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Abstract  
Methamphetamine is one of the most prevalent drugs abused in the world. Methamphetamine abusers usually present with hyperpyrexia 
(39°C), hallucination and other psychiatric symptoms. However, the detailed mechanism underlying its neurotoxic action remains elusive. 
This study investigated the effects of methamphetamine + 39°C on primary cortical neurons from the cortex of embryonic Sprague-Daw-
ley rats. Primary cortex neurons were exposed to 1 mM methamphetamine + 39°C. Propidium iodide staining and lactate dehydrogenase 
release detection showed that methamphetamine + 39°C triggered obvious necrosis-like death in cultured primary cortical neurons, 
which could be partially inhibited by receptor-interacting protein-1 (RIP1) inhibitor Necrostatin-1 partially. Western blot assay results 
showed that there were increases in the expressions of receptor-interacting protein-3 (RIP3) and mixed lineage kinase domain-like protein 
(MLKL) in the primary cortical neurons treated with 1 mM methamphetamine + 39°C for 3 hours. After pre-treatment with RIP3 inhib-
itor GSK’872, propidium iodide staining and lactate dehydrogenase release detection showed that neuronal necrosis rate was significantly 
decreased; RIP3 and MLKL protein expression significantly decreased. Immunohistochemistry staining results also showed that the expres-
sions of RIP3 and MLKL were up-regulated in brain specimens from humans who had died of methamphetamine abuse. Taken together, 
the above results suggest that methamphetamine + 39°C can induce RIP3/MLKL regulated necroptosis, thereby resulting in neurotoxicity. 
The study protocol was approved by the Medical Ethics Committee of the Third Xiangya Hospital of Central South University, China (ap-
proval numbers: 2017-S026 and 2017-S033) on March 7, 2017. 
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Graphical Abstract   

Mechanism of the effects of methamphetamine + 39°C on cortical neurons
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Introduction 
More than 53,100 first time drug abusers were arrested in 
China in 2015. The percentage of abusers of amphetamines 
(such as methamphetamine, METH) reached 73.2% of all 
drug users arrested (http://news.xinhuanet.com/live/2016-
02/18/c_128730815_2.htm). Such abuse leads to deleterious 
effects on families, major public health concerns, and the 
consumption of substantial resources for medical interven-
tion (Moratalla et al., 2017; Yang et al., 2018). Most scien-
tists focus on the addiction mechanism of METH abusers. 
However, apart from addiction, the damage METH causes 
to the central nervous system is also extremely serious. Fur-
thermore, METH abuse is often accompanied by high body 
core temperature (Sanchez-Alavez et al., 2014; Harrell et 
al., 2015). Thus, the neurons are under the attack from both 
METH toxicity and hyperthermia (Shioda et al., 2010; Yang 
et al., 2018; Lu et al., 2019; Yang et al., 2019). Previously re-
searchers have pointed out that METH can lead to apoptosis, 
autophagy and other forms of cell  death (Riddle et al., 2006; 
Wu et al., 2007; Degterev et al., 2008; Lu et al., 2017; Xiong 
et al., 2017; Yang et al., 2017; Lu et al, 2019a, b). Our earlier 
study found that a single dose of METH can cause necro-
ptosis of cultured rat cortical neurons in vitro (Xiong et al., 
2016). However, it is unclear whether METH accompanied 
by hyperthermia produces necroptosis of neurons in the cor-
tex and what molecules might be involved in the process.

Necroptosis is one type of regulated necrosis, where a type 
of death domain receptor is involved in cell necrosis without 
caspase activation (Degterev et al., 2008; Xiong et al., 2016; 
Cheng et al., 2018). This kind of programmed cell necrosis 
can be regulated by RIP1-RIP3-MLKL pathways (Ruan et 
al., 2015; Wang et al., 2018b, c). When the cells are subjected 
to various stimuli, cell death receptors activate RIP1 kinase. 
RIP1 interacts with RIPK3 via a shared RIP homotypic in-
teraction motif domain to form a “necrosome” (Sun et al., 
2002), which then phosphorylates RIP3. Activated RIP3 
recruits and phosphorylates MLKL, resulting in cell lysis 
(Orzalli and Kagan, 2017). Choosing different molecular 
targets, which could be critical biomarkers, researchers have 
developed corresponding necroptotic inhibitors, such as 
RIP1 inhibitor necrostatin-1 (Degterev et al., 2008) and RIP3 
inhibitor GSK’872 (Mandal et al., 2014; Liao et al., 2017). 

Initially, necroptosis research focused mainly on fibro-
blasts, immune cells and tumor cells (Lau et al., 2013; Zhong 
et al., 2014). In recent years, increasing attention has been 
paid to the study of necroptosis in the nervous system and 
related diseases (Huang et al., 2013; Ito et al., 2016; Daniels 
et al., 2017). Our team is one of the first research groups to 
study the mechanism of neuronal necroptosis. We and other 
groups have found that necroptosis of neurons occurred after 
ischemia/reperfusion injury (Rosenbaum et al., 2010; Xu et 
al., 2010, 2016; Ding et al., 2015; Yin et al., 2015; Chen et al., 
2016; Yang et al., 2017; Cruz et al., 2018; Wang et al., 2018a), 
elevated hydrostatic pressure injury (Liao et al., 2017; Shang 
et al., 2017), glutamate toxic injury (Wang et al., 2018d, 
2019a, b) and oxidative stress damage (Jiang et al., 2014; Li 
et al., 2016). These studies showed that RIP3, MLKL, and 
calpain exerted key roles in neuronal necroptosis induced by 
the above injuries (Shang et al., 2014; Ding et al., 2015; Yin 

et al., 2015, 2018a, b, c, d, 2019b; Xu et al., 2018). 
We continue to study the role of METH and hyperther-

mia on cortical neurons and to identify whether necroptosis 
plays a key role in METH and hyperthermia induced neuro-
nal death. We have also explored the necroptotic signaling 
pathway of neurons involved in the toxic process. This study 
aims to identify cortical neuron death and the molecular 
mechanism underlying the action of METH and hyperther-
mia in vitro, verifying the molecular changes in vivo detected 
in post mortem brain specimens from humans who abused 
METH. Our investigation sheds new light on cortical neuro-
nal injury with respect to the combined effect of METH and 
hyperthermia.
  
Materials and Methods
Primary cultured cortical neurons
Specific-pathogen-free pregnant Sprague-Dawley rats weigh-
ing 300–400 g and aged 10–12 weeks with day 18–20 (E18–
20) embryos were obtained from Central South University, 
China. All experimental procedures were approved by the 
Medical Ethics Committee of the Third Xiangya Hospital 
of Central South University (approval No. 2017-S033) on 
March 7, 2017, in accordance with the experimental animal 
use and welfare requirements set by the Ministry of Health 
of China as well as the National Institutes of Health (NIH) 
guidelines for use and care of laboratory animals. 

Animals were given free access to food and water. One 
E18–20 rat was used in each batch of experiments (n = 3–6). 
Pregnant rats were deeply anesthetized and decapitated 
gently and rapidly. The cortical tissue was isolated from the 
brain of each E18–20 fetal rat. The cortical tissue was washed 
three times in Hank’s balanced salt solution, digested by 2 
mg/mL papain medium (Solarbio, Beijing, China) for 10 
minutes at 37°C, and transferred into a fresh tube. The cor-
tical tissue was treated with 1 mL plated medium, consisting 
of Dulbecco’s modified Eagle’s medium with 10% fetal bovine 
serum, 5% horse serum (Thermo Fisher Scientific, Waltham, 
MA, USA), 1% penicillin-streptomycin and 1% L-cysteine (6 
mg/mL), then centrifuged at 1000 r/min for 5 minutes. The 
supernatant was abandoned. After adding 4 mL plated me-
dium, the tissues were resuspended and dispersed to single 
neurons by gently tapping 40–50 times. The cell suspension 
was filtered with 70 μm strainer and the liquid was trans-
ferred to a fresh tube. The filtrate was then centrifuged at 
1000 r/min for 5 minutes. After removal of the supernatant, 
the cell sediment was resuspended with 4 mL plated medi-
um by gently tapping several times. The resuspended sample 
was counted in a blood counting chamber. Finally, cells were 
plated onto poly-D-lysine-coated plates or dishes with plated 
medium pretreated with 0.1 mg/mL poly-D-lysine (Sigma 
St Louis, MO, USA) overnight at 37°C at 1 × 105 cells/cm2. 
The plated medium was replaced by neurobasal medium 
with 1% B27 (Thermo Fisher Scientific) after 3 hours. Sub-
sequently, half of the medium was refreshed every other 
day until the 8th day when the neurons were mature. After 
drug treatment, samples of neurons were used for related 
experiments. The cells were exposed to different doses over 
time and divided into a normal group, METH (0, 0.25, 0.5, 1, 
2, 3 mM) + 39°C (1-, 2-, 3-, 5-hour) groups, and examined 
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by inverted light microscope. The necrosis of cells (normal 
group, METH + 39°C group, METH + 39°C + necrostatin-1 
group) was examined using propidium iodide (PI) staining 
and lactate dehydrogenase (LDH) release. To further exam-
ine the effects of METH + 39°C, the RIP3 inhibitor GSK’872 
was used. The cells were divided into normal group, METH 
group, 39°C group, METH + 39°C group, METH + 39°C + 
GSK’872 group. 

Drug and hyperthermia treatment
The different concentrations of METH (0.25, 0.5, 1, 2, 3 mM, 
applied by Changsha City Public Security Bureau, China) 
(Huang et al., 2009; Xiong et al., 2016) were set to observe 
the injurious effect of METH on the cultured matured 
primary neurons. After giving METH, the neurons were 
cultured in a 5% CO2 incubator at 39°C. Primary cultured 
neurons were pretreated with necrostatin-1 (Sigma) 2 hours 
before the METH and 39°C treatment. Pretreatment with the 
specific RIPK3 inhibitor GSK’872 (BioVision, San Francisco, 
CA, USA) was applied at 0.25, 0.5 or 1 μM for 2 hours before 
the METH and 39°C treatment.

Propidium iodide staining
Neurons were cultured on coverslips for 8 days then used for 
experiments. Neuronal necrosis was analyzed by PI staining 
(Sigma). The slides with neurons in all groups were washed 
once with phosphate buffered saline (PBS) and stained with 
PI (2 μg/mL) at 37°C for 10 minutes, followed by three gen-
tle washes with PBS, each for 5 minutes. The coverslips were 
fixed with 4% paraformaldehyde at room temperature for 15 
minutes, washed three times with PBS, each for 10 minutes, 
and finally covered with Vector shield mounting medium 
H1500 (Vector Laboratories, Burlingame, CA, USA). The cov-
erslips were observed and images were captured using a fluo-
rescence microscope (Olympus, Tokyo, Japan) with a camera 
and imaging system (CellSens Standard, Olympus). PI-posi-
tive cells were counted from five fields of each coverslip, and 
each group contained three coverslips from three independent 
experiments. Cells were counted using Motic pathology image 
analysis software (Motic Inc., Xiamen, China).

Lactate dehydrogenase release
Cultured neurons in 96-well plates were harvested on day 
8. The LDH cytotoxicity assay kit (Beyotime Biotech Inc., 
Shanghai, China) was used to measure LDH released from 
necrotic cells into the extracellular space/supernatant upon 
the rupture of plasma membrane after different treatments. 
Cell-free culture supernatants were collected from a 96-well 
microtiter plate and incubated with appropriate reagent mix-
ture according to the manufacturer’s instructions, at room 
temperature for 30 minutes. The intensity of the red color 
that formed in the assay was measured at a wavelength of 490 
nm using an iMark microplate reader (Bio-Rad, Berkeley, 
CA, USA). The intensity was proportional to both the LDH 
activity and percentage of necrotic cells. The necrosis rate of 
cortical neurons was calculated as the percentage of the color 
intensities of (treated cells − control cells)/(LDH releasing 
reagent treated cells − control cells), from four independent 
experiments.

Immunofluorescence staining 
Cultured neurons on coverslips were harvested on day 8. 
Firstly, neurons were washed twice with ice-cold PBS, fixed 
with 4% paraformaldehyde at room temperature for 15 min-
utes, and washed three times with PBS, each for 10 minutes. 
The non-specific protein was blocked with 5% bovine serum 
albumin (Solarbio, Beijing, China) combined with 0.3% 
Triton for 1 hour at room temperature. The coverslips were 
incubated with the primary antibodies (rabbit monoclonal 
anti-RIP3, 1:200; Sigma; rabbit polyclonal anti-MLKL, 1:100; 
Abcam, Cambridge, UK) in immunofluorescence buffer 
solution (Solarbio) at 4°C overnight. In the morning, these 
coverslips were gently washed three times with PBS and 
incubated with homologous secondary 488 conjugated don-
key anti-rabbit IgG (1:500; Jackson ImmunoResearch Inc., 
Baltimore, PA, USA) for 2 hours at room temperature. The 
coverslips were washed three times with PBS and covered 
with vector shield mounting medium. Finally, the coverslips 
were observed and images were captured with a fluorescence 
microscope (Olympus). 

western blot assay 
Cultured neurons were harvested, washed twice by ice-cold 
PBS, and dissociated with 100 μL cell extraction buffer with 
1% phenylmethanesulfonyl fluoride and 1%  protease inhib-
itor cocktail (Thermo Fisher Scientific) for each T25 culture 
bottle. The neurons were scraped from the bottom with 
minimal force, rested on ice for 30 minutes, and centrifuged 
at 12,000 r/min and 4°C for 20 minutes. The supernatant 
was transferred into a fresh tube. The protein concentration 
of these samples was measured by bicinchoninic acid assay 
(Thermo Fisher Scientific, Waltham, MA, USA). After unify-
ing the concentration, 5 × loading buffer was added, boiled 
for 5 minutes, and centrifuged at 1000 r/min for 5 minutes. 
The supernatant was transferred to another fresh tube. The 
total loading protein for each lane was 20 μg. The samples 
were loaded in 8–12% sodium dodecyl sulfate polyacryl-
amide electrophoresis gel. The protein was transferred from 
the gel to polyvinylidene fluoride membrane (Millipore, 
MA, USA) in ice cold transfer buffer. After washing once 
with Tris-Buffered Saline and Tween 20, the membrane 
was blocked with 5% skim milk at room temperature for 
1–2 hours to wipe off the non-specific protein band. The 
membranes were incubated with primary antibodies (rab-
bit monoclonal anti-RIP3, 1:1000, Sigma-Aldrich; rabbit 
polyclonal anti-MLKL, 1:1000, Abcam; rabbit polyclonal an-
ti-GAPDH, 1:2000, Proteintech, Wuhan, China) at 4°C over-
night. The next day, the membrane was washed three times 
with Tris-Buffered Saline and Tween 20, incubated with ho-
mologous goat anti-rabbit IgG horseradish peroxidase-sec-
ondary antibody (1:2000, Beyotime Biotech Inc.) for 2 hours 
at room temperature. It was then washed three times with 
Tris-Buffered Saline and Tween 20, and finally developed 
with electrochemoluminescent (ECL) assay (CWBiotech, 
Beijing, China). The integrated optical density values of spe-
cific proteins were quantified using ImageJ software (National 
Institutes of Health, MD, USA). The relative expression lev-
els of the proteins were normalized by calculating the ratio 
of the target proteins to GAPDH.
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General data of human cadaver brain tissue specimens
The four human cadaver brain tissues were from autopsy 
cases from Xiangya Judicial Identification Center (attached 
to Central South University). Postmortem human brains 
were banked through the willed body donation programs, 
which exist with government (municipal police department) 
and university (Hunan Xiangya Forensic Center) approval to 
provide cadavers for teaching anatomy to medical students. 
The acquisition of brain tissue samples conformed to the 
ethical principles for medical research, with the approval 
from the family of the deceased, and complied with the Dec-
laration of Helsinki and the approval of the Medical Ethics 
Committee of the Third Xiangya Hospital of Central South 
University (approval number: 2017-S026) on March 7, 2017. 
The bodies of four brain tissue donors were dissected by 
forensic experts within 48 hours after death and brain tissue 
samples were obtained. Forensic pathologists conducted 
detailed pathological examinations of the donors and con-
cluded that no obvious neurological diseases were associated 
with the causes of death in these tissue donors. The death 
of two cases was caused by METH poisoning and one was 
cardiac sudden death induced by METH. The case in the 
normal group died of electric shock. Specific information on 
the samples is shown in Table 1. 

Inclusion criteria
They were (1) intake of METH before death, (2) tissue ob-
tained within 24 hours after death, (3) preservation of dead 
bodies in similar environment but without freezing, and (4) 
no neurological diseases diagnosed before death.

Exclusion criteria
Based on the differences of acquisition of forensic specimens 
and patient samples or deceased patient samples in hospitals 
and morphological studies, we took the characteristics of tis-
sue autolysis, defect and decay as exclusion criteria.

Human brain tissue preparation
For anatomical examination, the frontal cortex of the rele-
vant human brain tissue was cut into 1.5 cm × 1.5 cm × 1.0 
cm squares, and fixed in 4% paraformaldehyde for 1 week. 
The tissue was dehydrated in conventional sugar for a fur-
ther 1 week (Xu et al, 2019). The tissues were embedded 
in optimal-cutting-temperature medium (Sakura Finetek, 
Tokyo, Japan), and prepared into 20 μm thick cross-sections 
in a Shanton Cryostat (Thermo-Fisher Scientific Inc., San 
Jose, CA, USA). Sections were thaw-mounted on positively 
charged microslides, allowed to air-dry and then stored at 
–20°C before further histological processing. 

Immunohistochemistry staining of human brain tissue
For immunolabeling with the avidin-biotin complex meth-
od, sections were treated in 0.3% H2O2 in 0.01 M PBS (pH 
7.3) for 15 minutes to inactivate endogenous peroxidase. 
Non-specific antibody binding was blocked by pre-incu-
bating the sections in 5% normal horse serum (Sigma) in 
PBS containing 0.3% Triton X-100 (Fluka, St.Louis, MO, 
USA) for 1 hour at room temperature. Sections were then 
incubated with rabbit monoclonal anti-RIP3 (1:1000), or 
rabbit polyclonal anti-MLKL (1:1000) antibody at 4°C over-
night, then reacted with biotinylated horse anti-rabbit IgG 
(1:400; Vector Laboratories Inc, Burlingame, CA, USA) for 
2 hours at room temperature. After 1-hour incubation with 
the avidin-biotin complex reagents (1:400; Vector Labora-
tories Inc.), the immunoreaction product was visualized in 
PBS containing 0.05% 3,3′-diaminobenzidine (Sigma) and 
0.03% H2O2. Finally, the RIP3 sections were counterstained 
by hematoxylin, dehydrated, cleared and coverslipped. These 
sections were observed and images were captured using a 
microscope (Nikon, Tokyo, Japan).

Statistical analysis
Figure panels were assembled using Photoshop CC (Adobe 
Systems Incorporated, San Jose, CA, USA). The measure-
ment data are presented as the mean ± SD. Two-way analysis 
of variance followed by the Bonferroni post hoc test, one-way 
analysis of variance followed by Tukey’s multiple comparison 
test for comparisons of more than two groups and indepen-
dent sample t-tests were used to analyze the data, with Graph 
Pad Prism 5 software (GraphPad Software Inc., San Diego, 
CA, USA). A value of P < 0.05 was considered statistically 
significant.  

Results
METH + 39°C can cause the necrosis-like neuronal death 
observed under the light microscope
To observe the general effect of cortical neuronal injury in-
duced by METH, we set up a series of concentrations (0, 0.25, 
0.5, 1, 2, 3 mM) of METH at 39°C to incubate cultured cor-

Table 1 General information of four specimen cases

Items 1 2 3 4

Gender Male Male Female Male
Age (years) 24 40 37 37
Duration of 

drug use 
(years)

0 5 4 5

Survival time 
from recent 
drug use 
(hours)

0 24 39 3

Underlying 
disease

N/A N/A N/A Coronary 
heart disease

Cause of death Death 
from 
electric 
shock 
(shock in 
the palm of 
the hand)

Acute METH 
poisoning 
caused acute 
coma, and 
eventually 
multiple organ 
failure

METH 
poisoning 
caused coma, 
hyperpyrexia, 
convulsion, 
and eventually 
multiple organ 
failure

Sudden 
death form 
METH-
induced 
coronary 
heart attack

METH 
concentration 
in blood

0 3.9 μg/mL 6.5 μg/mL 0.105 μg/mL

Pre-death 
temperature 
(°C)

N/A 39.5 39.2 N/A

METH: Methamphetamine; N/A: not applicable. 
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tical neurons for 1, 2, 3, 5 hours to study the change of neu-
ronal morphology under the light microscope. Results found 
that damage of the neurite was first observed after incuba-
tion with 0.25 mM of METH + 39°C for 3 hours, and the 
degree of damage to the neurite became more serious as the 
METH concentration and the duration time increased. After 
exposure to 1 mM of METH + 39°C for 5 hours, the neurite 
of the neuron was almost lost (Figure 1 big frame). The neu-
ronal body began to swell in 0.25 mM of METH + 39°C for 5 

hours and became spherical at higher concentrations (Figure 
1). Neurons were severely damaged and presented an obvi-
ous necrosis-like feature after 1 mM of METH + 39°C for 
5 hours. Given that molecular changes precede cell death, 
1 mM of METH + 39°C for 1 and 3 hours alternatively was 
selected to further study the mechanism of neuronal injury, 
which ultimately leads to cell death. These results showed 
that the METH induced neuronal necrosis-like cell death at 
39°C.

Figure 1 Morphological effect of METH + 39°C on cortical neurons.
We applied 0, 0.25, 0.5, 1, 2, 3 mM of METH + 39°C for 1, 2, 3 and 5 hours in the experiment. The neuronal cells are photographed under the in-
verted microscope. The drug concentration and duration times in the red square boxes are our selected parameters for later experiments. The white 
arrows show morphological changes of cell necrosis. The larger picture in the lower right corner of panels is the enlargement of the smaller picture 
in the corresponding picture. Scale bar: 50 μm in all the panels. The baseline in each of the 100 μm in all enlarged pictures in the lower right cor-
ners of panels equals 100 μm. METH: Methamphetamine.
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Necrostatin-1 decreases the necrosis rate of neurons 
induced by 1 mM METH + 39°C for 3 hours
PI staining results revealed that 1 mM METH induced PI 
positive cortical neurons at both 1 and 3 hours. Pretreatment 
with 20 mM necrostatin-1 can reduce the number of PI 
positive neuron after 1 mM METH at 1 and 3 hours (Figure 
2A). The data of PI uptake rates showed that necrostatin-1 
significantly reduced the necrosis rate of neurons by METH 
+ 39°C at 3 hours. The difference between two groups of the 
blank and 1 mM METH + 39°C for 3 hours was significant 
(Figure 2B). Compared with the METH + 39°C group, the 
percentage of necrotic neurons was significantly decreased in 
the METH + 39°C + necrostatin-1 group (Figure 2C). Col-
lectively, these results showed that METH + 39°C induced 
neuronal necrosis but that pretreatment with necrostatin-1 
partially blocked the necrosis.

Up-regulation of RIP3 and MLKL induced by 1 mM 
METH + 39°C
The above results revealed that METH + 39°C induced neu-
ronal necroptosis which was blocked by necrostatin-1. We 
further studied whether the canonical necroptotic molecules 
were involved in this process. Immunofluorescence staining 
showed that the signals of RIP3 (green) were stronger in the 
METH + 39°C groups than in the normal group. Simultane-
ously, the dot patterns in the plasma of neurons were more 
obvious in the METH + 39°C groups than in the normal 
group (Figure 3A). The green signals of MLKL stained by 
immunofluorescence were also increased in the METH + 
39°C groups, and the location of MLKL moved onto the 
cytomembrane (Figure 3B). Western blot assay results also 
showed that the expression of both RIP3 and MLKL in-
creased compared to the normal group (Figure 3C). There 
were significant differences in RIP3 and MLKL between the 
METH + 39°C and normal groups (Figure 3D–E). 

Pretreatment with GSK’872 down-regulates the 
neuronal necrosis rate and MLKL expression induced by 1 
mM METH + 39°C treatment 
To clarify the role of classical necrosis pathway, the RIP3 
inhibitor, GSK’872, was used on primary cortex neurons and 
MLKL changes were detected downstream of RIP3 before 
exposure to 1 mM METH + 39°C. Different concentrations 
of GSK’872 are used and results are shown in Figure 4. Low 
concentrations have no effect, but high concentrations seem 
to have toxic effects on cells, which is the reason for our 
choosing 0.5 µM. The PI staining and its statistical results 
revealed that 0.5 μM GSK’872 decreased the percentage of 
necrotic neurons (Figure 4A and B). The LDH cytotoxicity 
assay results confirmed that the percentage of necrotic neu-
rons of 0.5 μM GSK’872 group was significantly decreased 
compared with the METH + 39°C group (Figure 4C). How-
ever, no matter what the concentration of GSK’872 pretreat-
ment was, the number of necrotic neurons was significantly 
higher in the METH groups than those of the normal group 
(Figure 4A–C). Western blot assay and statistical results also 
showed that MLKL expression was significantly reduced af-
ter pretreatment with GSK’872 compared with the METH + 
39°C only group (Figure 4D, E).

Up-regulation of RIP3 and MLKL in the frontal cortex of 
specimen (METH abusers)
Because the four sources of brain tissue were taken from 
the corpses within 48 hours after the death of the donor, the 
tissue section showed a slight autolysis of the brain tissue, 
which is a normal phenomenon in forensic pathological 
anatomy (Figure 5). No obvious pathological phenomena of 
neurological diseases were seen in the tissue sections. RIP3 
and MLKL were expressed in the neuronal cells of brain 
tissue sections. The expression of RIP3 and MLKL in case 1 
(Control) was weakly positive. The expression of RIP3 and 
MLKL was more intense in case 2 and case 3 (METH-poi-
soning) than in case 4 (METH induced coronary heart 
attack) and case 1 (electric shock). In summary, the results 
from the brain specimens from people who had died of 
METH poisoning compared to those who had not showed a 
stronger expression of RIP3 and MLKL.

Discussion
The concentrations of METH used in in vitro studies of 
toxicity are generally at millimolar levels, while the blood 
concentrations which are sufficient to generate neurotoxic-
ity are identified in the range of 1 to 10 μM with an average 
blood concentration of 2.0 μM in METH abusers (Melega et 
al., 2007). The possible explanations for the orders of mag-
nitude differences in concentrations are: (1) there is uptake 
of METH to the brain from the blood and this might lead 
to a higher concentration of METH in the central nervous 
system. This is supported by the fact that METH concentra-
tion was 10-fold higher in several sub-regions of rat brain 
in comparison with that in the plasma (Melega et al., 1995, 
O’Neil et al., 2006). (2) In METH-induced in vivo toxicity, 
systemic responses including immune response might play 
a vital role in the brain (Riviere et al., 2000). (3) METH 
abuse often results in body temperature increase and the 
hyperthermia may aggravate the neurotoxic effect of METH 
(Kiyatkin and Sharma, 2016). In consequence, the METH 
concentration required for producing neurotoxicity in vitro 
would be much higher than in in vivo studies (Nara et al., 
2010). Much progress in the context of METH neurotoxicity 
has been achieved by using METH concentration in the mil-
limolar range (Huang et al., 2009). It has been reported that 
a concentration of 3 mM is around the LC50 of METH-in-
duced neuronal damage (e.g., 3 mM in immortalized mes-
encephalon neurons) (Huang et al., 2009). Our previous 
study showed that 4 mM METH induced necroptosis of the 
rat cortical neurons in vitro (Xiong et al., 2016). The present 
study showed that 1 mM METH combined with 39°C trig-
gered the necrosis-like morphological change, whereas pre-
treatment with the necroptosis inhibitor, necrostatin-1, sig-
nificantly reduced the METH + 39°C damage. These results 
suggested that under the condition of hyperthermia, lower 
concentrations of METH could lead to necroptotic neuro-
nal death. Moreover, Stumm et al. (1999) found that 1 mM 
METH treatment for 96 hours induced apoptosis in primary 
cultured cortical neurons. As our research focuses on necro-
ptosis, which is an early event in neurotoxicity, we investigat-
ed the effect of 1 mM METH for 1, 2, 3 and 5 hours together 
with 39°C to observe the damage of primary cultured cortex 
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neurons. In our previous study, necrotic cell death was sig-
nificantly increased after 12 hours of 4 mM METH exposure 
(Xiong et al., 2016). While evaluating the combined effect of 
METH and hyperthermia in our present investigation, we 
showed that necroptosis of cortical neurons occurred at an 
earlier stage, even 3 hours after METH treatment. We used 
METH with 39°C to treat neurons in vitro to simulate the 
real status of METH abusers. This is because METH abusers 
usually present with high fever. Taken together, the results 
suggest that even a relatively low concentration of METH or 
short exposure time might cause severe damage to cortical 
neurons due to the combination of drug action and high 
fever, which should shed new light on the therapeutic strate-
gies concerning METH-elicited neurotoxicity.

RIP3 and MLKL are involved in the regulation of neuronal 
necroptosis induced by distinct models, which is suppressed 
by specific inhibitors (Ganjam et al., 2018; Wang et al., 
2018a; Xu et al., 2018). MLKL is the final executor in necro-
ptosis. Therefore, we used the RIP3 inhibitor GSK’872 to 
focus on the changes of MLKL. In our study, western blot as-
say and morphological results showed that RIP3 and MLKL 
were significantly up-regulated in the METH + 39°C-treated 
cortical neurons. For example, we can find the RIP3 green 
small dots in immunofluorescence staining and in the brown 
stained neurons in immunohistochemistry is the significant 
marker for necroptosis (Xu et al., 2016). Furthermore, the 
MLKL translocation to the cell membrane, shown in the 
immunofluorescence staining, coincides with other reports 
that MLKL was activated to translocate to the membrane 
to execute necroptosis (Cai et al., 2014; Chen et al., 2014). 
Our results suggested that RIP3/MLKL mediated necropto-
sis is caused by METH + 39°C in cultured neurons in vitro 
experiments and in postmortem human brain specimens. 
Moreover, our studies showed that GSK’872 down-regulated 
MLKL expression and neuronal necrosis rate. Even though 
we did not apply the technique of knockdown or over-ex-
pression of RIP3 and MLKL genes, the classical molecular 
changes on quantity and location expression of RIP3 and 
MLKL, combined with the RIP3 inhibition results, strongly 
suggested the existence of necroptosis induced by METH + 
39°C. It also suggests that the RIP3/MLKL molecular path-
way played an important role in METH + 39°C induced 
cortical neuronal necroptosis. Although 0.5 μM GSK’872 ef-
fectively inhibited neuronal necrosis, none of the concentra-
tions (0.25–1 μM) of GSK’872 could reduce METH + 39°C 
induced neuronal necrosis to a normal level. This would in-
dicate that the RIP3/MLKL pathway was not the only regula-
tory pathway involved in necrosis. An investigation of other 
molecules that might be involved in its regulated processing 
would be worth further study.

The two cases of METH-poisoning, accompanied by 
strongly positive expression of RIP3 and MLKL in neurons, 
had body temperatures of more than 39°C before death. This 
indicates that the synergistic effect of METH and hyperther-
mia may up-regulate the expression of RIP3 and MLKL in 
human cortical neurons. The expression of RIP3 and MLKL 
in the brain tissue sections of case 1, the control, was weakly 
positive, which may be due to common pathological fea-

tures, including apoptosis and necroptosis that occur in the 
dying process from various death causes (Vandenabeele et 
al., 2008; Liu et al., 2015). The blood concentration of METH 
in case 4 (death by cardiac failure) was much lower than that 
of case 2 and case 3, and the expression of RIP3 and MLKL 
in brain tissue sections of case 4 was also lower than that of 
case 2 and case 3. These results suggest that METH action in 
the human body causes the up-regulation of RIP3 and MLKL 
expression and this is positively correlated with its dose. 
Validation will require a larger study in the future. However, 
it is impossible to strictly control the post-mortem interval 
in forensic cases and often some information is lacking (e.g., 
the body temperature before death in cases 1 and 4). It is 
possible these factors may have an impact on the results of 
immunohistochemistry of human brain tissue. In addition, 
the lack of sufficient human samples was also a limitation of 
this study. Our team will continue to collect more samples 
for data statistics and analysis in the future. Overall, the re-
sults showing that RIP3 and MLKL were highly expressed 
in human brain tissues of METH abusers further supports 
our hypothesis that METH plus hyperthermia can induce 
RIP3/MLKL modulated neuronal necroptosis. This may be 
applicable for the clinical therapeutic targets and potential 
diagnostic biomarkers in future.

In conclusion, METH + 39°C may lead to necroptosis of 
cortical neurons, and the RIP3/MLKL molecular pathway is 
involved in that necroptotic process.
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Figure 2 Necrosis of rat cortical neurons induced by METH + 39°C.
(A) PI staining for cortical neurons by METH + 39°C, left. Pretreatment with 20 mM necrostatin-1, right; scale bars: 100 μm. (B) Statistics of PI up-
take rate (mean ± SD, n = 5; two-way analysis of variance followed by the Bonferroni post hoc test), ***P < 0.001. (C) Necrosis rate of cortical neu-
rons detected by lactate dehydrogenase assay after METH + 39°C for 3 hours, with and without pretreatment with necrostatin-1 (mean ± SD, n = 6, 
one-way analysis of variance followed by Tukey’s multiple comparison test). **P < 0.01, ***P < 0.001, ****P < 0.0001, vs. normal group; ####P < 
0.0001. METH: Methamphetamine; ns: not significant; PI: propidium iodide. 

Figure 3 Expression of 
RIP3 and MLKL in 
cortical neurons 
following METH + 
39°C treatment. 
(A–B) Immunofluores-
cence staining for RIP3 
and MLKL in cortical 
neurons: the large frame 
is the 4 × magnification 
of related small frame, 
scale bar: 100 μm. (C) 
Western blot assay for 
R I P 3  a n d  M L K L  i n 
cortical neurons. (D–
E) Statistics of RIP3 and 
MLKL expression based 
on western blot assay 
(mean ± SD, n = 3, one-
way analysis of variance 
followed by Tukey’s mul-
tiple comparison test). 
*P < 0.05, **P < 0.01, vs. 
normal group. METH: 
Me t h a m p h e t a m i n e ; 
MLKL: mixed lineage 
kinase domain-like pro-
tein; RIP3: receptor-in-
teracting protein 3. 
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Figure 4 Pretreatment with GSK’872 down-regulates the increased MLKL expression and neuronal necrosis rate induced by 1 mM METH + 
39°C treatment. 
(A) Propidium iodide staining of cortical neurons pretreated with different concentrations of (0.25, 0.5 and 1 μM) of GSK’872 inhibitor before 1 
mM METH + 39°C treatment for 3 hours: scale bar: 50 μm. (B) Statistics of propidium iodide uptake rate. (C) Detection of necrotic rate of cortical 
neurons by lactate dehydrogenase assay after pretreated different concentrations of GSK’872 inhibitor before 1 mM METH + 39°C treatment for 3 
hours. (D) Western blot assay of MLKL in cortical neurons after pretreated different concentrations of GSK’872 inhibitor. (E) Statistics of expres-
sion of MLKL protein. Data are expressed as the mean ± SD (n = 3; one-way analysis of variance followed by Tukey’s multiple comparison test). 
***P < 0.001, ****P < 0.0001, vs. normal group; #P < 0.05, ###P < 0.001, ####P < 0.0001. METH: Methamphetamine; MLKL: mixed lineage ki-
nase domain-like protein.

Figure 5 Immunofluorescence 
staining of human cadaver 
frontal cortex sections. 
The causes of death are listed in 
the Table 1. RIP3 and MLKL are 
stained by immunohistochem-
istry for each case. The small- to 
medium-sized frame is a local 4 
× magnification of the larger one. 
Scale bars: 100 μm in row one 
and three, 50 μm in row two and 
four. MLKL: Mixed lineage ki-
nase domain-like protein; RIP3: 
receptor-interacting protein 3.
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