scales. Clinical rated scales such as the Ajani 
scale, World Health Organization, Eastern Cooperative Oncology  
Group neuropathy scale, and NCI-Common Toxicity Criteria  
(NCI-CTC) have limited assessment of pain86 and may not 
truly reflect the incidence of adverse neuropathy, leading to  
inappropriate treatment reduction or cessation. Furthermore,  
clinician-rated neuropathy scales underestimate the severity of 
CIPN when compared with patient-reported measures87. In a 
recent systematic review, Haryani et al. suggested that, owing 
to their psychometric properties and practicality, the Functional  
Assessment of Cancer Therapy/Gynecologic Oncology Group-
Neurotoxicity (Fact/GOG-Ntx) and total neuropathy score 
(TNS) (see below) were the most appropriate assessment  
tools available88. Yet other studies are contradictory; this is in 
line with a recent DELPHI survey which showed there is little  
consensus amongst clinicians89.

Fact/GOG-Ntx was developed for assessing the impact of  
neuropathy on quality of life after chemotherapy for  
gynaecological cancer and consists of questions on physical, 
social, emotional and functional wellbeing with an additional 
11-question neurotoxicity subscale. This subscale has been used  
independently and demonstrates good sensitivity in diagnosis  
and responsiveness to treatment90 and has been validated in other 
non-gynaecological, non-cisplatin/paclitaxel patients. Further 
shortening the neurotoxic subscale to four sensory questions  

maintains the validity and sensitivity while reducing the burden  
of patient questions91.

The Patient Neurotoxicity Questionnaire (PNQ) evaluates  
sensory, motor and functional components of neuropathy with  
good sensitivity to change over time and showed improved  
reporting of CIPN when compared with clinician reporting 
tools such as the NCI-CTC (see above). Importantly, the PNQ  
assesses the impact of neuropathy on 22 activities (such as  
fastening buttons or typing) that are not assessed with other  
tools, thus representing a more holistic patient-centred assessment 
of neuropathy.

The TNS is an eight-item score of patient report of neuro-
pathic symptoms, examination findings to pinprick, vibration 
and deep tendon reflexes and nerve conduction studies (NCSs).  
A shortened version without the electrophysiological factors 
has been validated: the TNSc (clinical version of the TNS)92;  
both have been shown to be more sensitive to CIPN changes 
than NCI-CTC and comparable in changes to quality-of-life  
measures93. Importantly, TNS delivers both clinician- and patient-
rated components. Quality-of-life measures are commonly 
not assessed in many CIPN tools. The European Organization 
of Research and Treatment of Cancer (EORTC), 20-item  
quality-of-life questionnaire, is sensitive to changes in quality of 
life secondary to CIPN94.

Investigations
There has been a great deal of interest in phenotyping CIPN 
by using minimally invasive tools such as NCSs, quantitative  
sensory testing (QST) and IENF density. It seems sensible that 
underlying mechanisms may translate to differing patterns of 
neuronal loss and therefore differences in functional deficits, 
yet in practice this theory is not robust. Traditionally, CIPN 
has been characterised as a predominant sensory neuropathy  
effecting large myelinated fibre function, and nerve biopsies 
from patients with cisplatin- and paclitaxel-induced neuropathy 
show a loss of large fibres with axonal atrophy and secondary  
demyelination95,96.

Platinum chemotherapeutics cause neuronal cycle arrest 
within the DRG and therefore likely cause a neuronopathy 
(also referred to as ganglionopathy) and anterograde neuronal 
degeneration. On NCS, this would manifest as non-length- 
dependent neuropathy affecting both the proximal and  
distal neurone. In contrast, chemotherapeutics interfering with  
mitochondrial or microtubule function impair axonal transpor-
tation giving a length-dependent axonal polyneuropathy, lead-
ing to a die back of intraepidermal nerve fibres. However, owing  
to poor correlation with clinical symptoms, NCSs cannot be  
routinely recommended. Furthermore, NCSs assess predomi-
nantly large-fibre function, missing small-fibre changes that may  
occur with painful CIPN.

Owing to its ability to assess large- and small-fibre types, QST 
may be of use in the phenotyping of neuropathic pain97 and  
therefore has been proposed as a useful tool in CIPN98. In patients 
with paclitaxel-induced peripheral neuropathy, the reduction 
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in light touch and vibration detection thresholds seen in hands 
and feet supports the mechanism of paclitaxel causing a distal  
neuropathy predominantly effecting the large, non-nociceptive 
neurones99. Additionally, some report that thermal detection  
thresholds and pinprick detection are minimally affected,  
indicating that small-fibre function is preserved in this group. 
This is in contrast to findings in patients with vincristine and  
bortezomib-induced neuropathy, with some studies reporting 
changes in pinprick perception and warm detection thresholds 
suggesting small, nociceptive fibre dysfunction in this group of 
patients100,101.

Pre-existing QST sensory deficits increase the risk of devel-
oping CIPN102; in some cases, cancer itself may be respon-
sible for QST changes103. Although the QST sensory profile 
may differ between agents104,105, QST profiles for painful and  
painless CIPN may be similar106 and changes in QST may occur 
later than symptoms develop107. Furthermore, QST requires  
expertise and time and consequently is not commonly used in  
routine clinical practice for the evaluation of CIPN.

Skin punch biopsy can inform the diagnosis of small-fibre  
neuropathies. In CIPN, similar to other small-fibre neuropa-
thies, IENF loss is observed108. Taking comparative distal thigh 
and distal leg punch biopsies can help differentiate between a  
length-dependent neuropathy or a neuronopathy; however,  
evaluating CIPN using IENF densities has been found to 
be unreliable; there is a large overlap between different  
chemotherapeutics, and results conflict with other assessment 
tools109–111. Furthermore, although punch biopsy can be repeated, 
it is time-consuming and invasive and IENF density has been  
found to be a poor correlate of pain112.

Other techniques for assessing neuropathy have yet to be fully 
validated. Nevertheless, simple bedside measures such as  
vibration sense, light touch and pinprick have good validity in the 
measurement of neuropathy113.

Prevention
Reducing regional perfusion (cryotherapy) may reduce CIPN; 
cooling gloves and stockings have been shown to reduce 
the risk of desquamation and nail changes associated with  
chemotherapy. Of the three published trials, only one showed 
benefit114. Owing to poorly tolerated treatment or a greater-
than-expected control group response, the other studies were  
negative115–117.

In 2014, the American Society of Clinical Oncology evaluated 
42 studies while developing guidelines on the prevention 
of CIPN63. Owing to a lack of high-quality data, they were  
unable to make any recommendations and encouraged additional  
research.

Treatment
Pharmacological
RCT evidence of treatments in CIPN suggested that duloxetine 
is the only anti-neuropathic agent with evidence of benefit118. 
Many CIPN RCTs fail to meet the IMMPACT guidelines for  

outcome measures in clinical trials119,120. Nevertheless, a recent 
comparative study showed that venlafaxine and duloxetine  
reduced pain in established CIPN121. Careful phenotyping may 
help, as demonstrated with the improved efficacy of oxcar-
bazepine in the “irritable nociceptor” subgroup122. Phenotyping  
patients for biological and psychosocial characteristics may give 
additional insight122–125.

Topical treatments are an attractive option for the management 
of CIPN. A small non-randomised study of topical menthol in 
52 patients showed improved BPI scores126, and combination  
therapy with baclofen, amitriptyline and ketamine showed an 
improvement on some of the EORTC QLQ-CIPN-20 measures127. 
Topical 8% capsaicin patch application following CIPN has been 
shown to improve continuous pain, neuropathic pain symptoms, 
and patient global impression of change128. This treatment has 
also been found to improve IENF density, suggesting underlying  
disease modification128.

There is increasing enthusiasm for the use of cannabinoids in 
the treatment of many chronic pain states. Agonism at CB1  
and CB2 receptors has shown analgesia in rodent models of  
CIPN129–133 but these findings have not translated into evidence 
of clinical efficacy. One published pilot study of nabiximols  
(THC:CBD mix) in 15 patients with CIPN134 showed no signifi-
cant improvement in pain, but a 2-point decrease over placebo  
was seen in five patients classified as “responders”134.

Without specific evidence for CIPN, clinicians extrapolate  
treatments from other neuropathic pain states135. Interestingly,  
strong opioids have some of the best “numbers needed to  
treat” (NNTs) for neuropathic pain (NNT 4.3, 95% confidence 
interval 3.4–5.8)135. Some clinicians may advocate the use of 
opioids in CIPN, however with increasing survivorship amongst  
patients with cancer, the possible benefits of opioids should be  
continually weighed up against the risk of long-term opioid  
therapy2.

Non-pharmacological
Neuromodulation has shown promise in various neuropathic pain 
states136. A number of case reports indicate that neuromodulation 
may help refractory CIPN137,138, but RCT data are lacking.

A recent study found that the use of wireless transcutaneous  
electrical nerve stimulation significantly improved some  
measures of CIPN, including pain, numbness and tingling139. 
Furthermore, scrambler therapy (a novel transcutaneous  
neurostimulation technique) has been postulated as a potential  
treatment140 but was no more effective than sham therapy in a  
recent RCT141.

Acupuncture
A Cochrane Review of the efficacy of acupuncture in the  
treatment of cancer pain showed insufficient evidence of its  
efficacy142. Since then, a number of trials of acupuncture in  
CIPN have demonstrated improvements in several domains143–145. 
A systematic review concluded that there was insufficient  
evidence to recommend acupuncture for the treatment of  
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CIPN146, although low risk of harm and possible benefit may  
allow its pragmatic use in painful CIPN.

Physical therapy
Exercise has been shown to improve a number of facets that  
contribute to morbidity associated with CIPN, including  
balance and strength147,148, numbness, tingling, and hot and 
cold sensations149. One study found that, on analysis of the  
quality-of-life data, exercise had a moderate effect on pain 
in patients undergoing chemotherapy; however, this was not  
limited to CIPN150.

Psychological therapy
Psychological factors have been shown to play a role in both 
the initiation and maintenance of a number of chronic pain  
states151. The activity of duloxetine, via enhancing descending  
inhibitory pathways, suggests that alteration of mood may play 
a role. In favour of this viewpoint, a study of 111 patients who 
received treatment for breast cancer found that pre-existing  
anxiety and pre-therapy numbness were the only factors to pre-
dict CIPN eight months later152. Knoerl et al. found that an  
eight-week web-based cognitive behavioural programme 
led to modest improvements in worst pain with no differ-
ences in mean pain153. It was hypothesised that this would be 
due to improvements in fatigue, anxiety, sleep-related factors, 

or depression; however, a follow-up analysis was unable to  
substantiate these findings154.

Future directions
Pre-clinical studies have shown that antagonism of the sigma 
1 receptor (present on mitochondrial endoplasmic reticulum) 
is able to reduce mitochondrial structural changes and pain  
behaviours that occur in CIPN. A phase II clinical trial found 
that sigma 1 antagonist treatment during FOLFOX chemo-
therapy diminished cold hypersensitivity, reduced the dropout 
rate and allowed a higher cumulative dose of oxaliplatin155.  
Although the long-term pain outcomes are not known, this  
highlights a pathway for potential therapeutics that could  
improve CIPN.

Summary
Despite an ever-expanding body of literature behind the  
pathophysiology and treatment of CIPN, new treatment options 
are still limited, and a proportion of patients continue to have  
difficulty controlling symptoms causing a significant impact on 
quality of life. Guided by the pre-clinical literature, novel targets 
that may help prevent CIPN are beginning to emerge. However, 
with continual advancements in chemotherapeutic agents with 
novel mechanisms, it is important that ongoing development of  
treatments for CIPN continue.
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