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Although it is well established that feature-based
attention (FBA) can enhance an attended feature, how it
modulates unattended features remains less clear.
Previous studies have generally supported either a
graded profile as predicted by the feature-similarity gain
model or a nonmonotonic profile predicted by the
surround suppression model. To reconcile these different
views, we systematically measured the attentional
profile in three basic feature dimensions—orientation,
motion direction, and spatial frequency. In three
experiments, we instructed participants to detect a
coherent feature signal against noise under attentional
or neutral condition. Our results support a
nonmonotonic hybrid model of attentional modulation
consisting of feature-similarity gain and surround
suppression for orientation and motion direction. For
spatial frequency, we also found a similar nonmonotonic
profile for higher frequencies than the attended
frequency, but a lack of attentional modulation for lower
frequencies than the attended frequency. The current
findings can reconcile the discrepancies in the literature
and suggest the hybrid model as a new framework for
attentional modulation in feature space. In addition, a
computational model incorporating known properties of
spatial frequency channels and attentional modulations
at the neural level reproduced the asymmetric
attentional modulation, thus revealing a connection
between surround suppression and the basic neural
architecture of an early visual system.

Introduction

Visual attention prioritizes the most important
information over other task-irrelevant input from a
visual scene. It is well documented that both locations
(spatial attention) and features (feature-based attention
or FBA) can guide attentional selection (Carrasco,
2011; Liu, 2019). Numerous behavioral and neural

studies have demonstrated an enhancement in the
representation of the attended location or feature.
However, it remains less clear how attentional selection
of a location or feature affects the rest of the spatial or
feature continuum. Here, we aim to investigate the
profile of attentional modulation when selecting visual
features within a dimension.

According to the influential feature-similarity gain
model, the attended feature is enhanced but such
enhancement gradually declines and turns into sup-
pression for unattended features that are progressively
more dissimilar to the attended feature. In other words,
attentional modulation is a monotonic function of the
similarity between attended and unattended feature.
Although the feature-similarity gain model was origi-
nally proposed in neurophysiological studies to de-
scribe attentional modulation of neuronal responses in
visual cortex (Martinez-Trujillo & Treue, 2004; Treue
& Martinez-Trujillo, 1999), many studies measuring
human performance have obtained results consistent
with this monotonic profile (Ho, Brown, Abuyo, Ku, &
Serences, 2012; Liu, Larsson, & Carrasco, 2007; Saenz,
Buracas, & Boynton, 2003; Wang, Miller, & Liu, 2015;
Paltoglou & Neri, 2012). However, all these studies
have generally employed either two very different test
features (e.g., red vs. green, upward vs. downward
motion) or a rather coarse sampling of the feature
space. Thus, evidence for feature-similarity gain comes
from studies testing very dissimilar visual features
compared to the attended feature.

When features in close proximity to the attended
feature were probed, however, a non-monotonic
attentional modulation has been reported (Fang,
Becker, & Liu, 2019; Stormer & Alvarez, 2014).
Notably, two recent studies on color-based attention
have sampled the color space on a fine scale and have
found that relative to an attended color, nearby colors
were more suppressed than colors further away in the
color space (Fang, Becker, & Liu, 2019; Stormer &
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Alvarez, 2014). It is suggested that this ‘‘surround
suppression’’ effect enhances signal-to-noise ratio on a
fine scale when the target and distractors have similar
features. In addition, a further suppression was also
observed for very dissimilar colors, thus suggesting
both surround suppression and feature-similarity gain
are operational but at different similarity scales (Fang,
Becker, & Liu, 2019). These results revealed novel
attentional modulation profiles in the color domain.
However, it is not clear whether these effects are
specific to color. Color is a salient visual feature and is
known to be particularly effective in guiding attention
(e.g., Motter & Belky, 1998; Williams, 1966). Further-
more, color perception is categorical such that contin-
uous changes in the physical input (wavelength) maps
onto discrete perceptual categories (e.g., red, blue),
which might facilitate a surround suppression effect.

Thus, the profile of attentional modulation for
other features remains unclear. Several studies have
examined the profile of attentional modulation for
orientation and motion direction, with inconclusive
evidence for surround suppression (Ho et al., 2012;
Tombu & Tsotsos, 2008; Wang et al., 2015). In the
orientation domain, Tombu and Tsotsos (2008)
found a nonmonotonic attentional modulation such
that performance was worst when the cued and target
orientations were offset by 458, followed by a
rebound at 908 offset. However, critically, they did
not include a baseline condition to establish a
genuine suppression effect. For motion direction, Ho
and colleagues found a nonmonotonic performance
that was lowest at 908 offset between the cued and
target direction but fully rebounded at 1808, i.e.,
opposite direction (Ho et al., 2012). However, this
effect is thought to be due to axis-tuned motion
mechanisms, which would respond equally well to
opposite directions (see also Wang et al., 2015). In
other words, the observed rebound effect at 1808
could reflect an intrinsic property of motion pro-
cessing rather than an attentional effect. Lastly,
spatial frequency is another feature dimension that is
fundamental to early visual processing (De Valois &
De Valois, 1988). The profile of attentional modula-
tion to spatial frequency is even less investigated; in
particular, whether attention to spatial frequency
induces a surround suppression effect is unknown.
Taken together, there lacks strong evidence in the
literature regarding the modulation profile of FBA in
several key feature dimensions.

Therefore, we set out to measure the profile of FBA
for three fundamental dimensions in early vision:
orientation, motion direction, and spatial frequency.
We employed a two-interval forced choice (2-IFC) task,
in which participants detected a coherent feature signal.
We employed a feature cue to direct FBA (i.e.,
attention condition) or an uninformative cue to

establish baseline performance (i.e., neutral condition).
With a fine sampling procedure, we measured perfor-
mance for targets with different offsets from the cued
feature in the attention condition and compared it to
the neutral performance to characterize the profile of
FBA.

Experiment 1—Orientation

In Experiment 1, we aimed to measure the profile of
FBA to orientation. To assess the suppression effect,
we included a baseline condition in which no specific
orientation was cued. We also used a finer sampling
interval (every 158 offset) than previous studies (e.g.,
Tombu & Tsotsos, 2008) to obtain a more compre-
hensive mapping of the attentional profile.

Methods

Participants

All participants (N¼ 12, undergraduate students at
Michigan State University) had normal or corrected-to-
normal visual acuity and gave informed consent.
Experimental protocols were approved by the Institu-
tional Review Board at Michigan State University and
were performed in accordance with approved guide-
lines and regulations. Participants were compensated at
the rate of $10 per hour.

Apparatus

The stimuli were generated using MATLAB (Math-
Works, Natick, MA) and MGL (http://gru.stanford.
edu/mgl) and presented on a 21-in. CRT monitor
(1,024 3 768 pixels; 120 Hz refresh rate; Dell P992,
Round Rock, TX) at a viewing distance of 69 cm. A
screen cover with a circular aperture (radius¼ 11.2 dvg)
was used to avoid orientation cues from the screen
frames. Participants’ heads were stabilized by a chin
rest.

Stimulus

The orientation stimuli were two static arrays of
tilted lines as an analog to the classic random-dot
motion kinematogram (Newsome & Pare, 1988). The
stimuli (70% of maximum screen luminance) were
presented on a uniform background (50% of maximum
screen luminance). Each stimulus array had a total of
180 oriented lines, which were randomly scattered on
nine concentric rings (298 possible positions) within an
annular region (inner radius ¼ 1.508; outer radius¼
9.938) centered on the screen. We used only a subset of
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all possible positions to avoid forming obvious
contours around the concentric rings. In addition,
jitters (up to 6 0.128) were added to avoid perfect
alignment of the lines. To account for cortical
magnification, we applied M-scaling to the sizes of lines
such that the expected cortical sizes of the lines are
equated in V1. To compute the scaling factor, we
adapted the original formula in Horton and Hoyt
(1991) as follows:

M ¼ Eþ e2
Emin þ e2

;

where M is the scaling factor, E is a line’s eccentricity,
Emin is the eccentricity of lines closest to fixation for a
particular stimulus, and e2 is the eccentricity at which a
stimulus subtends half the cortical distance as it
subtends at the fovea (3.678; Dougherty, Koch, Brewer,
Fischer, Modersitzki, & Wandell, 2003). The lines
closest to fixation had the dimension 0.148 3 0.0888.

In the target array, a proportion of lines were drawn
in the same orientation, which could be one of 12 fixed
orientation values (e.g., from 88 to 1738 at a step size of
158; Figure 1b). The rest were assigned random

orientations sampled from 08 to 1798 excluding the
coherent orientation. In the noise array, all lines had
randomly sampled orientations from 08 to 1798. The
proportion of the same-orientation lines is referred to
as orientation coherence, and these lines constituted the
signal for the detection task.

Task and procedure

Each experimental session (four in total) consisted of
two phases. The first phase was an orientation
coherence pretest to determine the coherence threshold
for the main task. In the second phase, participants
performed the main attention task to measure FBA’s
modulation profile, which consisted of interleaved
neutral precue (i.e., baseline) and orientation precue
blocks. Details of the tasks are described as follows.

Orientation coherence pretest

At the beginning of each session, we measured
orientation coherence thresholds to control the
baseline performance level and equate the task

Figure 1. Experiment 1—orientation. (a) Example trial sequence for the 2-IFC task. (b) Depiction of the 12 possible orientations of the

coherence signal. The relative offset is shown for all test orientations for a particular cued orientation (in red). (c) More realistic

depictions of the actual stimuli (noise and target) used in the experiment. The example target stimulus is drawn at a coherence of

80% in a coherent orientation (88 off horizontal). We did not start from 08 in order to avoid cardinal and oblique orientations (d)

Individual participant’s baseline performance (bars) and average orientation coherence threshold (circles) across all sessions. Red

dashed line represents 75% correct, the intended performance level as controlled by the staircase.
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difficulty across participants, using a QUEST staircase
targeting 75% accuracy (Watson & Pelli, 1983). As
shown in Figure 1a (Neutral), each trial began with
the onset of a fixation cross at the center for 500 ms. A
precue appeared for 400 ms, followed by a 300 ms
interstimulus interval (ISI). The two stimulus arrays
were then shown, each for 400 ms, separated by a 300
ms ISI. After another ISI (200 ms), a postcue (300 ms)
was shown to indicate the coherent orientation. After
the postcue disappeared, participants reported
whether the first or second interval contained the
target (the array with a coherent orientation) by
pressing one of the two keys on the keyboard. After
the response, there was an intertrial interval (ITI) of a
blank screen for 500 ms. On each trial, the coherent
orientation in the target was randomly drawn from the
12 possible orientations, with the coherence value
controlled by the staircase.

Participants were informed that the postcue indi-
cated the target orientation. This was done to eliminate
decision uncertainty regarding the orientation on which
they should make their judgment (Luck et al., 1994;
Pestilli, & Carrasco, 2005). Participants were given
unlimited time for response. A tone was played after an
incorrect response as feedback. We randomly inter-
leaved two independent staircases (72 trials per
staircase) to ensure the accuracy of the coherence
threshold estimation. Average of the staircases’ esti-
mations was taken as the threshold for each participant
in that session.

Attention task

We used an orientation cue to manipulate FBA
and measured its effect on detecting the orientation
coherence signal. Participants performed the same 2-
IFC task as in the pretest under either neutral cue
blocks or orientation cue blocks. Orientation coher-
ence was individually determined by the pretest (see
aforementioned details). The neutral cue blocks were
identical to the pretest, where target orientation was
randomly selected from the 12 possible orientations
(see Figure 1b) on each trial. For orientation cue
blocks, an oriented line (0.38 3 0.0888) was presented
at the screen center, which was also randomly
selected from the 12 test orientations. The target
orientation matched the cue on 60.71% of the trials
(valid condition) so that the cue was predictive, and
in the rest of trials, the target orientation was
randomly assigned to be 6158, 6308, 6458, 6608,
6758, or 908 offset from the cued orientation (invalid
condition, Figure 1b). Note, for each cue-target
offset condition (i.e., 08, 6158, 6308, 6458, 6608,
6758, or 908), the actual target orientation was
equally likely to be one of the 12 test orientations.
For each participant, we computed the average

performance across the 12 test orientations in the
neutral cue blocks as our baseline.

In three separate sessions, participants completed 16
neutral cue blocks (18 trials per block) for a total of 288
neutral trials and 16 orientation cue blocks (126 trials
per block) for a total of 2016 orientation cued trials.
This yielded 1,224 trials for the valid condition and 72
trials per offset (11 in total, i.e., 6158, 6308, 6458,
6608, 6758, and 908) for the invalid conditions.

Analysis: Model fitting and comparison

We computed cueing effect as the difference in
accuracy (measured as proportion of correct respons-
es) between the orientation cue condition and neutral
cue condition. We conducted two types of analyses to
assess the shape of attentional modulation. In the first
analysis, we averaged the cueing effects across the
positive and negative offsets and used standard t tests
to evaluate enhancement (defined as a positive cueing
effect) and suppression (defined as a negative cueing
effect) relative to the baseline. In the second analysis,
we fit both a monotonic model and a nonmonotonic
model to the cueing effect using nonlinear regression
to further quantify the surround suppression effect.
We included data points up to one point outside the
suppressive surround as the data range for fitting the
models, based on our previous study showing that
farther features are modulated by feature-similarity
gain instead of surround suppression (i.e., hybrid
profile of FBA; Fang, Becker, & Liu, 2019). Model
fitting was performed both on individual participant
data and group averaged data. The monotonic model
was implemented as a Gaussian function, which had
three free parameters:

y ¼ A

w
e�

x2

2w2 þ b;

where y is the cueing effect; x is the cue-target offset;
and w, A, and b are the free parameters controlling the
shape of the function. The nonmonotonic model was
implemented as a polynomial function.1

y ¼ ax4 þ bx2 þ c;

where y is the cueing effect, x is the cue-target offset,
a, b, and c are the three free parameters controlling the
function’s shape. To quantify the evidence supporting
each model, we computed the Bayesian information
criterion (BIC; Schwarz, 1978), with the assumption of
a normal error distribution:

BIC ¼ n ln
RSS

n

� �
þ k ln nð Þ;

where n is the number of observations, k is the number
of free parameters, and RSS is residual sum of squares
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(Raftery, 1999). We calculated the Bayes factor (BF)
of the nonmonotonic model over the Gaussian model
based on BIC approximation (Wagenmakers, 2007):

BF ¼ e
BICG�BICPð Þ

2

� �
;

where BICG is for the Gaussian model, BICP is for the
polynomial model.

Results
Baseline and cueing effect: Figure 1d depicts partici-
pant’s baseline performance in the neutral cue condi-
tion of the attention test and the corresponding
orientation coherence thresholds obtained from the
threshold pretest. As expected from our staircase
procedure, baselines were well equated across partici-
pants in a narrow range around 75% accuracy. Next,
we computed the cueing effect for each offset condition
by subtracting the baseline performance from the
orientation cue condition.

The group-averaged cueing effect is shown in Figure
2a. We found an enhancement when the cue and target
were the same (08 offset; valid condition). As the target
became more different from the cue, the enhancement
decreased and turned into suppression, which reached a
maximum aroundþ458/�458. Critically, the cueing
effect rebounded beyond the maximal suppression up
toþ758/�758, indicating a surround suppression effect.
At the largest cue-target offset of 908, there was a trend
of further suppression.
Combined cueing effect: To further characterize the
profile of attention, we averaged each participant’s
cueing effect across the positive and negative offsets
because of the symmetric cueing effect (Figure 2b), and
then compared against zero in one-sample t tests. We
corrected p values using false discovery rate (FDR;
Benjamini & Hochberg, 1995) due to multiple com-
parisons. Our test showed a significant enhancement at
08 offset (valid condition), t(11) ¼ 4.89, p ¼ 0.0017,

Cohen’s d¼ 1.41. At 158 offset, there was no significant
cueing effect, t(11)¼ 1.8, p ¼ 0.099. As the cue-target
offset increased to 308, we found a significant sup-
pression effect, t(11)¼�2.96, p¼ 0.018, d¼�0.86. For
further offsets, the suppression effects were all signif-
icant: at 458 offset, t(11)¼�6.92, p¼ 0.0002, d¼�1.99,
at 608 offset, t(11)¼�4.31, p¼ 0.0029, d¼�1.24, at 758
offset, t(11) ¼�3.71, p ¼ 0.006, d ¼�1.071, and at 908
offset, t(11) ¼�2.87, p ¼ 0.018, d ¼�0.83. Critically,
this suppression pattern was nonmonotonic. Cueing
effect was significantly lower at 458 offset compared to
larger offset at 758, t(11)¼�3.05, p¼ 0.011, d¼�0.88,
and 08 offset, t(11) ¼�9.92, p¼ 1.6 3 10�6, d ¼�2.86.
Model comparison: As a complementary analysis, we
fitted a monotonic (i.e., Gaussian) model and a
nonmonotonic (i.e., polynomial function) model to the
average cueing effect. Within the range of�608 toþ608
offsets, the nonmonotonic model (R2¼ 0.99, BICP¼
�88.65) was strongly favored over the monotonic
Gaussian model (R2¼ 0.96, BICG¼�78.77) with a BF
of 139.65, constituting very strong evidence for a
surround suppression effect in the attentional modu-
lation (Raftery, 1999). Model comparison based on
fitting individual data showed that the non-monotonic
model was favored in 10 out of 12 participants.

Discussion

In this experiment, we measured the profile of
attention to orientation. Although there is a significant
enhancement for valid cue condition, participants’
performances were overall worse for invalid conditions,
as manifested by significant suppression effects from
308 to 908 offsets. Importantly, the suppression effects
showed a non-monotonic profile. The attentional
suppression was significantly stronger at 458 offset
compared to larger offset at 758, suggesting a surround
suppression effect. In addition, we also observed a
significant suppression at the largest offset of 908,

Figure 2. Results for Experiment 1. (a) Average cueing effect for all cue-target offsets. (b) Combined cueing effect. *p , 0.05. (c)

Model fitting results, showing the fit of both a Gaussian model and a non-monotonic (polynomial) model. Error bar represent

standard error of mean.
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which is different from a simple rebound effect as
predicted by a pure surround suppression. Taken
together, the current results revealed both surround
suppression and a trend for feature-similarity gain
modulation, consistent with a hybrid profile of FBA.

Experiment 2—motion direction

In the second experiment, our goal was to measure
the attentional profile for motion direction. Using a
similar design as in Experiment 1, we used a 2-IFC task
to measure the attentional modulation profile by
systematically varying the cue-target directional offset
every 158. We limited our sampling range within�908

to þ908 offsets, because a rebound effect beyond 6908

has been observed (Ho et al., 2012; Wang et al., 2015),
which could be due to the axis-tuned mechanisms in
visual cortex (Albright, 1984; Conway & Livingstone,
2003; Livingstone & Conway, 2003).

Methods

Participants

Another group of participants (N ¼ 12; undergrad-
uate students at Michigan State University) gave
informed consent. All had normal or corrected-to-
normal visual acuity and were compensated at the rate
of $10 per hour. Experimental protocols were approved
by the Institutional Review Board at Michigan State
University. All procedures were performed in accor-
dance with approved guidelines and regulations.

Apparatus and stimulus

The apparatus was the same as in Experiment 1.
Stimuli in Experiment 2 were the classic random dot
motion kinematograms (Newsome & Pare, 1988),
which were composed of moving dots (dot size ¼ 0.18,
speed¼ 4.58/s, density ¼ 16.7 dots/deg2 s�1) presented
within an annulus (inner radius ¼ 0.58, outer radius¼
4.58) centered on the screen on a black background.
Three sets of dots were presented in interleaved frames
to reduce the possibility of participants tracking
individual dots. In the target array, a proportion of
dots moved in the same direction, which was sampled
from 24 fixed motion directions spanning the full
direction space every 158 (08 to 3458, as shown in Figure
3b). The remaining dots in the target array had random
directions, randomly assigned from 08 to 3598 excluding
the coherent motion direction. In the noise array, all
dots moved in random directions (0% coherence). The
proportion of the same-direction dots is referred to as

motion coherence, and these dots constitute the signal
for the detection task.

Task and procedure

We employed the same 2-IFC task and procedure as
in Experiment 1 with the following changes. At the
beginning of each session, we first measured individual
participants’ motion coherence thresholds to control
baseline task difficulty to be around 75% accuracy
level. As depicted in Figure 3a (Neutral), participants
performed a 2-IFC task and reported the interval that
contained a coherent motion signal under neutral cue
condition. On each trial, the coherent target motion
direction was assigned randomly to be one of the 24 test
directions.

During the attention main test, participants per-
formed the same 2-IFC task under neutral cue blocks,
or motion direction cue blocks. The motion direction
cue was composed a line (0.48 3 0.0888), which could be
in one of the 24 possible test direction. The cue
indicated the direction in which the line pointed away
from the fixation dot. Participant were trained in
practice trials until they fully understood the way target
direction was indicated by the cue. In 60% of trials, the
target direction matched with the cue (08 offset, valid
condition). In the rest of the trials, the target direction
could be randomly sampled 6158, 6308, 6458, 6608,
6758, or 6908 offset from the cue (invalid conditions,
12 in total). Similar to Experiment 1, for each offset,
the actual motion direction was equally likely to be one
of the 24 possible test directions. For each participant,
we computed the average performance across the 24
test directions in the neutral cue blocks as our baseline.

In four separate sessions, participants completed 16
neutral blocks (18 trials per block) for a total of 288
neutral trials, and 16 direction cue blocks (126 trials per
block) for a total of 2,016 trials. This yielded 1,210
trials for the valid condition, and 67 trials per offset
(i.e., 6158, 6308, 6458, 6608, 6758, and 6908) for the
invalid conditions.

Analysis: Model fitting and comparison

All analyses were the same as in Experiment 1.

Results
Baseline and cueing effect: Figure 3c depicts partici-
pant’s average baseline performance (i.e., under neutral
cue condition) in the main attention test and the
average motion coherence thresholds obtained from the
threshold pretest. Baselines were within a reasonable
range of the desired 75% accuracy level.

Figure 4a shows the average cueing effect of FBA to
motion direction. There was an enhancement when the

Journal of Vision (2019) 19(13):13, 1–16 Fang & Liu 6



cue and target were the same (08 offset; valid condition)
as well as a strong suppression effect when the cue and
target was most different at þ908/�908 offsets. Impor-
tantly, we also found a suppression effect at þ458/
�458offsets followed by a rebound atþ608/�608, which
is consistent with a surround suppression effect.

Combined cueing effect: Following the same procedure
in Experiment 1, we averaged the cueing effect acrossþ/
� offsets at individual level (Figure 4b), and then
conducted one-sample t tests against 0 (FDR correct-

ed). There was a significant enhancement at 08 offset
(valid condition), t(11)¼ 4.37, p¼ 0.0066, Cohen’s d¼
1.26 and at 158 offset t(11)¼ 3.99, p¼ 0.0066, d¼ 1.15.
There was a significant suppression at 458 offset, t(11)¼
�3.82, p¼ 0.0066, d¼�1.1, but not at 308 offset, t(11)¼
1.19, p¼ 0.3; 608 offset, t(11)¼�0.2, p¼ 0.85; and 758

offset, t(11)¼�1.82, p¼ 0.13. Such pattern suggested a
surround suppression effect elicited by attention to
motion direction. Planned comparisons also verified
that the nonmonotonic attentional modulation as

Figure 4. Results for Experiment 2. (a) Group-averaged cueing effect of attention to motion direction, (b) combined cueing effect, *p

, 0.05. (c) Model fitting results. Error bar represents standard error of mean.

Figure 3. Experiment 2—motion direction. (a) Example trial sequence for the 2-IFC task. (b) Examples for different cue-target offset

conditions. Both direction precue and all possible targets direction were uniformly distributed among the 24 possible directions. (c)

individual participants’ baseline performance (gray bars) and average motion coherence threshold (circles, 75% accuracy level) across

all sessions. Red dashed line represents 75% correct, the intended performance level as controlled by the staircase.
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cueing effect at 458 offset was significantly lower
compared to the cueing effect at 608 offset, t(11) ¼
�3.05, p¼ 0.011, d¼�0.88, and 08 offset, t(11)¼�9.92,
p¼ 1.6 3 10�6, d ¼�2.86. Lastly, there was also a
further suppression effect when the cue-target was most
different at 908, t(11) ¼�3.34, p¼ 0.012, d ¼�0.96.
Model comparison: Both a monotonic (i.e., Gaussian)
model and a nonmonotonic (i.e., polynomial) model to
the average cueing effect (Figure 4c). Following the
same procedure in Experiment 1, the largest offset we
included were 6608. The BF (120.8) strongly favored
the non-monotonic polynomial model (R2¼ 0.92, BICP

¼�78.96) over the monotonic Gaussian model (R2¼
0.76, BICG ¼�69.37), which constituted very strong
evidence for surround suppression effect (Raftery,
1999). For individual participants, we found that the
nonmonotonic model was favored in 12 out of 12
participants based on the BIC model evidence.

Discussion

Consistent with Experiment 1, FBA to motion
direction also produced a surround suppression at a
small scale (e.g., 458 offset) and a feature-similarity gain
modulation at a larger scale (e.g., 908 offset). Previous
studies have suggested that the rebound in performance
beyond 908 offset can be explained by neurons tuned to
opposite directions, which lie on a single axis (Ho et al.,
2012; Wang et al., 2015). For example, attention to an
upward motion may enhance neurons tuned to both
upward and downward motion direction. Thus, by
limiting our maximum direction offset at 908, we
excluded such axis effect as a possible explanation for
our nonmonotonic effect. Thus, the current results
provided clear support for a surround suppression
modulation at the neighbors of the attended motion
direction.

Experiment 3—Spatial frequency

It is well established that a basic function of early
visual areas is local spatial frequency analysis (De
Valois & De Valois, 1988). However, how attention
modulates the processing of spatial frequency infor-
mation is less clear. In an early study, Rossi and
Paradiso showed that attention to the spatial frequency
of a central grating modulated the detection of
peripheral grating with variable spatial frequencies
(Rossi & Paradiso, 1995). However, grating stimuli
may not allow an isolation of the attention to spatial
frequency as they also contain orientation information.
Indeed, Rossi and Paradiso found that attention to
spatial frequency also modulated the detection of

gratings depending on the task-irrelevant feature —
orientation. This finding implied that orientation
processing might be obligatory even if participants were
instructed to attend to spatial frequency. Thus, it is
unclear whether attention to spatial frequencies alone
can modulate perception. Moreover, this study found a
monotonic attentional profile with a relatively coarse
sampling interval of one octave. Thus, the question
remains regarding whether a surround suppression
could be revealed with a finer sampling.

Methods

Participants

Twelve new participants (undergraduate students at
Michigan State University) gave informed consent and
participated in this experiment. Experimental protocols
were approved by the Institutional Review Board at
Michigan State University. All participants had normal
or corrected-to-normal visual acuity and were com-
pensated at the rate of $10 per hour.

Apparatus and stimulus

The apparatus was the same as in Experiment 1.
There were three types of stimuli: target, noise, and
mask. Target stimuli were generated by filtering
Gaussian noise images with an isotropic bandpass filter
centered on a particular spatial frequency with a
bandwidth of 1/10 octaves. Noise stimuli were gener-
ated by scrambling the target images. In this experi-
ment, we used visual masks comprised of unfiltered
Gaussian noise to avoid ceiling-level performance.
Target, noise, and mask stimuli were all windowed by a
two-dimensional Gaussian (rx, ry¼ 2.678) and had the
same mean luminance as the background (50% of the
maximum luminance).

We chose an intermediate frequency of 1.8 c/8 as the
cued spatial frequency. Target spatial frequency was
sampled from the cued frequency and 8 neighboring
frequencies at �2, �1.5, �1, �0.5 octaves (linear scale:
0.45, 0.64, 0.9, 1.27 c/8, respectively), and þ0.5,þ1,
þ1.5, þ2 octaves (linear scale: 2.55, 3.6, 5.09, 7.2 c/8
respectively). The Gaussian noise in the mask con-
tained all possible target frequencies but was uninfor-
mative to any specific frequency.

Task and procedure
Contrast threshold pretest

At the beginning of each session, we measured the
RMS contrast thresholds for each of the nine test
spatial frequencies with a Quest staircase targeting at
75% accuracy level. As illustrated in Figure 5a
(Neutral), each trial began with a fixation screen for
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500 ms. A gray fixation dot (0.28) was then presented
for 250 ms. Following a 550 ms ISI, the first stimulus
interval appeared for 500 ms. During a stimulus
interval, target/noise and visual masks were presented
in alternating frames of monitor refresh (frame
duration: 8.3 ms, at a refresh rate of 120 Hz). After a
300 ms ISI, the second stimulus interval was present for
another 500 ms. After another 300 ms ISI, a postcue
(250 ms) was presented to indicate the target spatial
frequency. Once the postcue disappeared, participants
reported which stimulus interval contained a spatial
frequency target by pressing one of two keys on the
keyboard. This was followed by a 1,000 ms intertrial-
trial interval of a blank screen. Participants were
informed that the postcue represented the target spatial
frequency, which should help them to make the correct
decision. Response time was unlimited. We provided a
feedback tone for incorrect responses. Each trial was
randomly assigned to one of the nine staircases, to
separately measure the contrast threshold for each of
the nine spatial frequency targets. The pretest consisted
of 12 blocks with 27 trials per block, yielding 36 trials
per staircase.

Attention (ain task)

Participants were tested under neutral cue (i.e.,
fixation dot) blocks or spatial frequency cue blocks
with the same 2-IFC task described already. We used
the RMS contrast thresholds for each target frequen-
cies as measured during the pretest, which should
establish equal baseline performances for different
target spatial frequencies under neutral cue condition.
For spatial frequency cue blocks, the cue has a fixed
spatial frequency of 1.8 c/8 , which was windowed by a
smaller Gaussian window (rx, ry ¼ 0.778) and always
presented at the center of the screen. In 50% of the
trials, the target spatial frequency matched with the
cue (0 offset; valid condition). Note, the cue was
generated at the beginning of each trial such that it
was always a different physical image from the target.
This is to avoid simple priming effect based on the
image pattern. In the other 50% of trials, the target
frequencies were randomly selected from eight other
test frequencies (60.5, 61, 61.5, and 62 octaves
offset; invalid condition). We used a fixed cue because
spatial frequency is a noncircular dimension. Had we
used multiple spatial frequency cues, the actual

Figure 5. Experiment 3—spatial frequency (SF). (a) Example trial sequence for the 2-IFC task. (b) Examples of target stimulus with

different SF offsets from the cued SF. The precue was fixed at 1.8 c/8. (c) Group-averaged baseline performances for all nine targets (in

bars). Red dashed line represents 75% correct, the intended performance level as controlled by the staircase. Group-averaged

contrast sensitivities were also plotted (in dots), which was calculated as log(1/threshold). Error bars represent standard error of

mean. The contrast of the stimuli was increased in this figure for better visualization.
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frequencies in the invalid conditions would differ
across different cues and may introduce additional
variability in the data.

In three separate sessions, all participants completed
21 neutral blocks (27 trials per block) for a total of 567
neutral trials (63 trials per spatial frequency) and 21
cueing blocks (48 trials per block) for a total of 1,008
cueing trials. This yielded 504 trials for the valid
condition and 63 trials per spatial frequency offset for
the invalid condition.

Analysis: Model fitting and comparison

All analyses were the same as in Experiment 1,
except for the following changes. Due to the
asymmetric pattern of attentional modulation (see
Results), we fitted both the nonmonotonic and the
monotonic model separately to cueing effect for
higher and lower target spatial frequencies. Because
of the reduced number of data points, for the
nonmonotonic model, a second-order polynomial
function was used:

y ¼ ax2 þ bxþ c;

where y is the cueing effect, a, b, and c are the three
parameters controlling the shape of the function.

Results
Baseline and cueing effect: Figure 5c shows the average
contrast sensitivity obtained in the pretest and the
average baseline performance measured under neu-
tral cue blocks in the attention task. The average
baseline performances for all spatial frequencies were
within a narrow range of the target 75% accuracy
level.

An asymmetric pattern was found in the cueing
effect (Figure 6a). The overall shape showed a robust
surround suppression for higher spatial frequency than
the cue (i.e., at þ1 octave), while the surround
suppression for lower spatial frequencies (i.e., at �1
octave) appeared less salient. One-sample t tests against
0 were conducted for each individual offset condition
to evaluate attentional enhancement and suppression
(FDR corrected). We found a significant enhancement
effect when the target spatial frequency matched with
the cue, t(11) ¼ 3.52, p ¼ 0.022, d ¼ 1.016. When the
target spatial frequency was one octave higher than the
cue, there was a significant suppression effect, t(11) ¼
�3.73, p¼ 0.022, d¼�1.076. This suppressive zone was
followed by a rebound at þ1.5 octaves offset, t(11) ¼
0.65, p ¼ 0.68. For negative offsets (i.e., lower spatial
frequency than the cue), there was no significant
attentional effect (all ps . 0.2).
Model comparison: To further define the shape of the
cueing effect, we first fitted both nonmonotonic and

monotonic models to the average cueing effect for
positive offsets. As shown in Figure 6c, the BF (3,821.6)
strongly favored the non-monotonic model (R2¼ 0.99,
BICP¼�40.92) over the monotonic model (R2 ¼ 0.51,
BICG¼�24.07). However, for negative offsets (Figure
6b), the BF (2.14) provided a very weak support for the
nonmonotonic model (R2 ¼ 0.95) over the monotonic
model (R2 ¼ 0.92). For individual participants, we
found that the nonmonotonic model was favored in
nine out of 12 participants based on the BIC model
evidence for positive offsets. However, for negative
offsets, the nonmonotonic model was favored in only
four out of 12 participants.

Discussion

We found that FBA to spatial frequency alone can
significantly enhance our perceptual processing to the
attended spatial frequency as indicated by the en-
hancement at 0 octave offset. Although this enhance-
ment at 0 offset was similar to orientation and motion,
the overall profile of FBA to spatial frequency differed
from these other features. First, the suppression was
rather weak for the largest offsets (62 octaves offset),
which provide only weak evidence for feature-similarity
effect on the coarse scale. Rossi and Paradiso (1995)
found that detection of a peripheral grating only
showed a strong decrease at 3 octaves offset from the

Figure 6. Results for Experiment 3. (a) group-averaged cueing

effect. Error bars represent standard error of the mean. *p ,

0.05. (b, c) Model fitting for negative offsets (b) and positive

offsets (c).
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attended spatial frequency. Hence, it is possible that the
62 octaves offset may not be sufficiently large to detect
suppression due to feature-similarity gain modulation.
Second, the profile was asymmetric, such that the
nonmonotonic suppression pattern was much more
pronounced for higher spatial frequencies than for
lower spatial frequencies. We should also note that the
sampling interval for lower frequencies was finer than
that for the higher frequencies on a linear scale. We will
explore the origin of this asymmetric effect in the next
section. In sum, we found evidence for surround
suppression in FBA to spatial frequencies, although
such effect is more robust for spatial frequencies higher
than the attended frequency.

General discussion

We measured the profile of FBA to orientation,
motion direction, and spatial frequency in three
experiments. For orientation and motion, we found a
symmetric nonmonotonic modulation, supporting a
surround suppression effect in the vicinity of the
attended feature. Moreover, the suppression effect
reappeared once the cue and target were most different
(908 offset, with a stronger effect in motion direction
than orientation), which is consistent with a feature-
similarity gain modulation. Lastly, we explored the
attentional modulation profile for spatial frequency.
Our results showed that attention to spatial frequency
alone can enhance perceptual sensitivity to the attended
frequency. Although the overall shape of the profile
was different from orientation and motion, we still
found a robust, albeit asymmetric, surround suppres-
sion effect as well as a trend for feature-similarity
effect. Taken together, our results generally support a
hybrid model of both surround suppression and
feature-similarity gain that comprises the profile of
FBA.

The current study was motivated by previous
literature that showed either feature-similarity gain or
surround suppression effects, which describe atten-
tional profile within a feature dimension. It should be
noted that attention can also select whole feature
dimensions regardless of feature values (e.g., Found &
Muller, 1996; Muller, Heller, & Ziegler, 1995). Inter-
estingly, recent studies (Gledhill, Grimsen, Fahle, &
Wegener, 2015; Schledde, Galashan, Przybyla, Kreiter,
& Wegener, 2017) found evidence for separate neural
effects of dimension- and feature-based attention.
Thus, the feature-specific effect (i.e., surround sup-
pression and feature-similarity gain) observed in the
current study may be independent from cross-dimen-
sional modulations. However, we did not directly
manipulate dimension-based attention in our experi-

ments, and future studies are necessary to assess how
such manipulations impact FBA’s profiles (i.e., sur-
round suppression and feature-similarity gain).

Profile of FBA to orientation and motion

A previous study also measured attentional modu-
lation profile to orientation and obtained somewhat
similar results with our Experiment 1 (Tombu &
Tsotsos, 2008). Notably, the lowest performance level
was found for orientations at 458 offset to the cued
orientation, suggestive of a surround suppression
effect. However, our results provided new insights for
the profile of FBA. The lack of baseline in this previous
study make it impossible to ascertain whether the
reduced performance at 458 offset was indeed suppres-
sion. Furthermore, participants in this study judged the
jaggedness of a grating, which might not require the full
use of orientation information (unexpectedly, a non-
monotonic profile was only observed for jagged, but
not for straight, stimuli). In our Experiment 1, we
introduced a neutral baseline that allowed us to
evaluate both enhancement and suppression. In addi-
tion, our task required participants to detect a coherent
signal defined only in orientation, making orientation
the only task-relevant feature. Thus, our results provide
stronger evidence for surround suppression in attention
to orientation. Our results also demonstrated a trend
for feature-similarity gain modulation at the largest
cue-target offset that was not observed in the previous
study. The overall pattern of our results thus further
clarifies that orientation-based attention is consistent
with a hybrid profile of both feature-similarity gain and
surround suppression effect, instead of a pure surround
suppression effect suggested previously.

For motion direction, we also found a hybrid effect
of surround suppression and feature-similarity gain
modulation. Two previous studies on attention to
motion found that task performance monotonically
decreased until 908 cue-target offset, then rebounded up
to 1808 offset (Ho et al., 2012; Wang et al., 2015).
Although this overall profile appears to be a surround
suppression effect, the full rebound at 1808 offset is
likely due to an axis effect (Albright, 1984; Conway &
Livingstone, 2003; Livingstone & Conway, 2003),
rather than a recovery on the far side of suppressive
surround. As such, the drop in performance at 908
offset should not be interpreted as a surround
suppression effect. By sampling direction offsets at a
finer interval (158 interval), we found a suppressive
surround at 6458 offset. Our current findings are still
compatible with these early studies: If we down-
sampled our data to every 308 (see Figure 4b), we would
have found a cueing effect with a monotonic profile
from 08 to 908, similar to the previous studies (Ho et al.,
2012; Wang et al., 2015). Thus, previous studies may
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have missed the surround suppression effect because of
a relatively coarse sampling in the feature space.

Profile of FBA to spatial frequency

Our results showed that FBA to spatial frequency
alone can modulate perception. Although the effects
of spatial attention on spatial frequency have been
extensively investigated (see Anton-Erxleben & Car-
rasco, 2013 for a review), much less is known about
how FBA modulates the processing of spatial fre-
quency. Rossi and Paradiso (1995) previously showed
that attending to the spatial frequency of a center
grating modulated the detectability of peripheral
gratings with different spatial frequencies in a
monotonic fashion. Their results can also be explained
by their relative coarse sampling (1 octave) compared
to ours (0.5 octave), which could have missed the
surround suppression effect. Indeed, when we replot-
ted our data in the same way as their study (see
Supplementary Figure S1), we obtained a monotonic
profile consistent with their results. Rossi and
Paradiso also found that attention to spatial frequency
showed feature-selectivity for orientation, indicating
an obligatory role of orientation processing with
gratings. By using isotropic stimuli, our stimuli
provided a better isolation of attention to spatial
frequency, without any explicit orientation informa-
tion. Hence the enhancement and suppression effect in
our results reflects perceptual modulation on spatial
frequency alone.

Interestingly, we found an asymmetric pattern of
attentional modulation in spatial frequency. The
attentional surround suppression only occurred for
spatial frequencies higher than the cue but not for
lower frequencies. In other words, there seems to be
an advantage (less suppression) in processing coarser
patterns over finer patterns than the cued pattern.
This finding is reminiscent of early proposals that
perceptual processing of spatial patterns may follow a
coarse-to-fine scheme such that the extraction of
visual information progresses from a fast but coarse
processing to a slow but detailed processing (e.g.,
Gish, Shulman, Sheehy, & Leibowitz, 1986; Parker &
Dutch, 1987; Watt, 1987). These early studies
suggested that there could be an intrinsic preference
for low spatial frequency contents during initial stages
of visual processing. Thus, it is possible that neurons
preferring lower frequencies may have been more
activated compared to neurons tuned to higher
frequencies when attending to the cued frequency. As
a result, coarser patterns may be more likely to
survive attentional suppression, giving rise to our
observed asymmetric pattern of attentional modula-
tion.

A model for asymmetric surround suppression

Although a general advantage in processing low
frequency information provides a functional explana-
tion for our observed asymmetric effect, the underlying
mechanisms are still unclear. Here we consider
potential neural mechanisms for the observed asym-
metric surround suppression effect with a computa-
tional model of neural population coding (Deneve,
Latham, & Pouget, 1999; Ma, Beck, Latham, &
Pouget, 2006; Pouget, Dayan, & Zemel, 2000; Pouget,
Dayan, & Zemel, 2003). In a previous study, we were
able to produce the standard surround suppression
effect with such a model (Fang, Becker, & Liu, 2019), if
we assume that attending to a feature causes shifts in
neural tuning to the attended feature. However, such
an effect is symmetric around the cued feature. Here we
extended this model to account for the asymmetric
effect observed for spatial frequency.

The basic model architecture under neutral condi-
tion is shown in Figure 7a (for model details, see
Supplementary File S1), which is informed by neuro-
physiological studies suggesting that spatial frequency-
tuned neurons are evenly distributed on a log scale (De
Valois & De Valois, 1988). We note that such an
arrangement would produce an increase in neuronal
tuning width with the preferred spatial frequency on a
linear scale (Figure 7b). Similar to our previous work
(Fang, Becker, & Liu, 2019), we assumed FBA
modulates neuronal tuning in two ways: feature-
similarity gain and tuning preference shift (Figure 7d).
The key assumption here is that attentional modulation
occurs in the original, linear space. However, because
the underlying units are not evenly spaced in the linear
space, asymmetric effects can occur.

Briefly, the feature-similarity gain modulation was
implemented as linear functions that are symmetric
near the attended feature on the linear scale (Figure 7d,
top panel). The shift in neuronal tuning toward the
attended feature, which is based on neurophysiological
findings (David, Hayden, Mazer, & Gallant, 2008; Ibos
& Freedman, 2014), had an additional scaling factor,
due to different tuning width among units in the linear
space. Specifically, we assumed that the shift of
neuronal tuning scales with the tuning width, such that
a larger amount of tuning shift occurs for more broadly
tuned units, which correspond to high spatial frequency
units in the linear space. We then simulated individual
trials of the 2-IFC task under attended and neutral
conditions. After obtaining the population responses
for both the simulated target and noise stimuli, the
model chose the one containing a stronger frequency
signal. Model simulations produced an asymmetric
cueing effect qualitatively similar to human psycho-
physical data (cf. Figures 7g and 6a). These results thus
suggest that the intrinsic neural architecture (in this
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Figure 7. A neural model for the asymmetric surround suppression. (a) Tuning curves in log units (octave) for a subset of the

simulated neurons under neutral condition. Green curves represent neurons that are affected by tuning shift. (b) Same tuning curves

as in (a) but plotted in linear units (c/8), (c) Feature-similarity gain and tuning shift plotted on log scale (octave), the red solid line

labels attended feature. The dashed line labels the range in which neuronal tuning shift occurs. (d) Same as in (c) but plotted on a

linear scale (c/8). (e) Tuning curves under a hybrid of feature-similarity gain and tuning shift modulation plotted on log scale (octave).

(f) Same as in (e) but plotted on a linear scale (c/8). (g) Simulated cueing effect computed as performance difference between

attended and neutral condition. Positive values represent enhancement relative to baseline and negative values represent

suppression relative to baseline.
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case, unevenly spaced neurons in the linear space) can
determine the profile of attentional modulation.

Summary and conclusion

Combined with our previous findings in color-
based attention (Fang, Becker, & Liu, 2019), the
current study further suggests that surround sup-
pression is a general property of feature-based
attention. Previously, we found that color-based
surround suppression coincided with color category
boundaries. Here, we extend the surround suppres-
sion to other non-categorical features, suggesting
surround suppression as a canonical effect of FBA.
Our study provides a comprehensive characterization
of the perceptual consequences of FBA. Although
previous studies showed either a surround suppres-
sion modulation (e.g., Stormer & Alvarez, 2014;
Tombu & Tsotsos, 2008) or a feature-similarity gain
modulation (e.g., Ho et al., 2012; Rossi & Paradiso,
1995; Wang et al., 2015), our fine-sampling protocol
has revealed a hybrid profile of FBA that unifies the
seemingly contradictory modulations in a variety of
feature domains. We were also able to reproduce
previous findings through resampling our current
data on a coarser scale (Ho et al., 2012; Rossi &
Paradiso, 1995; Tombu & Tsotsos, 2008; Wang et al.,
2015), thus reconciling the apparent discrepancy
between previous results and our current results.
Lastly, we note that working memory, which is closely
related to attention, also has been shown to exhibit
surround suppression effect, both in the spatial and
feature domain (Fang, Ravizza, & Liu, in press;
Kiyonaga & Egner, 2016). Given the suggestion that
FBA might be independent from working memory
(Mendoza-Halliday & Martinez-Trujillo, 2017; Men-
doza, Schneiderman, Kaul, & Martinez-Trujillo,
2011), it would be interesting to investigate whether
and how these two cognitive functions may jointly
modulate the profile of FBA.

In conclusion, our study demonstrates that feature-
similarity gain and surround suppression modulation
jointly describe the full profile of FBA. In this way,
attention can exert flexible control over perceptual
processing such that feature-similarity gain filters out
the most distinctive distractors, and surround sup-
pression helps ignore more similar distractors. In
addition, while surround suppression is elicited by top-
down feature-based attention, where it occurs in the
feature space may depend on the basic neural
architecture of early visual system, as in the case of
spatial frequency.

Keywords: feature-based attention, attentional profile,
surround suppression, feature-similarity gain
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Footnote

1 We have used more canonical Mexican-hat func-
tions, such as the second derivative of Gaussian, in our
previous work. Such functions produced similar results
for Experiment 1, but they did not provide a good fit
for data from the other two experiments. So we used
the family of polynomials for all experiments in this
report. We used a fourth-order polynomial without the
odd-power terms for both Experiments 1 and 2 because
of the symmetric shape, and a second-order polynomial
for Experiment 3, because we fit the left and right side
of the data separately.
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