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Two‑dimensional finite quantum 
Hall clusters of electrons 
with anisotropic features
Orion Ciftja

Low‑dimensional nano and two‑dimensional materials are of great interest to many disciplines and 
may have a lot of applications in fields such as electronics, optoelectronics, and photonics. One can 
create quantum Hall phases by applying a strong magnetic field perpendicular to a two‑dimensional 
electron system. One characterizes the nature of the system by looking at magneto‑transport data. 
There have been a few quantum phases seen in past experiments on GaAs/AlGaAs heterostructures 
that manifest anisotropic magnetoresistance, typically, in high Landau levels. In this work, we model 
the source of anisotropy as originating from an internal anisotropic interaction between electrons. We 
use this framework to study the possible anisotropic behavior of finite clusters of electrons at filling 
factor 1/6 of the lowest Landau level.

Low-dimensional systems in which electrons are restricted to move in less than three spatial dimensions have 
always attracted great interest as a result of novel theoretical phenomena and potential for technological appli-
cations in the field of electronic devices and materials. In particular, a two-dimensional electron gas (2DEG) 
system where electrons interact with a standard Coulomb interaction potential is one of the most widely studied 
problems in theoretical condensed matter  physics1,2. Unexpected behavior occurs when a 2DEG system is subject 
to a strong perpendicular magnetic field. This is the quantum Hall regime domain where unique magneto-
transport features (such as quantization of Hall resistance, etc.) are observed in high mobility samples in strong 
perpendecular magnetic field at temperatures very close to the absolute zero.

The laws of quantum mechanics explain the emergence of highly degenerate energy levels known as Landau 
level-s (LL-s) for the case of a charged particle (the electron) undergoing 2D motion in a perpendicular magnetic 
field. The nature of the quantum state for a system of N electrons is, up to certain degree, determined by the 
so-called filling factor of that state defined as ν = N/Ns where Ns (which is proportional to the magnetic field) 
represents the degeneracy of a LL. Values of ν = 1, 2, . . . (integer) represent integer quantum Hall effect (IQHE) 
states. The IQHE states are the easiest to explain since their fundamental properties can be described without 
involving electron–electron interactions. However, further increase of the magnetic field leads to those situations 
in which N < Ns and filling factor becomes fractional. This is the case where electrons partially occupy only the 
lowest Landau level (LLL). This is the regime of the fractional quantum Hall effect (FQHE) liquid states which 
stabilize only due to correlation/interaction effects among  electrons3.

A 2DEG system at filling factors 0 < ν ≤ 1 can form various quantum phases. The most common quantum 
phases studied in the literature if one assumes a standard Coulomb interaction potential between electrons are: 
(1) incompressible liquid composite fermion (CF)  states4–6 at ν = 1/3, 2/5, 3/7, . . . and ν = 1/5, 2/9, . . . ; (2) 
compressible Fermi liquid-like states at even-denominator filling  factors7–13 of the form ν = 1/2, 1/4 and 1/6; and 
(3) Wigner solid states of  electrons14–16 for ν ≤ 1/7 . Typical electronic liquid states in the LLL do not manifest 
magneto-transport anisotropy. This means that the experimental obervation of higly anisotropic quantum Hall 
phases in high LL-s at filling factors ν = 9/2, 11/2, . . . was quite an unexpected  result17. It is quite likely that a 
unidirectional (or striped) charge-density wave (CDW)  state18,19 stabilizes at these filling factors. It is also plau-
sible that stabilization of an anisotropic electronic liquid crystalline Pomeranchuk-distorted  phase20–22 gives rise 
to such an occurrence. This so-called quantum Hall nematic state has been described also as a broken rotational 
symmetry (BRS) liquid crystalline  phase23–26.

Standard models for quantum Hall states in the LLL generally consider the electron’s mass (or electron’s 
effective mass) to be isotropic. By its nature, the Coulomb interaction potential between any two point charges 
depends only on the separation distance and, thus, is isotropic. However, recent  work27–45 has articulated the 
importance of some form of internal anisotropy on the properties of the system. The simplest source of such 
internal anisotropy can be the presence of an (effective) anisotropic  mass46 of the electrons. In fact, it can be 
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proven  rigorously47 that an anisotropic mass of the electrons leads to an effective anisotropic Coulomb interac-
tion potential of a specific form as used in recent quantum Hall  studies48,49. The objective of the current study 
is to examine the energetic stability of a liquid crystalline phase that lacks rotational symmetry at filling factor 
ν = 1/6 of the LLL in presence of a degree of anisotropy introduced by an anisotropic Coulomb interaction 
potential. We choose this particular filling factor since it is very close to the critical filling factor ν ≈ 1/7 where a 
transition to a Winger solid state takes place. We consider small quantum Hall clusters of electrons in a standard 
standard disk  geometry50,51. It is assumed that all electrons are spin-polarized.

Theory and model
Typical liquid states in the LLL such as Laughlin’s states at ν = 1/3 and 1/5 as well as Fermi liquid states at 
ν = 1/2 , 1/4 and 1/6 are isotropic liquids. They are energetically more stable than any anisotropic counterpart 
with the understanding that electrons interact via an isotropic Coulomb  potential52,53. Nonetheless, an aniso-
tropic interaction potential may change the whole picture and stabilize an anisotropic phase that lacks rotational 
symmetry. Wigner solids, CDW-s or isotropic liquid phases at a transitional regime are expected to be very 
sensitive to local order. As a result they can be strongly influenced even by weak perturbations. Of this nature is 
the isotropic Fermi liquid  state54 at ν = 1/6 which is very close to the Wigner solid states that stabilize around 
filling ν = 1/6.5 . After all, the energy discrepancies even between fundamentally different quantum Hall phases 
(for example, CF Fermi liquid versus Bose Laughlin  state55) are very small. For this reason, we believe that an 
internal source of anisotropy in the system may have a chance to shift the energy balance to favour the stabiliza-
tion of an anisotropic phase.

The model under consideration consists of a 2D system of N electrons with charge −e (e > 0) and mass me 
subject to a strong perpendicular uniform magnetic field so that the filling factor of the LLL is ν = 1/6 . The 
electrons are immersed in a uniformly charged disk with area, �N = πR2

N where RN is the radius of the disk. 
The total charge of the disk is positive and equal to N e in order to guarantee the overall charge neutrality of the 
system. The density of the system (number of electrons per unit area) for a given filling factor ν can be written as:

where l0 =
√
�/(e B) is the electron’s magnetic length.

The quantum Hamiltonian of the system is written as:

where K̂  is the kinetic energy operator (in a perpendicular magnetic field) and V̂  is the total potential energy 
operator. The kinetic energy operator reads:

where �̂p = (p̂x , p̂y) is a 2D linear momentum operator and �A(�r) is the vector potential. For a symmetric gauge:

where �r = (x, y) is a 2D position vector. The magnetic field vector is taken as:

where B is the magnitude of the magnetic field. The choice of the negative sign of �B allows one to express the 
polynomial part of the LLL quantum states in terms of the complex variable, z = x + i y rather than its complex 
conjugate where i =

√
−1.

The total potential energy operator is written as:

The electron–electron (ee), electron–background (eb) and background–background (bb) interaction potential 
energy terms are, respectively, written as:

and
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The usual Coulomb interaction potential is denoted as:

where |�ri − �rj| is the separation distance between two point charges and (as customary, the Coulomb’s electric 
constant is not written). The anisotropic Coulomb interaction potential between electrons has the form:

where γ is a real anisotropy parameter considered to be positive and (�ri − �rj) = (xi − xj , yi − yj) . Without any 
loss of generality we consider, γ ≥ 1 . The interaction potential above is anisotropic if γ > 1 and reduces to the 
isotropic Coulomb potential for γ = 1:

In all expressions above, the coordinates �ri (or �rj ) denote the 2D position vectors of electrons while �r and �r ′ are 
the 2D disk background coordinates. The position variables of electrons, {�ri} extends all over the space while the 
background coordinates, �r (or �r ′ ) are confined within the disk.

We describe the anisotropic state of electrons at filling factor ν = 1/6 by means of a phenomenological Fermi 
liquid wave function with built-in BRS that reads:

where N is the number of electrons that occupy the N lowest-lying plane wave states labeled by the momenta 
{�kn} of an ideal 2D spin-polarized Fermi gas, zj = xj + i yj is the 2D position coordinate in complex notation 
and α is, in general, a (complex) parameter that breaks the rotational symmetry of the wave function. This wave 
function is a generalization of its ν = 1/2 counterpart used in an earlier  work23. It is easy to note that the wave 
function in Eq. (13) is antisymmetric and translationally invariant, but lacks rotational symmetry (when α  = 0 ). 
As a result, such a wave funnction is an obvious starting point to describe a nematic anisotropic liquid state at 
filling factor ν = 1/6 that lacks rotational symmetry.

Results and discussions
The parameter, α can be considered as a nematic director whose phase is associated with the angle relative to 
GaAs hard resistance crystalline axis. In our case, we consider α ≥ 0 to be real so that the system has a stronger 
modulation in the x-direction. Obviously, the values of α that are chosen, for instance, α = 2, 4, . . . are dimension-
less expressed in units of magnetic length, l0 . If we visualize the electrons as forming layers (or stripes) they will 
tend to avoid each other along the x direction at separation |xi − xj| ≈ α but aggregate along the y direction. A 
schematic view of the experimental setup for the system under consideration is given in Fig. 1. The anisotropic 
layering of electrons in this case corresponds to a state with a large magneto-resistance in the direction of the 
injected current along which response is to be measured.

Our calculations are focused on clusters with a relatevily small number of electrons ranging from N = 5 to 
N = 25 . All these systems correspond to filling factor ν = 1/6 of the LLL but the number of electrons is suit-
ably chosen to match the closed energy shells of a spin-polarized 2DEG. As explained earlier, the electrons are 
confined in a uniformly charged background disk and interact with each other via the anisotropic Coulomb 
potential, vγ (�ri − �rj) . Since no analytical results are possible for correlated many-body wave functions of the 
nature discussed here, we resorted to quantum Monte Carlo (QMC)  simulations56,57 in disk geometry in order 
to calculate energy of the BRS liquid crystalline phase described by the BRS wave function in Eq. (13). The 
energy values obtained this way for a given value of γ ≥ 1 and wave functions with α > 0 (BRS anisotropic) are 
compared to the isotropic liquid counterpart, α = 0.

The BRS wave function is written in disk geometry but contains a Slater determinant of plane wave orbitals 
that, strictly speaking, would be appropriate for a square/rectangular geometry in which periodic boundary 
conditions are applied. To properly select the allowed discrete values of the wave number, �k in a disk geometry 
we consider a square with area, L2 equal to the area of the disk where L is the length of the square for the speci-
fied number N of electrons at the given density in such a manner that, ρ0 = ν/(2π l20) = N/L2 . This way, we 
determine the values �k = (2π/L) �n where �k = (kx , ky) are the wave numbers and �n = (nx , ny) are the appropri-
ate quantum numbers. The number of electrons, N in our calculations is chosen in such a way as to correspond 
to a complete filled shell in the 2D �k-space for a fully spin-polarized 2DEG  system58. The QMC calculations, 
which in this case are variational, allow us to estimate the expectation value of any operator with respect to the 
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given trial wave function. For such a case, α is the variation parameter. The standard Metropolis algorithm is 
used to calculate the expectation value of, let’s say potential energy, by averaging its value over a large number 
of configurations of the system. We discard the first 200000 configurations (these are the “thermalization” QMC 
steps) and then use 2× 106 configurations for averaging purposes. A QMC step consists of attempts to move 
one by one all the electrons of the system at random over a certain small pre-determined distance. The accept-
ance rate of the moves is kept at around 50% . The method of sampling the current wave function is the same as 
that for Laughlin-like  states56,57 with the added numerical complexity coming from the Slater determinant that 
must be re-calculated every time that a particle is moved. The update of the Slater determinant when a particle 
is moved requires a lot of computer time and, for this reason, we are forced to limit our calculations to relatively 
small systems. 

Figure 2 provides an attractive visual perspective of how the distribution of electrons at the end of a QMC run 
mimics the anisotropy of the BRS wave function for the specified value of parameter, α = 6 . Our past experience 
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Figure 1.  Schematic experimental setup to detect the expected longitudinal magnetoresistance in a 2D 
quantum Hall sample. The applied magnetic field is perpendicular to the 2D plane of motion of the electron 
(depicted as stripes) and is directed out of the page (solid dot).
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Figure 2.  Snapshot of the final configuration of a system of N = 25 electrons obtained from QMC simulations 
in a disk geometry. The system corresponds to filling factor ν = 1/6 of the LLL and is described by an 
anisotropic BRS wave function with α = 6 (in units of the magnetic length, l0 ). The system manifests signs of 
layering as shown by the drawn solid lines (that serve as a guide to the eye).
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with QMC simulations of correlated quantum Hall systems has shown that these calculations give very accurate 
estimate values for quantities of interest including the potential energy (per electron), ǫα = �V̂�/N . To this effect, 
we calculated the energy, ǫα for a chosen set of values of the anisotropy parameter, α ranging from 0 (isotropic) 
to 8 (the largest anisotropic value considered). Based on the results obtained, we calculated the energy difference 
between the anisotropic BRS liquid crystalline states and their isotropic liquid counterparts:

as a function of the anisotropy parameter, α.
The results for �ǫα corresponding to a system with N = 25 electrons and γ = 2 are shown in Fig. 3. We esti-

mated that the numerical accuracy of the energy results is up to fifth digit after the decimal point. Being cautious, 
this value can be used to represent the statistical uncertainty of our results with the size of the symbols drawn in 
Fig. 3 being commensurate with it. However, we believe that the energy differences are even more accurate than 
the one reported since the calculation of the difference of two quantities computed separately tends to cancel the 
respective statistical errors. The results obtained indicate stability of an anisotropic BRS liquid state of electrons 
for all values of α considered which in this case are α = 0, 2, 4, 6 and 8.

Note that the magnitude (absolute value) of energy difference, |�ǫα| initially increases as α increases from 0 
up to the value of 6 (in units of l0 ). However, such energy gain ( |�ǫα| ) decreases when α increases from 6 to 8. 
The parameter α in the BRS wave function is an adjustable parameter that serves as a variational parameter for 
the energy. For any given value of γ > 1 of the interaction potential we expect the energy to develop a minimum 
for some optimal value that we denote as α0 . As a result the energy for any α  = α0 will always be larger than that 
corresponding to the value of α0 . This means that, if energy initially decreases as α increases this process does 
not continue forever. Eventually the energy reaches its minimum at some α0 and then any further increase of 
the value of α beyond α0 leads to increase of the energy as shown in Fig. 3.

We checked that the same pattern as the one observed for γ = 2 applies to other smaller values of parameter 
γ . Specifically speaking, we considered values of γ of the form γ = 1 (isotropic Coulomb), γ = 1.25 , 1.50 and 
1.75. As expected, the wave function with α = 0 (isotropic Fermi liquid state) has the lowest energy for γ = 1 
(isotropic Coulomb potential). However, for all other values, γ = 1.25, . . . that were considered in this work, 
we found out that an anisotropic BRS liquid state has always a lower energy than its isotropic counterpart with 
optimum value of α close to around 5 or 6 depending on the value chosen for γ (note that, because of computa-
tional power constraints, we did not try a very accurate optimization of energy as a function of α but we simply 
choose integer values of α increasing either in steps or 1 or 2 and carried out the necessary QMC simulations).

Similar results were observed for N = 5, 9, 13 and 21 particles and are shown in Fig. 4. These represent systems 
that are smaller in size than the N = 25 case. While the quantitative values of energy differences depend on the 
size of the system, there are no qualitative differences between various system sizes and various γ-s. By taking the 
γ = 2 potential as a representative case, we note that the reduction of energy from α = 0 (isotropic) to optimal 
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Figure 3.  Difference of energy (per electron), �ǫα = ǫα − ǫ0 as a function of the wave function anisotropy 
parameter, α . The energy, ǫα>0 represents an anisotropic BRS liquid state, ǫ0 is its isotropic liquid counterpart. 
The results correspond to a system of N = 25 electrons at filling factor ν = 1/6 of the LLL. The anisotropic 
Coulomb potential has an interaction anisotropy parameter, γ = 2 . Energies are in units of e2/l0 The statistical 
uncertainty of the results is commensurate with the size of the symbols.
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α (BRS anisotropic) is of the order of 10−2 e2/l0 for all our systems. Such an energy value is not considered small 
in the realm of quantum Hall studies. The results obtained indicate that, despite the small size of the systems 
considered, the energy differences are almost size-independent. This means that there is a good likelihood that 
the results would also hold in the bulk limit as N increases to larger values.

We have seen that, crudely speaking, the value α0 ≈ 5 is the one that optimizes the energy for the γ = 2 
case. From simulations with smaller γ-s, we have seen that α0 decreases when γ decreases towards 1 with α0 = 0 
when γ = 1 (isotropic Coulomb potential). The question of what would be the range of α0 does not have an easy 
answer. However, it is reasonable to expect that the optimal value α0 is determined by the anisotropy ratio of 
the interaction potential along the “hard” direction relative to the “easy” direction. Assuming γ > 1 and a fixed 
separation distance, d between particles i and j, then the repulsion is stronger along x than y direction. In this 
sense, x is the “hard” direction and y the “easy” one. It is easy to calculate that:

This means that the realistic range of optimal α0 may be expected to be somewhere around γ 2 . On the other 
hand, a realistic value of the phenomenological interaction anisotropy parameter, γ can be readily provided if 
the source of internal anisotropy of the 2DEG system is the (effective) mass anisotropy, for instance mx and my , 
along two crystallographic directions. For such a case, we have  shown47 that γ can be directly related to the mass 
anisotropy ratio via the expression γ 2 =

√

mx/my .
Predicting the magnitude of anisotropy, say resistivity/resistance anisotropy, based on our model is not an easy 

task. This would require an approach similar in spirit to that for half-integer filling factors of the form ν ≥ 9/2 
that led to an expression of the resistivity ratio, ρxx/ρyy which can be directly compared to experimental  data59. 
Calculating the hard-to-easy resistivity ratio as a function of the parameters that determine the state (electron 
density, mobility, effective mass anisotropy, etc.) would require thorough work that we leave for the future given 
that the approach in Ref.59 for the ν ≥ 9/2 state cannot be blindly applied to the present ν = 1/6 state under 
consideration.

Formation of clusters of electrons is inherently incorporated into the BRS wave function under considera-
tion. Therefore, it makes perfect sense to study the possibility of anisotropic liquid crystalline phases at any 
even-denominator-filled state in the LLL in presence of an anisotropic Coulomb interaction potential as that 
in Eq. (11). However, as argued earlier, the state with filling factor ν = 1/6 seems to be the most appealing in 
this scenario due to its vicinity to the Wigner solid-isotropic liquid phase transition in the LLL. Obviously, the 
main idea of this study was to give a preliminary glimpse of various possible quantum phases of small systems of 
electrons for which QMC simulations are feasible in a reasonable amount of time. The simulation time for larger 
systems of electrons increases very fast given the rather complicated nature of the wave function that incorpo-
rates a Slater determinant. Any attempted QMC move of a particle requires an update of the whole column of 
the determinant that requires a re-calculation. This means that more demanding studies of larger systems of 
electrons that would require computer time that we do not currently have at disposal will be left to future work.
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Figure 4.  Same as in Fig. 3 but for N = 5 (black circle), N = 9 (red diamond), N = 13 (green square) and 
N = 21 (blue triangle).
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 Conclusions
In this study, we focused our attention on small 2D systems of electrons in the quantum Hall regime in which 
the kinetic energy is practically frozen to the LLL value in absence of interactions. One can create quantum Hall 
phases of this nature by applying a strong magnetic field in a direction perpendicular to the 2D system at absolute 
zero temperature. These systems are of great interest to many disciplines and may have a lot of applications in 
technological fields that involve electrons and structures that operate based on their magneto-transport proper-
ties. In fact, the precise nature of the system can be characterized by looking at its magneto-transport response 
to external probes. By pursuing these lines of discussion, we note that there have been a few quantum phases of 
electrons seen in experiments on GaAs/AlGaAs heterostructures that manifest anisotropic magneto-resistance 
with properties that are not fully understood.

We modeled the source of anisotropy as originating from an internal anisotropic interaction between electrons 
that we call anisotropic Coulomb potential. The degree of anisotropy of the potential is tuned via a phenomeno-
logical parameter called γ which mimics the effects of this internal degree of anisotropy. The standard isotropic 
Coulomb potential is recovered for γ = 1 . We used this approach to investigate possible anisotropic behavior of 
finite clusters of electrons in the LLL. In particular, we considered the possibility that the very fragile isotropic 
Fermi liquid state at filling factor ν = 1/6 can be destabilized by an anisotropic Coulomb interaction potential 
of the form considered. The outcome of this effect would be stabilization of a novel anisotropic quantum phase 
of electrons with no rotational symmetry. We considered a particular anisotropic liquid crystalline phase with 
BRS as a good candidate for this scenario. Detailed QMC calculation for smalls system of electrons in a disk 
geometry support this view for all the values γ > 1 (anisotropic interaction) and all system sizes considered.

Several studies for quantum Hall systems of electrons in a tilted magnetic field done at filling factor ν = 9/2 
indicate that the magnitude of the anisotropic perturbation energy introduced in the system is of the order of 
10−4 e2/l0 which was estimated to be about 10 mK per electron for typical realistic samples and magnetic fields 
involved in such  studies60,61. In our investigation of the ν = 1/6 state, the typical energy gain of the transition 
from an isotropic to an anisotropic electron liquid phase is estimated of the order 10−2 e2/l0 . Assuming that 
the energy gain would decrease even by an order of magnitude when N becomes larger as samples grow toward 
the bulk size and by accounting the fact that the magnetic length depends on the filling factor, we would still 
argue that the above energy gain is more or less about 100 mK when converted in thermal scale (multiplied by 
Boltzmann’s constant, kB ). These are ultra-low temperatures, but quite achievable in now-a-days experiments. 
Energies of such small magnitude are detectable for corresponding low temperatures as shown in recent experi-
ments in quantum Hall samples of electrons at partially filled high LL-s that manifest pronounced anisotropic 
magneto-resistance62,63.

The formalism that leads to the BRS wave function, �α in Eq. (13) for the state with filling factor ν = 1/6 
can be easily extended to filling factors ν = 1/8 , 1/10 and so on, by suitably modifying the power of the (zi − zj) 
polynomial factor. It would be interesting to study states like ν = 1/8 via a BRS wave function although it is worth 
noting that, based on our current knowledge, such filling factors are way too deep in the region where Wigner 
solid phases have a lower energy than the liquid counterparts.

Data availability
The data presented in this study are available upon request from the author.
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