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Selective motor neuron degeneration is a hallmark of amyotrophic lateral sclerosis (ALS).
Around 10% of all cases present as familial ALS (FALS), while sporadic ALS (SALS)
accounts for the remaining 90%. Diverse genetic mutations leading to FALS have been
identified, but the underlying causes of SALS remain largely unknown. Despite the
heterogeneous and incompletely understood etiology, different types of ALS exhibit
overlapping pathology and common phenotypes, including protein aggregation and
mitochondrial deficiencies. Here, we review the current understanding of mechanisms
leading to motor neuron degeneration in ALS as they pertain to disrupted cellular
clearance pathways, ATP biogenesis, calcium buffering and mitochondrial dynamics.
Through focusing on impaired autophagic and mitochondrial functions, we highlight how
the convergence of diverse cellular processes and pathways contributes to common
pathology in motor neuron degeneration.
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INTRODUCTION

Amyotrophic lateral sclerosis (ALS) is an adult-onset neurodegenerative disease characterized by
loss of large motor neurons in the brain and spinal cord, resulting in progressive voluntary muscle
wasting and respiratory failure. Patient death typically ensues 3–5 years following symptom onset
(Volonte et al., 2015). With a prevalence of four-to-six per 100,000 people affected worldwide, ALS
is one of the most common neurodegenerative disorders (Tan et al., 2007). Its origins can be either
familial or sporadic, of which familial forms account for a mere 10% whereas the remaining 90%
are sporadic (Rotunno and Bosco, 2013). Although ALS was first described by Charcot as early
as 1869 (Jay, 2000), it wasn’t until more than a century later that the first casual mutation was
identified in copper zinc superoxide dismutase 1 (SOD1; Rosen, 1993). Since then, a multitude of
genes associated with ALS pathogenesis have been identified. Nonetheless, mechanisms underlying
motor neuron-specific vulnerability in ALS remain largely unknown. At present the disease defies
all treatment. Riluzole is the only FDA-approved drug for treating ALS, and it may prolong patient
lifespan by mere months (Rowland and Shneider, 2001).

Despite the heterogeneous and multigenic nature of ALS, overlapping pathology and common
phenotypes are observed in different forms of the disease. Protein aggregates found in ALS
patients suggest that cellular clearance mechanisms, such as the autophagy-lysosome pathway,
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may be impaired in this disease (Blokhuis et al., 2013). Moreover,
increased oxidative stress and compromised mitochondrial
function are observed in ALS disease condition (Wang and
Michaelis, 2010). Intriguingly, oxidative stress is a potent
regulator of autophagy (Scherz-Shouval et al., 2007; Huang
et al., 2011; Scherz-Shouval and Elazar, 2011), suggesting the
potential for functional interactions between the lysosomal and
mitochondrial pathways.

Herein, we will consider in depth the dysregulation of
autophagy and mitochondrial pathways, as well as their
interactions in the context of ALS pathogenesis. We will put a
special emphasis on mitophagy, as it directly connects cellular
clearance mechanisms with mitochondrial function. Then, we
will review the wealth of information regarding mitochondrial
dysfunction in ALS, with particular interest in data derived from
variousmousemodels. Lastly, we will discuss the role of oxidative
stress as a critical regulator linking these discrete processes, and
consider the therapeutic implications for ALS.

MECHANISMS OF CELLULAR
CLEARANCE IN PHYSIOLOGICAL AND
PATHOLOGICAL CONDITIONS

Autophagy
Autophagy is a catabolic process by which cells degrade and
recycle cellular constituents through lysosomes to balance
sources of energy and building blocks in order to maintain
cellular homeostasis and function (Ryter et al., 2013; Yang
et al., 2013). The core autophagy machinery consists largely of
autophagy-related (ATG) genes, of which ATG1–10, ATG12–16,
and ATG18 are all required (Klionsky et al., 2003; Mizushima
et al., 2011). Beginning with induction, autophagy is initiated by
intracellular or extracellular stimuli such as nutrient deprivation
or stress. The most upstream player in the induction process
is ATG1, whose mammalian homologs are unc51-like kinase
1 and 2 (ULK1 and 2; Mizushima, 2010). ULK1 interacts
with Atg13, FIP200 (focal adhesion kinase family interacting
protein of 200 kD), and ATG101 to form an autophagy-
initiating complex (Hara et al., 2008; Hosokawa et al.,
2009).

A major regulatory event in autophagy induction is exerted
by the initiation complex’s interactions with the nutrient-sensing
mTOR kinase, and the energy-sensing AMP-activated protein
kinase (AMPK). AMPK, activated by a drop in cellular energy,
phosphorylates ULK1 on Serine 317 and Serine 777 (Hawley
et al., 1996; Egan et al., 2011). These phosphorylation events in
turn activate ULK1, which initiates autophagy (Egan et al., 2011).
Conversely, the presentation of nutrients activates mTORC1
(through amino acid binding), which phosphorylates ULK1 on
Serine 757, leading to the inhibition of autophagy (Kim et al.,
2011). Therefore, autophagy initiation is kept in check by both
nutrient- and energy-sensing mechanisms.

Following induction, the autophagosome forms and
sequesters substrates for degradation. Autophagosome
formation is controlled by ATG5 and ATG12/ATG16, which
conjugate to recruit LC3 (microtubule-associated protein

1A/1B-light chain 3), a well-established autophagosomal marker
(Romanov et al., 2012). In addition, a protein complex consisting
of Beclin1, ATG14L and VPS34, a class III phosphoinositide
3-kinase (PI3K), has also been shown to play a critical role in
autophagosome formation by serving as a scaffold to recruit
autophagy targets to the autophagosome lumen (Volinia
et al., 1995; Obara and Ohsumi, 2011). The active ULK1
initiation complex positively regulates autophagy at this level by
phosphorylating Beclin-1 on Serine14 to promote the activity of
VPS34 (Russell et al., 2013).

The process of autophagy is completed when the mature
autophagosome docks to and fuses with the lysosome, where
its cargo are degraded to release energy and cellular building
blocks (Mizushima, 2007; Figure 1). This pathway and
many of its key molecular constituents are highly conserved
throughout evolution, indicating the vital importance of
autophagic functions. Themost pertinent functions of autophagy
include clearance, which eliminates damaged organelles and
long-lived proteins that would otherwise compromise cellular
health; and catabolism, which releases energy and building
blocks to support the growth and activity of the cell
(Singh and Cuervo, 2011).

Cellular Clearance and Neurodegeneration
Though the process of autophagy is ubiquitous throughout
a diversity of cells and species, its importance in neurons
has become increasingly apparent (Wang and Hiesinger, 2012;
Yang et al., 2013). Degradative pathways are essential to
maintain balances of cellular energy and stress to promote
homeostasis (Ryter et al., 2013); demands on homeostatic
regulation are particularly high in neuronal tissue (Chen
et al., 2012; Le Masson et al., 2014). As a hallmark of
numerous neurodegenerative diseases, the formation of neuronal
aggregates highlights the importance of protein clearance in
maintaining neuronal health (Polymenidou and Cleveland,
2012; Lim and Yue, 2015). Common to all patients as
well as models of ALS is the presentation of pronounced
protein inclusions, despite the complex genetic state and broad
spectrum of associated mutations involved in the disease.
Proteins associated with these aggregates include FUS, TDP-43,
UBQLN2 and SOD1, among others (Deng et al., 2011b; Blokhuis
et al., 2013). These aggregates may exhibit toxic properties
in addition to afflicting the cell by maintaining long-lived
proteins (Sau et al., 2007; Johnson et al., 2008; Xu et al.,
2013; Wu et al., 2014), as demonstrated in SOD1 mutant
mice, where aggregation was shown to drive toxicity in motor
neurons. The potency of this toxicity was exacerbated by
proteasomal dysregulation (Bruijn et al., 1998; Kitamura et al.,
2014).

Decreased efficiency of autophagy, as suggested by the
presentation of aggregates, has long been correlated with
neurodegeneration. However, a causative relationship between
defective autophagy and neurodegeneration was not established
until the independent findings that neuronal dysfunction
and pathology follow the loss of either Atg5 or Atg8 in mouse
(Hara et al., 2006; Komatsu et al., 2006). In both studies,
knockout was restricted to the nervous system. Both Atg5- and
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FIGURE 1 | Degradative pathways are tightly regulated. (A) Autophagy is a highly regulated catabolic process. Induction is triggered by physiologically relevant
events, such as a drop in nutrients or a rise in stress. mTORC1 represses induction through interaction with the ULK1 initiation complex until an appropriate signal is
sensed, at which point mTORC1 rapidly dissociates to allow the activation of the ULK1 complex. The activated ULK1 complex goes on to phosphorylate Beclin1,
which in turn positively regulates the activity of VPS34. This results in increased (Pdlns(3)P), a requirement for autophagosome formation. The LC3-II-studded
autophagosome membrane then envelops cytoplasm before docking to and fusing with the acid hydrolase-containing lysosome, a process that will enable
degradation of the sequestered cytoplasmic materials. (B) Mitophagy requires the canonical autophagy pathway constituents with the addition of
mitochondrial-specific adaptors to confer specificity. Targeting of mitochondria for degradation in the PINK1-Parkin-dependenr pathway illustrated here begins with
depolarization. Polarization-dependent cleavage of PINK1 is halted, allowing the kinase to accumulate on the outer membrane and recruit the E3 ubiquitin ligase
Parkin. PINK1 phosphorylates Parkin, and Parkin ubiquitinates mitochondrial outer-membrane proteins, such as mitofusins. Ubiquitination allows for the docking of
adaptor proteins such as optineurin, which recruits LC3 to the targeted mitochondrion to form the autophagosome.

Atg8-deficientmice presented with similar phenotypes: profound
motor impairment was noted by 3 and 4 weeks of age,
manifesting as impaired coordination, poor balance and reduced
grip strength.Moreover, bothmodels exhibited the limb-clasping
reflex upon suspension, an aberrant behavior noted previously in
rodent models of neurodegeneration. Upon histological analysis,
brains from both models revealed a high degree of cellular
degeneration, accompanied by ubiquitin-positive inclusions and
the accumulation of ubiquitinated proteins. These findings
strongly suggest that the reduction of basal protein turnover is
sufficient to render cells vulnerable to degeneration.

The link between inefficient protein clearance and
neurodegeneration is further illustrated by the nature of the
mutations resulting in pathological states. Mutations identified
in UBQLN2 have been linked to ALS/FTD (Deng et al., 2011b),
as well as a more heterogeneous spectrum of neurodegenerative
diseases more recently (Fahed et al., 2014). Aggregation of
ubiquilin2 protein is found not only in individuals afflicted
with heritable UBQLN2 mutations, but also in unrelated
sporadic ALS patients and mouse models, suggesting a general
role for UBQLN2 in ALS pathogenesis (Deng et al., 2011a).
Ubiquilins are ubiquitin-like proteins implicated in regulating

autophagy, as well as the ubiquitin proteasome system (UPS;
Zhang et al., 2014). They have been shown to colocalize with
autophagosomes and associate with LC3 (N’Diaye et al., 2009);
furthermore, reduction of ubiquilin levels correlates with a
decrease in autophagosome number, suggestive of a critical role
in autophagosome formation (Rothenberg et al., 2010). Precisely
how and to what extent ubiquilins participate in autophagy,
and what implications this has for ALS pathology are exciting
questions requiring further attention.

p62/SQSTM1 is another ALS-associated gene involved in
degradative pathways (Teyssou et al., 2013). Like UBQLN2,
it is associated with both the UPS and autophagy. In the
ubiquitin pathway, p62 delivers polyubiquitinated substrates to
the proteasome (Seibenhener et al., 2004). In autophagy, p62
interacts directly with LC3 and ATG8 to confer specificity of
targeting by selectively acquiring a subset of polyubiquitinated
proteins (Pankiv et al., 2007). Just as ubiquilin2-positive
inclusions have become a general observation in both familial
and sporadic ALS, so have p62-positive inclusions (Mizuno
et al., 2006; Deng et al., 2011a), thus signifying the requirement
for protein clearance pathways in the maintenance of neuronal
health (Fecto and Siddique, 2012).
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In recent years mutations in chromosome 9 open reading
frame 72 (C9orf72) have emerged as the most common cause
of both sporadic and familial ALS (DeJesus-Hernandez et al.,
2011; Renton et al., 2011). Though much about this peculiar
gene awaits characterization, it is proposed to function as a
small GTPase Rab GEF (Guanine Nucleotide Exchange Factor),
and has been recently implicated in endosomal trafficking
(Zhang et al., 2012; Farg et al., 2014). Furthermore, C9orf72
colocalizes with ubiquilin2 and LC3-positive vesicles, as well
as autophagy-related small GTPase Rabs, suggesting a potential
role in autophagy. Further studies of C9orf72 will be necessary
to elucidate its function in this process, as well as suggest a
mechanism of pathogenesis in ALS.

Mitophagy
Mitophagy refers to the selective process whereby mitochondria
are targeted and degraded by the autophagy machinery,
primarily for the purpose of eliminating defective organelles.
Though the key components and sequence of events are
largely conserved between mitophagy and autophagy, mitophagy
requires additional mitochondrial-specific adaptors to ensure
specificity of targeting (Kim et al., 2007).

The best-studied mitophagy pathway is mediated by PTEN-
induced putative protein kinase 1 (PINK1) and Parkin.
Mutations in PINK1 and PARK2, the gene encoding Parkin,
result in pronounced mitochondrial dysfunction, leading to
degeneration of muscle and neurons (Poole et al., 2008; Jin
and Youle, 2012; Figure 1). The finding that overexpression
of Parkin is sufficient to mitigate PINK1 mutant phenotypes
suggests interaction in the same pathway, with PINK1 upstream
of Parkin (Greene et al., 2003; Pesah et al., 2004; Clark
et al., 2006). PINK1 is a serine/threonine kinase that associates
with mitochondria via a conserved targeting sequence. In
healthy mitochondria, PINK1 is imported from the outer to
the inner membrane where it is cleaved in a membrane
polarization-dependent manner (Deas et al., 2011). When the
mitochondrial membrane potential is compromised, PINK1
can no longer be cleaved, thus it accumulates on the outer
membrane (Narendra et al., 2010), serving as a signal for
recruitment of the E3 ubiquitin ligase Parkin (Vives-Bauza et al.,
2010; Shiba-Fukushima et al., 2012). PINK then phosphorylates
Parkin and ubiquitin, which is required for Parkin’s E3 ligase
activity (Koyano et al., 2014). The mechanism underlying
phosphorylated ubiquitin activation of Parkin has recently been
elucidated (Wauer et al., 2015), following the crystallization of
the complex comprising Parkin and phosphorylated ubiquitin.
Structural analysis revealed that the binding of phosphorylated
ubiquitin to Parkin results in a conformational change within
the RING domain, which ultimately results in the activation
of Parkin. Importantly, Parkin’s ubiquitin binding pocket
is commonly mutated in autosomal-recessive Parkinson’s,
indicating the vital nature of this interaction in promoting
mitophagy.

The downstream events that link the targeting of depolarized
mitochondria by PINK1-Parkin to the canonical autophagy core
machinery are not yet entirely clear. Direct interaction of Parkin
with Beclin1 represents one possible explanation (Khandelwal

et al., 2011; Lonskaya et al., 2013). Additionally, Parkin has
been demonstrated to recruit the Beclin1 regulator AMBRA1
(Activating molecular in BECN1-regulated autophagy protein 1)
to the outer membrane of depolarized mitochondria, an event
that could also activate the Beclin1 complex and the core
autophagy machinery (Van Humbeeck et al., 2011). Interestingly
a role for PINK1 was recently discovered in the recruitment of
the autophagy receptors optineurin and NDP52 to depolarized
mitochondria. This was shown to activate mitophagy in a Parkin-
independent manner, whereby optineurin and NDP52 recruit
ULK1 and other autophagy factors (Lazarou et al., 2015).

A number of PINK1-Parkin-independent mechanisms of
mitophagy have been described. A reduction in iron, for example,
has been shown to promote a distinct pathway that does not rely
on PINK1-Parkin. This novel pathway involves the transition
from oxidative phosphorylation (OXPHOS) to glycolysis and
induction of mitophagy without compromising membrane
polarization. Importantly, PINK1 stabilization is not required
for this process; iron chelation-induced mitophagy is efficiently
activated in fibroblasts deficient in Parkin (Allen et al., 2013).
Another PINK1-Parkin-independent pathway is suggested by
findings on AMBRA1: Parkin is not required for a distinct
form of ABMRA1-mediated mitophagy. Though AMBRA1 is
known to interact with Parkin, which is thought to contribute
to canonical PINK1-Parkin-mediated mitophagy, it has been
shown that mitochondrial-targeted AMBRA1 is sufficient to
induce mitophagy in a Parkin-free system, therefore representing
a novel mitophagic pathway (Strappazzon et al., 2015).
Finally, a mechanism of PINK1-Parkin-independent hypoxia-
induced mitophagy has been identified. The mitochondrial
outer-membrane protein FUNDC1, FUN14 domain-containing
protein 1, is a mitophagy receptor requiring LC3 interaction.
Either knockdown of FUNDC1 or mutation of its LC3-binidng
domain significantly hinders hypoxia-induced mitophagy (Liu
et al., 2012). Given our growing knowledge of the roles
mitochondrial quality control plays in neuronal maintenance,
further elucidation of mitophagic pathways will be necessary to
advance our understanding and treatment of neurodegenerative
disease.

The strongest evidence supporting the contribution of
impaired mitophagy to ALS pathogenesis lies in the associated
mutations. The involvement of optineurin, encoded by the
OPTN gene, in ALS pathogenesis was identified years after
the gene had been implicated in primary open-angle glaucoma
(Maruyama et al., 2010). Optineurin is involved in a number of
cellular processes including Golgi maintenance and membrane
trafficking, but its function as an autophagy receptor is
presumably the most relevant to ALS pathogenesis (Turturro
et al., 2014). Recently, optineurin was shown to play a
significant role in PINK1-Parkin-mediated mitophagy. Damaged
mitochondria are initially targeted by the E3 ubiquitin ligase
Parkin, which ubiquitinates outer membrane proteins such as
mitofusins, the outer membrane-embedded GTPases responsible
for mediating mitochondrial fusion (Poole et al., 2010).
Optineurin then binds to the ubiquitinated mitochondrial
outer membrane proteins with its ubiquitin-binding domain.
Hereafter, optineurin induces nucleation of the autophagosome
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by recruitment of LC3. ALS-causing mutations in OPTN disable
this process, implicating inefficient mitochondrial clearance in
ALS (Wong and Holzbaur, 2014). It is intriguing that, much like
ubiquilin2 and p62, optineurin has been localized to inclusions
in both familial and sporadic ALS (Blokhuis et al., 2013),
suggesting a broader role for optineurin, and mitophagy, in ALS
pathogenesis.

Valosin containing protein (VCP)mutations have been linked
with ALS and other degenerative diseases, including dementia
(Johnson et al., 2010; Koppers et al., 2012). VCP is a type II
ATPase involved in a broad spectrum of biological processes
ranging from proteasomal degradation and mitochondrial
quality control via mitophagy, to endoplasmic reticulum (ER)-
associated degradation (Dai and Li, 2001; Rabinovich et al., 2002;
Wojcik et al., 2006; Ju et al., 2009). VCP lies downstream of the
E3 ubiquitin ligase Parkin and is recruited to the outermembrane
of damagedmitochondria. Degeneration-associatedmutant VCP
or loss of VCP results in the failure of PINK1-Parkin-mediated
mitochondrial clearance. Moreover, VCP has been demonstrated
to regulate the proteasomal degradation of mitofusins (Kim
et al., 2013). Altogether, the role of optineurin and VCP
in mitochondrial quality control supports dysregulation of
mitophagy as a critical mechanism in ALS pathogenesis.

Very recently, two independent studies identified a
definitive link between TBK1, TANK Biding Kinase 1, and
ALS, citing a loss-of-function mechanism-of-action (Cirulli
et al., 2015; Freischmidt et al., 2015). Substrates of TBK1
include optineurin as well as p62, thus strengthening the
connection between mitophagic function and motor neuron
degeneration in ALS. Indeed, mutations resulting in disruption
of the C-terminal coiled-coiled optineurin-interacting domain
of TBK1 were linked with pathogenesis, suggesting a vital role
for the kinase in the regulation of mitophagy. Accordingly,
a recent study has elucidated the mechanism by which
TBK1 acts in mitophagy (Heo et al., 2015). PINK1-Parkin-
dependent phosphorylation of TBK1 activates the kinase
to recruit autophagy receptors optineurin and NDP52 to
the depolarized mitochondrion. TBK1 phosphorylates these
receptors, and in turn, optineurin binding to polyubiquitin
chains on the mitochondrial outer membrane enhances
TBK1 activation, thus amplifying the mitophagic signal.
Importantly, TBK1-dependent phosphorylation of optineurin
increases its affinity for polyubiquitin binding, and this
step is required for efficient mitophagy. Altogether, these
findings put forth a novel framework within which TBK1
plays an integral role in amplifying the mitophagic signal via
enhanced recruitment and activation of autophagy receptors on
depolarized mitochondria, linking dampened mitophagy with
ALS pathogenesis.

MITOCHONDRIAL FUNCTION:
IMPAIRMENTS IMPLICATED IN ALS

ATP Generation
ATP is produced in mitochondria through OXPHOS
of glucose via the electron transport chain (ETC). In

this process, electrons pass along a sequence of protein
complexes (I-IV) located in the inner mitochondrial
membrane (Milstein and Swaiman, 1968). A flow of protons
is pumped from the matrix into the inter-membrane
space, generating an electrochemical gradient. When
protons flow from high to low concentration through ATP
synthase on the inner mitochondrial membrane, ADP is
converted to ATP, storing high-energy in a phosphate
bond for later use. Linking ATP biogenesis with ALS, a
computational modeling endeavor suggested a framework
within which mitochondrial dysfunction driving reduced
ATP availability underlies motor neuron susceptibility
to degeneration. According to this model, ATP reduction
drives hyperexcitability through mechanisms such as Na+/K+

dyshomeostasis, and intracellular calcium hikes (Le Masson
et al., 2014).

Reduced ETC activity has likewise been described in both
patients and models of ALS, and may significantly contribute
to pathogenesis. Compared to healthy controls, ALS-derived
fibroblasts show altered mitochondrial bioenergetics: membrane
potential is significantly reduced in correlation with age of
onset, and an overall decrease in mitochondrial content is
noted when compared to controls (Kirk et al., 2014). In
line with these findings, a mutant SOD1-mediated switch
from OXPHOS to glycolysis has been reported, indicative
of inefficient ATP biogenesis in ALS (Allen et al., 2014).
Direct genetic evidence of this comes from the recent
identification of mutations in CHCHD10 causing ALS and
frontotemporal dementia (Bannwarth et al., 2014; Chaussenot
et al., 2014). Though the functional repertoire of CHCHD10
awaits further elucidation, it is predicted to play a significant
role in energy production through OXPHOS (Bannwarth et al.,
2014).

The wealth of data leading to our current understanding
of mitochondrial dysfunction in ALS originates from reports
on the SOD1 class of mutations (Bendotti and Carri, 2004).
These mutations are the most widely studied in ALS, as SOD1
was the first identified FALS-linked gene (Rosen et al., 1993).
Wild-type SOD1 is found predominantly in the cytoplasm
where it neutralizes the damaging effects of reactive oxygen
species (ROS; Fukai and Ushio-Fukai, 2011). A small amount
of SOD1 is localized to the mitochondrial inter-membrane
space (Jaarsma et al., 2001) where it is suggested to play
a protective role in motor neurons (Waterman-Storer et al.,
1997). ALS-associated mutations lead to increased localization of
misfolded SOD1 protein to the mitochondrial inter-membrane
space (Liu et al., 2004; Deng et al., 2006), and mutant
SOD1-mitochondrial interactions lead to the alteration of
mitochondrial redox potential (Ferri et al., 2006). Accumulation
of SOD1 mutant aggregates has been shown to lead to
dysfunctional mitochondria with decreased ATP production,
calcium buffering and motility defects (Cozzolino and Carri,
2012). Furthermore, OXPHOS activity is impaired in both
ALS patients and SOD1 mutant transgenic mice (Bacman
et al., 2006). Reduced levels of respiratory chain activity in
complexes I-IV were observed in spinal cord tissue collected
from ALS patients (Wiedemann et al., 2002). In the SOD1G93A
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mouse model, a pre-symptomatic decrease in Complex I
function was noted, while Complex IV was found to be
impaired following ALS-like symptom onset (Jung et al.,
2002).

Calcium Buffering
In motor neurons, mitochondria must meet not only high
energy demands but also considerable calcium buffering
requirements. Healthy mitochondria have enormous calcium
buffering capacity and are able to effectively travel from
areas of low calcium to areas of high calcium to restore
normal levels (Wang and Schwarz, 2009). When mitochondria
sense an increase in calcium they become stationary by
arresting mitochondrial movement (Rintoul et al., 2003;
Szabadkai et al., 2006). As one of the most eminent second
messengers in neuronal cells, calcium is required by neurons
for neurotransmitter release, modulation of synaptic efficiency,
and signal transduction. Unregulated accumulation of calcium
proves toxic to cells, however. In neurons, when excitatory
glutamate receptors become excessively stimulated, high levels
of calcium flow into the cell, leading to cell damage and death
(Carriedo et al., 2000; Corona and Tapia, 2007). How calcium
mediates this effect is not entirely understood, but its role
in enzymatic and signaling cascade activation is one possible
explanation.

Dysregulation of calcium homeostasis has been extensively
reported in ALS, particularly as it pertains to SOD1 mutation
(Jaiswal and Keller, 2009). There have been reports of chronic
calcium overload in mitochondria at nerve terminals (Siklós
et al., 1996), and SOD1 mutant mouse nerve terminals were
shown to be depolarized as a result (Nguyen et al., 2009).
Additionally, decreases in calcium loading capacity occur in
the spinal cord and brain of mutant SOD1 mice (Damiano
et al., 2006). Calcium dysregulation was also linked to
SOD1 mutant protein aggregation and impaired mitochondrial
movement (Tradewell et al., 2011). Therefore, excitotoxicity
following calcium dysregulation is posited to be a prominent
mechanism in ALS pathogenesis (Van Den Bosch et al.,
2006). While widely supported, this view faces opposition
from a study identifying early (presymptomatic), but not late
(endstage) hyperexcitability in the context of altered calcium
handling (Fuchs et al., 2013). Such findings therefore call into
question the role of hyperexcitability in motor neuron cell
death.

Motor neurons exhibit a low calcium buffering capacity,
largely the result of sparse calcium buffering protein expression
(Celio, 1990; Ince et al., 1993; Palecek et al., 1999). Moreover,
calcium handling and buffering capacity are impaired in
models of ALS (Jaiswal et al., 2009; von Lewinski et al.,
2008). Whereas proteins such as parvalbumin and calbindin
are abundant in degeneration-resistant neuronal subtypes,
conferring more stable calcium homeostasis (Vanselow and
Keller, 2000), expression is comparatively limited in the motor
neurons affected in ALS (Elliott and Snider, 1995). What
is more, the intracellular free calcium increase noted in
SOD1G93A transgenic mice at both late presymptomatic and
symptomatic stages was correlated with decreased expression

of calcium-buffering proteins such as SERCA1, SERCA2,
and parvalbumin (Chin et al., 2014). Additionally, calcium-
permeable α-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic
acid receptor (AMPAR) expression, especially those lacking
the GluR2 subunit, is particularly high in motor neurons,
permitting heightened calcium influx (Lips and Keller, 1998;
Van Damme et al., 2002). This may contribute to the
susceptibility of cultured motor neurons to AMPAR-mediated
excitotoxicity upon overstimulation (Carriedo et al., 1996, 2000;
Corona and Tapia, 2007). Accordingly, the anti-excitotoxic
drug, Riluzole, is at present the only agent approved for
the treatment of ALS, which functions by blocking AMPA
receptors, thus inhibiting glutamate release and regulating
calcium levels in the cytosol (Bellingham, 2011). When tested
in the SOD1 mutant mouse model, Riluzole showed an
increase in survival (Gurney et al., 1996), but in patients it
has been shown to expand life by only several months on
average (Bensimon et al., 1994; Lacomblez et al., 1996). It is
worth noting that, despite the well-established role of altered
calcium handling in ALS, enhanced buffering as achieved
by elimination of cyclophilin D was insufficient to extend
survival in SOD1 mouse models, in spite of improved motor
neuron survival and reduced SOD1 aggregation (Parone et al.,
2013).

Mitochondrial Transport
Motor neurons innervate muscle fibers great distances away
from the soma, which requires mitochondria to be continually
transported along the axon to areas of high energy and calcium
buffering demand. Defects in mitochondrial transport render
neurons especially vulnerable to degeneration (De Vos et al.,
2008; Wang and Schwarz, 2009). Mitochondria utilize many
different motor proteins to move in a saltatory manner, which
enables their recruitment to areas of low ATP where they
remain docked due to high levels of ADP that halt movement
(Mironov, 2007). Generally, about one-third of mitochondria
are in motion while two-thirds are stationary (Sheng, 2014).
Mitochondria travel along microtubules either away from the
soma (anterograde) or towards the soma (retrograde). Kinesins
are generally responsible for anterograde travel whereas dynein
facilitates retrograde transport (Forman et al., 1983). Other key
players in mitochondrial transport include dynactin (Waterman-
Storer et al., 1997), syntaphilin (Kang et al., 2008), and
the Milton-Miro complex (Stowers et al., 2002; Figure 2).
Intriguingly, neuronal-restricted loss of Miro culminates in
brain stem and spinal cord atrophy resembling motor neuron
disease, suggesting a requirement for mitochondrial mobility
in motor neuron health and maintenance (Nguyen et al.,
2014).

Mitochondria in the ALS-linked SOD1 mutant mouse model
experience axonal transport deficits before ALS symptoms
arise, resulting in a deficiency of axonal mitochondria (De
Vos et al., 2007). Multiple studies have shown impairment
in anterograde and retrograde transport (Bilsland et al.,
2010; Magrané et al., 2012; Marinkovic et al., 2012). Mutant
SOD1 is thought to aggregate in mitochondria and bind
to dynein, thus disrupting axonal transport (Ligon et al.,

Frontiers in Cellular Neuroscience | www.frontiersin.org 6 March 2016 | Volume 10 | Article 44

http://www.frontiersin.org/Cellular_Neuroscience
http://www.frontiersin.org/
http://www.frontiersin.org/Cellular_Neuroscience/archive


Edens et al. Autophagic and Mitochondrial Dysfunction in ALS

FIGURE 2 | Many aspects of mitochondrial function are impaired in amyotrophic lateral sclerosis (ALS). (A) In physiological states, mitochondria show a
high capacity for ATP production and Ca2+ buffering, with low reactive oxygen species (ROS) production. The orderly anterograde and retrograde trafficking of
mitochondria along axons by motor proteins ensures that energy and calcium buffering are appropriately mobilized given the local needs throughout the cell and
neurites. Milton/Miro and syntaphilin dock mitochondria in accordance with localized energy or buffering needs. Their dense distribution is noted in the
neuromuscular junction, as well as other areas of high Ca2+ and metabolic demand. (B) In ALS, mitochondrial ATP production and Ca2+ buffering capacity are
reduced, while ROS production is elevated. Accordingly, Ca2+ levels are heightened in motor nerve terminals. Impairments in axonal transport of mitochondria are
noted, as is a depletion of the mitochondrial population at the neuromuscular junction. Mitochondrial morphology is also irregular in diseased motor neurons,
indicating poor health and inefficient turnover.

2005; Zhang et al., 2007). This can prevent mitochondria
from being recruited to areas of high energy or calcium
buffering demand, and can also stop defective mitochondria
from being trafficked back to the soma. Importantly, such
an interaction would affect all axonal transport pathways.
Recent studies in the SOD1G93A model reveal important effects
on dynein-mediated transport of late endosomes. Lysosomal
dysfunction occurs in a progressive manner and impairs
autophagy-mediated degradation prior to symptom onset in the
SOD1G93A mode. This occurs through mutant SOD1 binding
with dynein, which interferes with retrograde trafficking of
late endosomes, resulting in autophagic failure (Xie et al.,
2015).

Mutations in TARDBP, the gene encoding TDP-43, are
causal for ALS and like SOD1, have been shown to affect
mitochondrial quality and transport. TDP-43 is a highly
conserved, ubiquitously expressed DNA/RNA binding protein
involved in a wide range of processes important for RNA
metabolism (Baralle et al., 2013; Ling et al., 2013). In ALS,
however, it was found to be ubiquitinated, phosphorylated and
cleaved into insoluble C-terminal fragments that accumulate
in cytoplasmic inclusions (Neumann et al., 2006; Johnson
et al., 2009). TDP-43 inclusions are found in neurons and
glia in both FALS and SALS, with the exception of patients
and models presenting with SOD1 mutations (Mackenzie
et al., 2007; Tan et al., 2007). Transgenic mice overexpressing
wild type human TDP-43 under the control of the Thy1.2
promoter, which drives expression specifically in neurons,
displayed motor defects and shortened life span. Spinal motor

neurons exhibited cytosolic inclusions and accumulation
of fragmented mitochondria. Furthermore, mitochondria
were absent from the neuromuscular junction (Shan et al.,
2010). In another study, in vivo imaging of mitochondrial
movement in mutant TDP-43 transgenic mice revealed a
pre-symptomatic impairment of mitochondrial transport in
motor neurons, followed by mitochondrial morphological
abnormalities (Magrané et al., 2014). Mitochondrial transport
defects in TDP-43 transgenic mice can be attributed to the key
role that TDP-43 plays in neurofillament stability (Wang et al.,
2008; Volkening et al., 2009). Together, SOD1 and TARDBP
mutations support a crucial requirement for mitochondrial
activity and axonal transport in motor neuron function and
maintenance.

CROSSTALK BETWEEN MITOCHONDRIAL
AND AUTOPHAGIC PATHWAYS

Oxidative Stress and Autophagy
Regulation
ROS are by-products of mitochondrial OXPHOS and include
superoxide anion and peroxide, which, as a result of unpaired
electrons, are unstable and reactive. ROS can readily react with
virtually any macromolecule, thereby posing threat of damage
to somatic or mitochondrial DNA, lipids, enzymes and other
proteins. High levels of ROS lead to elevated oxidative stress
within the cell, which is proposed to underlie a number of
pathological states (Afanas’ev, 2005; Jang and Van Remmen,
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2009). Nonetheless, oxidative stress is posited to serve a pertinent
function physiologically, as increasing lines of evidence suggest
a chief role in autophagy regulation (Scherz-Shouval et al.,
2007; Huang et al., 2011; Scherz-Shouval and Elazar, 2011).
ROS have been demonstrated to induce autophagy in starvation
conditions through a mechanism requiring AMPK activation (Li
et al., 2013), which drives a ROS-dependent decrease in mTOR
activity. The upstream regulation of ROS-induced autophagy
entails the cytoplasmic activation of ataxia telangiectasia mutated
(ATM) kinase, leading to the activation of AMPK. AMPK
phosphorylation of TSC2 ultimately results in inhibition of
mTOR kinase (Alexander et al., 2010). Therefore, AMPK
activity is required for the inhibition of mTOR, which thereby
removes repression from the autophagy initiation complex to
allow ULK1 phosphorylation by AMPK, triggering autophagy
induction.

Dysfunctional and long-lived mitochondria, which are far
more likely to engage in reduced-quality energy production, tend
to generate excessive ROS as compared to healthy mitochondria
(Chistiakov et al., 2014), thus triggering autophagic induction.
This is likely a mechanism evolved to restrict damages caused
by oxidative stress. Under physiological conditions, ROS are
a vital component of autophagy regulation; however, when
the autophagic machinery is not competent to respond, ROS
levels go unchecked, presenting oxidizing damage to the cell
while failing to elicit the appropriate catabolic response. It

has been suggested that oxidative stress-induced dysfunction
of the autophagy pathway drives the accumulation of long-
lived and dysfunctional mitochondria (Luo et al., 2013).
Moreover the accumulation of damaged mitochondria results
in elevated oxidative stress, further challenging the autophagy-
lysosome pathway in a vicious circle (Figure 3). This appears
to be a prominent mechanism at play in ALS, as afflicted
patients and models alike show elevated ROS and signs of
unchecked oxidative stress (Weiduschat et al., 2014; Ikawa et al.,
2015).

Cell Death: The Autophagy Connection
Though oxidative stress is a signal of vital importance in
promoting homeostasis and inducing autophagy, it also has
a chief role in regulating cell death (Ryter et al., 2007). In
fact, in models of ALS, ROS has been shown to drive motor
neuron cell death (Rojas et al., 2015). Dysfunction of the
autophagy-lysosome pathway under oxidative stress is a
driving force for the accumulation of damaged mitochondria
(Luo et al., 2013), which in turn results in heightened
oxidative stress. In instances where this signal is excessive
or prolonged, it may elicit a form of cell death independent
from apoptosis, termed autophagic cell death (Chen et al.,
2008; Li et al., 2013). One form of autophagic cell death,
autosis, is characterized by independance from caspases and
other constituents of pro-death pathways, as well as unique

FIGURE 3 | Autophagic and mitochondrial paths to motor neuron death are convergent. (A) Selective motor neuron degeneration is characteristic of ALS.
Motor neurons’ highly polarized morphology and extensive calcium buffering and energy demands likely underlie this vulnerability. (B) Demands on calcium buffering
and energy production are fulfilled by mitochondria. ROS are generated as a byproduct of oxidative phosphorylation (OXPHOS). The generally high metabolic
requirements of neuronal cells may contribute to elevated ROS, which in turn results in cellular stress and the potential for mitochondrial dysfunction if mitophagic
efficiency is not high. (C) Demands of neuronal mitochondria necessitate frequent turnover through mitophagy pathways. Mitochondrial-derived ROS positively
regulate autophagy/mitophagy. If the autophagy/mitophagy machinery becomes impaired, ROS is not reduced and mitochondria are not recycled, thus leading to
increases in ROS and cellular stress. The accumulation of ROS has potential to damage DNA, proteins and mitochondria, thereby presenting further challenge to the
autophagy/mitophagy machinery. As such, the regulation of autophagy/mitophagy through mitochondrial-derived ROS and mitophagy-dependent mitochondrial
quality control illustrate two pathways converging onto selective motor neuron death.
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morphological features including membrane rupture, shrinkage
of the nuclear membrane, electron-dense mitochondria and
fragmented ER, and strengthened substrate adhesion. The
autotic cell death pathway also features a unique reliance on
Na+, K+-ATPases, and can be triggered pharmacologically
or by starvation (Liu et al., 2013; Liu and Levine, 2015).
This pathway is relevant in vivo, as rodent hippocampal
neurons die through autosis following hypoxic-ischemic
injury. That treatment with cardiac glycosides, identified in
a high-throughput compound screen for autosis inhibitors,
robustly rescues autotic cell death in this model suggests
therapeutic potential for targeting this pathway (Liu et al.,
2013). Though contributions of this pathway to motor neuron
death in ALS are uncertain, it is intriguing that Na+/K+

dyshomeostasis in disease progression has been posited by
computational modeling of ALS pathogenesis (Le Masson et al.,
2014).

Further evidence concerning additional roles for constituents
of the autophagy machinery in traditional caspase-dependent
pathways implicates even broader contributions to cell death.
For example, cleavage of the autophagy-related gene Atg5 by
calpain regulates apoptosis. The cleavage fragment translocates
to mitochondria, where it blocks anti-apoptotic Bcl to drive
cytochrome-c release and thereby promote caspase-dependent
apoptosis (Yousefi et al., 2006). A similar mechanism is
supported for Beclin1 in apoptotic induction (Wirawan et al.,
2010). Caspase-dependent cleavage of Beclin1 yields a C-
terminal fragment that localizes to mitochondria where it
potentiates apoptosis, potentially through the release of pro-
apoptotic factors. A role for the autophagy-associated protein
ULK1 in promoting cell death, independent of autophagy,
has recently emerged. Treatment with H2O2 facilitates the
nuclear localization of ULK1 in an activation-dependent
manner. In the nucleus, ULK1 interacts with Poly (ADP-
Ribose) Polymerase 1 (PARP1), thereby increasing its activity
and potentiating PARP1-induced cell death (Joshi et al.,
2016). Interestingly, ULK1 is a transcriptional target of
p53; its expression is upregulated in response to DNA
damage, and it contributes to cell death following prolonged
autophagy (Gao et al., 2011), suggesting both autophagy-
dependent and—independent forms of ULK1-mediated cell
death.

Motor neuron cell death in both familial and sporadic
forms of ALS is attributable to necroptosis (Re et al.,
2014). Necroptosis is a regulated necrotic form of cell
death, independent of caspases, thereby distinguishing
this pathway from apoptosis. TNF (tumor necrosis factor)
induces necroptosis in a manner requiring the inactivation
of caspase-8. This promotes the interaction of RIPK1 and
RIPK3 (receptor interacting protein kinases), which is vital
for the formation of the necrosome. The MLKL (mixed
lineage kinase domain-like) pseudokinase is then recruited
to execute necroptosis through an unknown mechanism
(Linkermann and Green, 2014; Vanden Berghe et al., 2014).
It is intriguing that some lines of evidence point to a chief
role for the autophagy machinery in necroptosis. In particular,
the Bcl-2 inhibitor GX15-070 promotes cells death through

RIP1-dependent necroptosis, which requires autophagosome
accumulation to serve as sites of necrosome assembly. Inhibition
of autophagosome formation precludes this mechanism of
cell death, highlighting the importance of constituents of
the autophagy-lysosome pathway in necroptotic cell death.
Interestingly, RIP1 inhibition does not limit GX15-070-mediated
autophagosome accumulation, indicating the role of autophagy
induction upstream of RIP1 activity in necroptosis (Basit
et al., 2013). Altogether, the roles of autophagy in cell death
are complex and incompletely understood, and contributions
of these pathways to motor neuron death in ALS require
further investigation. Nonetheless, that autophagic dysfunction
and cell death frequently co-occur in ALS is perhaps no
coincidence.

THERAPEUTIC PROSPECTIVE

Boosting Autophagy
That protein aggregates are characteristic of ALS and other
neurodegenerative diseases suggests that the autophagy pathway
may be an attractive therapeutic target for the prevention
and treatment of neurodegeneration (Vidal et al., 2014).
Indeed, enhancing autophagy has been shown to effectively
target ALS-associated pathological aggregates for clearance
to reduce toxicity (Hung et al., 2009; Wang et al., 2012;
Barmada et al., 2014). The mTORC1 inhibitor rapamycin can
effectively induce autophagy by eliminating mTOR-mediated
inhibition of the ULK1 autophagy initiation complex (Jung
et al., 2009). Rapamycin administration improved prognosis in
TDP-43 mutant mice (Wang et al., 2012), but findings from
trials with SOD1 or VCP-associated inclusion body myopathy
mutant models did not suggest a similar beneficial effect
(Zhang et al., 2011; Ching et al., 2013). Interestingly, in SOD1
mutant mice lacking mature lymphocytes, a modest survival
increase was noted following rapamycin treatment (Staats et al.,
2013). This finding suggests the benefit of the autophagy-
promoting effect of rapamycin, as well as its detrimental
effect on protective immune function. In support of this
finding, preclinical trials with the autophagy-inducing agent
trehalose proved successful in a SOD1 mutant model (Castillo
et al., 2013). Trehalose promotes autophagy by transcriptional
upregulation of ATG genes through an mTOR-independent
pathway.

Although direct defects in autophagy genes may not be
the causal link in all cases of ALS, dysfunction of autophagy
exacerbates disease phenotypes (Bruijn et al., 1998; Kitamura
et al., 2014). Therefore, boosting the efficiency of autophagy
could ameliorate the toxic effects of aggregates characteristic
of ALS and other neurodegenerative diseases. Nonetheless,
it is with some caution that we interpret these results,
as there are indications that enhanced autophagy may in
some instances further exacerbate axonal degeneration
and disease phenotype. For example, autophagy has been
implicated as an early requirement for axonal degeneration
phenotypes in a number of models, including an excitotoxic
neurodegeneration model (Wang et al., 2006). Moreover,
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TABLE 1 | ALS genetics reflect a trend in impaired autophagic and mitochondrial pathways.

Affected gene Functional Processes/Impairment in ALS Reference

UBQLN2 Ubiquitin proteasome system, autophagy Deng et al. (2011a,b)
SQSTM1 Ubiquitin proteasome system, autophagy Fecto et al. (2011)
C9ORF72 Repeat expansion, endosomal trafficking, autophagy DeJesus-Hernandez et al. (2011) and Renton et al. (2011)
VAPB Unfolded protein response, Ca2+ regulation Nishimura et al. (2004a,b)
OPTN Autophagy, mitophagy Maruyama et al. (2010)
VCP Mitophagy Johnson et al. (2010)
DCTN Axon transport Münch et al. (2005, 2004)
TARDBP DNA binding, axon transport Kabashi et al. (2008) and Kühnlein et al. (2008)
SOD1 Antioxidant activity Rosen et al. (1993)
CHCD10 Oxidative phosphorylation, Cristae morphology Bannwarth et al. (2014) and Johnson et al. (2014)

ALS-associated genes have functions relevant to degradative and mitochondrial pathways. Specifically, a number of associated genes are involved in the degradative

pathways of autophagy/mitophagy and the ubiquitin proteasome system (UPS). Additionally, genes involved in mitochondrial function and quality control indicate the

critical importance of mitochondrial health in neuronal maintenance and protection.

the neurite retraction phenotype characteristic of the
Parkinsonian LRRK2G2019S mutation implicates autophagic
induction as an early event. Accordingly, RNAi-mediated
knockdown of autophagy factors LC3 or ATG7 is sufficient
to rescue neurite length (Plowey et al., 2008). In addition,
it was shown using Atg7-deficient mice that negatively
regulating autophagy is sufficient to promote cell survival
of hippocampal pyramidal neurons following ischemic insult
(Koike et al., 2008). These results, taken together with the
expanding roles of autophagy in promoting cell death, indicate
that it is the regulated balance of autophagy, not merely
increased induction, that promotes neuronal health and
protection.

Enhancing Mitochondrial Health
As increasing evidence suggests a prominent role for
mitochondrial dysfunction and oxidative stress in motor
neuron degeneration, enhancing mitochondrial health
represents a promising strategy for treating ALS and
related diseases. In line with this, long-term users of the
antioxidant vitamin E show a decreased risk for ALS
(Wang et al., 2011), consistent with findings of elevated
ROS levels (Ikawa et al., 2015) and decreased antioxidant
levels (Weiduschat et al., 2014) in ALS-afflicted patients.
However, most proposed antioxidant treatments for ALS
are not beneficial in clinical trials (Graf et al., 2005; Orrell
et al., 2008). This lack of success may be attributed to the
low efficiency of targeting antioxidants to mitochondria.
To circumvent this issue, the cell permeable Szeto-Schiller
antioxidant peptide (SS-31) was investigated (Petri et al.,
2006; Szeto, 2006). SS-31 is readily taken up by the cell and
localizes to the mitochondrial inner membrane. The specific
targeting of SS-31 was shown to inhibit ROS generation
and protect against oxidative damage (Zhao et al., 2004,
2005). Presymptomatic treatment with SS-31 in a genetic
mouse model of ALS improved disease prognosis significantly
(Petri et al., 2006). It remains to be determined whether
this therapeutic method offers equal potential for additional
models of ALS, and how these findings will translate in human
trials.

CONCLUSION

Protein aggregates are chief characteristics of many
neurodegenerative diseases, including ALS (Blokhuis et al.,
2013). Gain-of-function properties of disease-associated
mutations can directly lead to protein aggregation (Sau et al.,
2007; Johnson et al., 2008; Xu et al., 2013; Wu et al., 2014). In
addition, loss-of-function of Atg genes is sufficient to cause
neurodegeneration in mice, suggesting a prominent role for
autophagic clearance pathways in neurodegenerative disease
(Hara et al., 2006; Komatsu et al., 2006). Consistent with
this, many ALS-disease genes are linked to cellular clearance
pathways (Deng et al., 2011b; Table 1), and phenotypic
improvements have been achieved by enhancing autophagy in
some ALS mouse models (Hung et al., 2009; Wang et al., 2012;
Barmada et al., 2014). Besides impaired autophagy, defective
mitochondrial function, which leads to increased oxidative stress
and compromised calcium buffering, also plays a critical role in
motor neuron degeneration and ALS pathogenesis. In particular,
impaired autophagy and dysfunctional mitochondrial pathways
may engage in crosstalk in the onset and progression of ALS.
As such, therapeutic strategies targeting these two pathways and
their interactions will hold great promise for alleviating disease
symptoms and rescuing motor neuron degeneration in ALS and
related diseases.
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