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SUMMARY

Cell membranes often contain domains with important physiological functions. A
typical example are neuronal synapses, whose capacity to capture receptors for
neurotransmitters is central to neuronal functions. Receptors diffuse in the mem-
brane until they are stabilizedby interactionswith stable elements, the scaffold. Sin-
gle particle tracking experiments demonstrated that these interactions are rather
weak and that lateral diffusion is strongly impaired in the post-synaptic membrane
due to molecular crowding. We investigated how the distribution of scaffolding
molecules andmolecular crowding affect the capture of receptors. In particle-based
Monte Carlo simulations, based on experimental data ofmolecular diffusion and or-
ganization, crowding enhanced the receptor-scaffold interaction but reduced the
capture of new molecules. The distribution of scaffolding sites in several clusters
reduced crowding and fostered the exchange of molecules accelerating synaptic
plasticity. Synapses could switch between two regimes, becoming more stable or
more plastic depending on the internal distribution of molecules.

INTRODUCTION

The plasma membrane of cells (PM) is a heterogeneous fluid surface in which diffusing molecules can be

organized into domains with particular composition (Nicolson, 2014). The spatial patterning of molecules

of the PM is essential to cells, as specific membrane domains are dedicated to sense the environment and

to communicate with other cells (Recouvreux and Lenne, 2016; Krapf, 2018). An example of these highly

specialized domains are neuronal chemical synapses. Importantly, synapses are not static domains; they

are able to modulate the intensity of synaptic responses by changing the number of receptors for neuro-

transmitters that reside in the synapse. This is one of the plasticity mechanisms thought to underlie memory

and learning (reviewed in Huganir and Nicoll, 2013; Petrini et al., 2014).

Receptors for neurotransmitters are accumulated at the postsynaptic membrane by interactions with the

subjacent meshwork of scaffolding proteins, which transiently capture them by stopping their diffusion (re-

viewed in Choquet and Triller, 2013; Maynard and Triller, 2019). We can assume that the capture results

from the first-order reaction:

R + S%
kon

koff
RS

where R are the receptors and S the scaffolding molecules, kon the effective forward binding rate, and koff
the effective backward binding rate. kon and koff integrate the contribution of diffusion and intrinsic binding

rates (Soula et al., 2014 and references therein) and can be estimated from the frequency and duration of

binding events (Renner et al., 2017 and references therein). The affinity of receptors for their scaffolding

molecules can be modulated by the phosphorylation state of receptors and scaffolds (Opazo et al.,

2010; Specht et al., 2011; Hausrat et al., 2015; Flores et al., 2015; Battaglia et al., 2018). Indeed, changes

of receptor-scaffold affinity and/or changes in the number of scaffolding sites underlie many synaptic plas-

ticity phenomena (reviewed in Diering and Huganir, 2018).

The diffusion of receptors and its regulation has been described quite extensively by single particle

tracking (SPT) or fluorescence recovery after photo bleaching (FRAP) (reviewed in Choquet and Triller,

2013; Park, 2018; Maynard and Triller, 2019), although the kinetics of their capture in synapses remains

obscure. Difficulties to investigate receptor-scaffold interactions experimentally are numerous, notably

due to the particularities of reactions occurring in 2D. In classical bulk biochemistry approaches to identify
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interactions and to quantify molecular affinities, peptides interact in an 3D environment and in conditions

that can be quite different from those of membrane molecules in cells. Contrary to 3D, reactions between

molecules on a membrane are affected by the distances between molecules that influence their reaction

rates at all length scales (reviewed in Mahmutovic et al., 2012). Moreover, reactants are present in relatively

small numbers (50–150 receptors and �200–300 scaffold sites; Sheng and Kim, 2011; Specht et al., 2013;

MacGillavry et al., 2013 and references therein), thus discreteness and stochasticity cannot be disregarded

(reviewed in Melo and Martins, 2006; Gillespie et al., 2013). Therefore, we can consider that the interaction

receptor/scaffold happens in conditions far from the postulates of the law of mass action: it is a badly mixed

system that involves a few numbers of molecules. Moreover, several experimental data support that the

postsynaptic membrane is crowded with immobile proteins (Renner et al., 2009a, 2009b; Li et al., 2016).

The importance of macromolecular crowding on reaction kinetics is now widely recognized (reviewed in

Melo and Martins, 2006; Kalay et al., 2012). Interestingly, it has been shown that fractal reaction kinetics

with time-dependent rate coefficients arise from diffusion-hindered systems in 2D (Hellmann et al.,

2011). Wemay wonder how important these factors are in the case of synapses. Given the sizes of molecules

and their density, how important is the effect of crowding for the capture of receptors? Does the pattern of

distribution of scaffolding sites have an effect at this scale? What type of structure has the highest trapping

capacity?

Particle-based Brownian dynamics offer the opportunity to simulate diffusion and reaction of molecules

considering the spatial configuration of reactants. Monte Carlo simulations (MC) are ideally suited to study

systems where the number of molecules is small and there is an important spatial heterogeneity (Goldman

et al., 2004; Burrage et al., 2007). MC has been previously used to simulate AMPA receptors diffusion and

recruitment into excitatory synapses (Santamaria et al., 2010; Tolle and Le Novére, 2010; Czöndör et al.,

2012; Li et al., 2016; Gupta, 2018).

In this work, particle-based MC simulations were used to analyze the capture of receptors depending

on the distribution of scaffolding sites and the presence of immobile obstacles. As expected, the dis-

tribution of sites in one or multiple clusters had a strong effect on the capture of molecules under

crowding conditions, affecting the accessibility of sites. Crowding itself had a negative effect impairing

the capture of molecules coming from outside the synapse, thus reducing the capacity of the simulated

synapse to recruit new molecules. However, above a certain level, crowding had a positive effect

strongly enhancing the re-capture of molecules already inside the synaptic area, thus increasing kon
of these molecules. The distribution of scaffolding sites into several clusters decreased the influence

of crowding, favoring the exchange of molecules with the extra-synaptic area and thus accelerating

plasticity-like changes. Therefore, by rearranging the scaffold and changing the crowding level, synap-

ses could switch between a state prone to change that easily exchanges molecules and a state prone

to stability that reduces the exchange.

RESULTS

Simulation of Diffusion-Capture in a Self-Crowded Patch of Membrane

The size of diffusing molecules and the distribution of binding sites were treated explicitly to incorporate

the effects of space. The design of the simulation space and the parameters of the simulation were based

on experimental data obtained on cultured neurons (Renner et al., 2009a, 2012; 2017; Specht et al., 2013;

Patrizio et al., 2017; see Transparent Methods).

Scaffold interaction sites (3-nm-wide squares) were distributed following a hexagonal grid (Figure 1A) in

a circle of 190–300 nm in diameter (depending on the distance between binding sites), in agreement

with the expected hexagonal distribution of Gephyrin, the scaffolding molecule of inhibitory synapses

(Bedet et al., 2006). The size of the interaction site was meant to represent a reactive radius for

the diffusing particles; the binding sites themselves were not considered as obstacles. For a given

set of simulations, a chosen number of sites was selected randomly from the possible positions

given the distribution used (Figure 1B). The maximum number of sites (250) was always inferior to

the number of nodes of the grid, leaving spaces without binding sites. The distance between sites

was 10 or 15 nm, consistent with experimental data about the density of scaffolding sites of Gephyrin

(Specht et al., 2013) or PSD-95, the main scaffolding molecule of excitatory synapses (MacGillavry et al.,

2013).
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The size of typical receptors is 6–13 nm, depending on the type of receptor and the presence of accessory

proteins (Schauder et al., 2013; Miller and Aricescu, 2014; Greger et al., 2017). Crowding arise when the dis-

tance between obstacles is comparable to the diameter of the diffusing molecule. Given the distance be-

tween scaffolding sites, the immobilization of receptors was expected to create significant self-crowding

effects. To distinguish between the effects on the capture of receptors raising from crowding and those

due just to the occupation of binding sites, two different sets of molecules were modeled. Large molecules

representing receptors were simulated as diffusing circles of 10 nm in diameter (s10). Small molecules that

could occupy binding sites without creating crowding were simulated as circles of 1 nm (s1).

The starting point of diffusing molecules was randomly chosen in the simulation space. Lateral diffusion of

molecules was simulated as random walks (see Transparent Methods). Molecules bounced back when they

found an obstacle in their way (immobile or mobile). Molecules were immobilized with a given probability

Pbind if they passed on top of a binding site. Once immobilized, they were set free with a given probability

Pfree (13 10�4 unless indicated, Figures 1B and 1C and Video S1). Experimental observations obtained with

FRAP and SPT indicate that effective kon and koff values of the receptor-scaffold interaction are in the order

of 10�1-10�2 s�1 (Czöndör et al., 2012; Renner et al., 2017). Pbind and Pfree values were chosen to provide

similar values of the rate constants on simulated trajectories ‘‘converted’’ to match the temporal and spatial

Figure 1. Capture of Molecules in Simulated Synapses

(A) Scheme of the hexagonal grid where binding sites could occur (black dots).

(B) Detail of the simulation space showing the randomly chosen binding sites (250 in total, black dots) overlaid with all the

trajectories cumulated during 75s of simulation (200 molecules in total, 118 molecules bound at t = 75s, each trajectory

depicted in a different color). The distance between sites was 15 nm. Molecules were 10 nm in diameter and a probability

of binding (Pbind) of 0.9 and a probability of unbinding (Pfree) of 10
�4. White spaces correspond to the excluded area due

to the bound molecules (self-crowding). Bar: 50 nm.

(C) Detail of one trajectory (in blue) and binding sites (squares). The simulated molecule bound to the sites shown in red.

Bar: 15 nm.

(D) Number of boundmolecules when sites were distanced 10 nm or 15 nm, in steady state, for small (s1) or large (s10, gray

area) molecules and low (D1) or high (D2) Pbind (values of 20 independent simulations overlaid with the mean G SD,

unpaired t test, ns: not significant; ****p < 0.0001).
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resolution of trajectories obtained experimentally with SPT (time between trajectory points of 75 ms, local-

ization precision of 15 nm) (Figure S1, see Transparent Methods). The calculation of effective kon and koff
was done using Packing coefficient analysis as before (Renner et al., 2017).

Simulations were run for a short period of time (37,500 trajectory points, equivalent to 37.5 s) to assess the

speed of population of empty synapses or for a longer period (225 s) to reach equilibrium (steady state,

Figures S2A1–A2) that was typically attained after 75–100 s (not shown). Analyses of the steady state

were done on the last 75 s of the run (Figure S2A2). The number of bound molecules was in the range of

the number of synaptic receptors found experimentally (less than 200, Figure S2A1, reviewed in Choquet

and Triller, 2013; Patrizio et al., 2017) and reflected the fractional occupancy of scaffolding sites observed in

synapses (reviewed in Specht, 2020).

A first series of simulations was performed to describe the system at steady state without (small molecules)

or with self-crowding (large molecules). Figure 1D shows the number of bound molecules for the two con-

figurations of sites, the more compact (sites distanced 10 nm) and the less compact one (sites distanced 15)

for molecules with low (Figure 1D1) or high (Figure 1D2) Pbind. Figure S2B shows examples of the final dis-

tribution of molecules. As expected, small molecules (s1) bound to sites at the same level in both config-

urations (t test, p < 0.6), the number of bound molecules depending only on Pbind. For large molecules,

there was a robust effect of the distance between sites (Fig. 1D, �25% and �36% reduction in the compact

distribution for molecules with Pbind = 0.1 or 0.9, respectively; t test p < 0.0001). Large molecules were over-

all less captured than the small ones (reduction of �34%–43% in case of the compact distribution, of �12%

in the other case).

These results agree with the facts that (1) bound molecules become immobile obstacles for the moving

ones reducing the area available to diffuse (Figure 1B) and (2) self-crowding arise when the distances be-

tween sites are in the order of the size of molecules. Small molecules (diameter of 1 nm) had always the

possibility to diffuse between bound molecules and thus their capture was not affected.

The effects of crowding are likely to vanish when the relative importance of the reaction increases with

respect to diffusion (i.e. in case of strong affinity). We checked the effect of the distribution of sites

when molecules have a lower Pfree (0.5 3 10�4, still in the range of what can be observed in experimental

data). The overall number of bound molecules (Pbind = 0.9) was higher than before as expected, due to the

increased affinity (compare Figures S3 and 1D). The lower trapping due to self-crowding was still observed,

although the effect was less important than before (�30%–34% reduction for large molecules in more

compact with respect to less compact configuration, Figure S3).

The hexagonal distribution of sites was meant to represent the expected arrangement of the scaffolding

molecule Gephyrin; however, other scaffolds may have a random distribution of sites. We wonder whether

the effects of self-crowding were still observable when sites were distributed randomly, with a minimum

distance of 10 or 15nm between sites (Figure S4A). Large molecules were still less captured in the more

compact configuration although the reduction was less important than on the hexagonal lattice (�13%–

15% reduction, Figure S4B). On the other hand, the random configuration provided distributions that

were less dense than the hexagonal grid, with a median distance between sites of 11.18 nm in case of

the more compact distribution and 17.02 nm for the less compact one (not shown).

We may expect that some sites became inaccessible to large molecules due to percolation effects. How-

ever, it is important to note that the self-crowding simulated here and the configuration of areas above the

percolation threshold are continuously fluctuating, as molecules constantly get bound and unbound (Video

S1). Indeed, all the sites were able to capture molecules at some point of the simulation run, although those

on the borders were logically more efficient principally in the compact case (Figure S5).

Altogether, these data suggest that changing the pattern of distribution of sites could improve the

trapping capacity of synapses by increasing the number of effective scaffolding sites. Actually, scaffolding

molecules in real synapses are not always evenly distributed in the post-synaptic area. The presence of

nanodomains of excitatory and inhibitory receptors and their scaffolding molecules in a fraction of synap-

ses have been shown by several groups (MacGillavry et al., 2013; Nair et al., 2013; Specht et al., 2013; Dzyu-

benko et al., 2016; Orlando et al., 2017; Pennacchietti et al., 2017; Kellermayer et al., 2018; Hruska et al.,
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2018). Typically, these synapses contain 2–10 nanodomains (most commonly 2–3, depending on the recep-

tor type; Nair et al., 2013; Kellermayer et al., 2018) that are �50–100 nm wide and contain �20 or more

receptors.

Nanoclusters were simulated by distributing sites in 2, 4, or 7 clusters (Figure 2A). Each cluster contained

equivalent numbers of sites, chosen randomly from the nodes of a hexagonal lattice (250 sites in total, see

Transparent Methods). The spacing between clusters (minimum 30 nm) was set to hold all the scaffolding

sites within a circle of 250–550 nm in diameter, compatible with the reported sizes of the post-synaptic den-

sity (Specht et al., 2013; reviewed in Choquet and Triller, 2013).

At steady state, the number of clusters did not affect the final number of boundmolecules if sites were distanced

15 nm (Figure 2B). There was a significant, although modest, effect of multiple clusters (�6%–10% increase) on

the number or largemolecules and high Pbind (0.9) bound in the compact distribution (Figure 2B1). The effect was

also observed for low Pbind (0.1) molecules, between 1 and 7 clusters (�9%, not shown, ANOVAwith Tukey’smul-

tiple comparisons test, p < 0.05). This means that the presence of nanoclusters per se did not imply a systematic

improvement on the trapping capacity of synapses at steady state.

Distribution of Sites in Several Clusters Counteracts the Detrimental Effects of Crowding

One important property of synapses is their capacity to change the number of receptors. Crowding,

created by receptors themselves but also by other molecules immobilized in synapses, could be an impor-

tant factor setting the extent of the change and the time needed for it. This point was evaluated by moni-

toring the recruitment of molecules in absence or presence of extra fixed obstacles, which remained bound

to a site during all the simulation period. Obstacles were small (s1) or large (s10): large ones were used to

simulate a situation with high molecular crowding, whereas small ones did not generate crowding.

There were two different starting scenarios: an area with 50 free binding sites alone or an area with 50 free

sites surrounded by obstacles at t = 0 (Figure 3A). No simulated molecule was bound at t = 0. Figure 3A

shows the case of 200 obstacles of 1 nm or 10 nm in diameter. For each scenario, we compared the effect

of obstacles on the binding of small or large molecules with different Pbind.

Figure 2. Capture of Molecules When Sites Are Distributed in Multiple Clusters

(A) Examples of the configuration of sites (250 in total) in 1, 2, 4, or 7 clusters. Bar: 60 nm.

(B) Number of bound molecules in synapses containing 250 sites, in steady state. Binding sites were distanced 10 nm (B1)

or 15 nm (B2) and distributed in 1, 4, or 7 clusters. Simulated molecules were 1 or 10 nm in diameter (s1 and s10,

respectively) and bound to the sites with Pbind = 0.9 (values of 20 independent simulations, overlaid with the mean G SD,

one-way ANOVA, ns: not significant; ****p < 0.0001).

ll
OPEN ACCESS

iScience 23, 101382, August 21, 2020 5

iScience
Article



In a first series of simulations, sites were distributed in one cluster. Figures 3B and 3C illustrate early

changes (after only 37.5s) for small (Figure 3B) or large (Figure 3C) molecules with Pbind = 0.9. Sites were

colonized by small molecules at similar speed independently of obstacles (Figure 3B). Conversely, the trap-

ping of large molecules was strongly affected by the presence of obstacles (Figure 3C), especially for the

compact distribution of sites (Figure 3C1). This was also observed at later times (225s of the simulation run,

Figure S6).

To further confirm the effect of crowding, we checked the trapping of molecules in presence of obstacles of

different size than the diffusing molecule (small molecules with large obstacles and large molecules with

small obstacles). All the results are summarized in Tables 1 and 2. Small molecules were less captured in

case of crowding created by large obstacles. For large molecules, there was also a significant reduction

in case of small obstacles, meaning that the presence of a high number of immobile obstacles could

also influence the capacity of synapses to gather new receptors even if they do not create crowding.

Figure 3. Molecular Crowding Slows Down the Capture of New Molecules

(A) Examples of the distribution of 50 sites (red squares) in the absence of extra immobile obstacles at time point t = 0 (left)

or among 200 obstacles (black circles) of size = 1 nm (center) or size = 10 nm (right). Obstacles occupy the position of other

sites in the hexagonal grid and remain bound and immobile during all the simulation. Bar: 60 nm.

(B and C) Number of bound molecules in time in synapses (Pbind = 0.9) with initially 50 free sites, in absence of presence of

100 or 200 obstacles at t = 0, for small (B1-2) or large (C1-2) molecules. Distance between sites was 10 nm (B1 and C1) or

15 nm (B2 and C2). Obstacles had the same size than diffusing molecules. Colors as in B1. Mean (lines) G SD (shaded

areas) of 10 independent simulations.

Only the first 37.5s of the simulation are shown (the entire simulations are depicted in Figure S6).
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The same scenarios were simulated with sites distributed in several clusters. In absence of extra obstacles, the

distribution of sites did not affect the capture of small molecules (not shown) and only apparently improved the

speed of recruitment of large molecules (Figure 4A1 and 4A2). This improvement was transient and the number

of boundmolecules after 37.5s of simulation run was not significantly different between configurations andmol-

ecules sizes (Figure 4C, 0 obstacles condition). However, multiple clusters of sites were more performant to cap-

ture largemolecules in conditionsof important crowding (Figures 4B and4C, 200 obstacles condition). The effect

was stronger for the less compact distribution and correlated well with the number of clusters. In the best of

cases (7 clusters, distance between sites of 15 nm), the number of bound sites doubled with respect to the

one-cluster configuration, but it was still lower than in absence of obstacles (�28% lower, Figure 4C2).

Therefore, crowding had a strong negative impact on the recruitment of new molecules to synapses, but

the distribution of sites in several clusters could overcome this drawback at least partially by improving

the accessibility of sites.

Crowding Boosts Recapture of Molecules and Increases Stability

Crowding may affect interactions in a negative and a positive way (reviewed in Minton, 2006; Mugler et al.,

2012). Molecular crowding at the post-synaptic domain could impair the capture of new receptors, but at

the same time increase the probability of those already captured to bind again after dissociating from the

scaffold. To investigate the effect of crowding on the frequency of binding (related to kon), steady state sim-

ulations were run in absence or presence of obstacles. As discussed earlier, 50 free sites were available for

the capture of diffusing molecules. The number of bound molecules was evaluated together with the frac-

tion of molecules that enter the synaptic area, the number of bindings per molecule, and the percentage of

molecules that go in and out the synapse (% of exchange).

Figures 5 and S7 show the results for largemolecules with Pbind = 0.9 and Pbind = 0.1, respectively. The num-

ber of bound molecules changed in all cases, being reduced by the presence of obstacles (Figures 5A and

S7A). The compact distribution of sites was the most affected; but interestingly there was a regain in the

number of bound molecules with high crowding (200 obstacles) when sites were distributed in one or

two clusters with respect to several clusters (Figures 5A1 and S7A1). This counterintuitive result could be

explained by the robust effect of crowding on the number of bindings per molecule (Figures 5C1 and

S7C1) and the decrease of the exchange (Figures 5D1 and S7D1).

The number of molecules that enter the synaptic area was also reduced by crowding but the distribution of

sites in several clusters partially reverted this effect, as expected (Figures 5B and S7B). Importantly, mole-

cules boundmore often to scaffolding sites when higher number of obstacles were present, with a stronger

Distance 10 nm Early (37.5s) Late (225s)

s1 0 obstacles 32.90 G 1.08 39.40 G 0.45

100 obstacles s1 34.00 G 1.33 (ns) 39.90 G 0.85 (ns)

200 obstacles s1 34.50 G 1.45 (ns) 39.17 G 0.48 (ns)

100 obstacles s10 23.00 G 1.68 (***) 30.60 G 1.04 (****)

200 obstacles s10 16.20 G 0.81 (****) 24.80 G 0.97 (****)

s10 0 obstacles 28.1 G 1.34 31.3 G 0.95

100 obstacles s1 22.9 G 1.48 (*) 31.2 G 0.69 (ns)

200 obstacles s1 15.7 G 1.00 (****) 24.2 G 0.94 (****)

100 obstacles s10 8.8 G 0.98 (****) 11.5 G 0.65 (****)

200 obstacles s10 2.9 G 0.43 (****) 2.2 G 0.36 (****)

Table 1. Number of Bound Molecules at Early or Late Simulation Times for Small (s1) or Large (s10) Molecules When

Scaffolding Sites Were Separated 10 nm (Pbind = 0.9), in Absence or Presence of the Indicated Extra Obstacles at t = 0

Obstacles had the same size of the molecule or not. MeanG SD, t test against 0 obstacles condition, ns: not significant, *p <

0.05; ***p < 0.001; ****p < 0.0001.
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effect on the one-cluster configuration (Figures 5C and S7C). Consequently, the exchange of molecules be-

tween synaptic and extrasynaptic areas was reduced by obstacles and by the one-cluster configuration

(Figures 5D and S7D). Interestingly, compact synapses with two clusters in the more compact configuration

were able to keep a high number of bound molecules (Figure 5A1) and at the same time display a higher

exchange than synapses with one cluster (Figure 5D1).

Obstacles did not affect the number of bound smallmolecules; however, the distribution of sites inmultiple clus-

ters facilitated the entry of molecules and slightly decreased the number of bindings per molecule (Figure S8).

Synaptic Plasticity-like Changes Were Accelerated by Multiple Clusters of Binding Sites

Although one unique cluster of binding sites would support stability, multiple clusters could be a good

strategy for crowded synapses to favor plasticity. We investigate this possibility running simulations of

large molecules whose Pbind was increased or decreased, to simulate long-term potentiation (LTP) or

long-term depression (LTD), respectively. Scaffolding sites (250 in total) were distributed in one or more

clusters with a distance between sites of 10 and 15 nm as discussed previously. We added extra 100 obsta-

cles that remained fixed to the scaffold during the whole simulation.

After the increase of Pbind (from 0.1 to 0.9), the number of bound receptors increased progressively in all

cases (Figures 6A and 6B). The ratio of bound molecules with respect to the initial state augmented

more rapidly when sites were distributed in several clusters (Figure 6A). Differences were significant at early

(37.5s) or late (225s) times of simulation, although they were more important at early times (Figure 6B). In

case of LTD-like changes, multiple clusters accelerated the loss of bound molecules (Figure 6C). At the end

of the simulation (225s) the amount of bound molecules was the same for the more compact distributions

(10 nm between sites, Figure 6D1) or it was somewhat reduced in the less compact synapses (15 nm be-

tween sites, Figure 6D2). Hence, the presence of multiple clusters of binding sites favored the exchange

of molecules accelerating the gain or the loss of synaptic molecules.

DISCUSSION

The synaptic membrane is a crowded environment, yet the efficiency of receptor capture at the postsynaptic

membrane is one key element in determining synaptic strength and synaptic plasticity. The demonstration of

the mobility of receptors in and out synapses prompted the use of models to understand how synapses can

be stable and plastic at the same time. ODE models or abstract representations demonstrated that synaptic

strength can be maintained despite the dynamics of the receptors (Holcman and Triller, 2006; Earnshaw and

Bressloff, 2006, 2008; Bressloff and Earnshaw, 2009). Czöndör et al. (2012) used numerical trajectories to demon-

strate the impact of the location of endo- and exocytotic sites on the trapping of receptors. As geometry and

Distance 15 nm Early Changes (37.5s) Late Changes (225s)

s1 0 obstacles 36.80 G 3.12 36.70 G 3.06

100 obstacles s1 35.30 G 3.94 (ns) 36.50 G 3.74 (ns)

200 obstacles s1 34.40 G 2.59 (ns) 38.90 G 2.80 (ns)

100 obstacles s10 30.90 G 4.50 (**) 36.10 G 2.68 (ns)

200 obstacles s10 29.00 G 3.02 (****) 33.80 G 3.49 (ns)

s10 0 obstacles 32.70 G 3.62 37.20 G 3.19

100 obstacles s1 30.30 G 3.30 (ns) 34.70 G 3.62 (ns)

200 obstacles s1 27.50 G 2.50 (**) 31.50 G 3.60 (**)

100 obstacles s10 23.70 G 4.37 (****) 26.10 G 10.77 (**)

200 obstacles s10 12.60 G 3.20 (****) 20.27 G 3.13 (****)

Table 2. Number of Bound Molecules at Early or Late Simulation Times for Small (s1) or Large (s10) Molecules When

Scaffolding Sites Were Separated 15 nm (Pbind = 0.9), in Absence or Presence of the Indicated Extra Obstacles at t = 0

Obstacles had the same size of themolecule or not. MeanG SD, t test against 0 obstacles condition, ns: not significant, **p <

0.01; ****p < 0.0001.
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spatial parameters are important when dealing with the diffusion in the postsynaptic membrane (Renner et al.,

2009b), other studies made use of particle-based stochastic simulations to address the role of lateral diffusion

and crowding (Tolle and Le Novére, 2010; Santamaria et al., 2010). We opted for this kind of approach, repro-

ducing the expected distribution of some scaffoldingmolecules, to analyze the importance ofmolecular crowd-

ing on the interaction between receptors and scaffold.

Experimental data and models provided hints about the complex role of crowding in synapses. The com-

parison of the diffusion of lipids and receptors suggest that crowding makes the synaptic membrane to act

as a size-exclusion column, excluding molecules from crowded areas and thus increasing their overall diffu-

sivity (Renner et al., 2009b). As crowding is generated in part by receptors themselves, Gupta (2018) showed

that diffusion was differentially affected by receptor trapping: overall diffusion was reduced at low and

moderate receptor densities but enhanced for high receptor density. On the other hand, crowding can

enhance the retention of receptors in synapses depending on its level (Santamaria et al., 2010).

Here we show that crowding may have a bimodal effect on receptor/scaffold interactions. The relative

importance of positive or negative effects depended upon the level of crowding, which was created in

Figure 4. The Capture of Molecules in Crowded Synapses Is Improved by the Distribution of Sites in Multiple

Clusters

(A1-A2 and B1-B2) Number of largemolecules bound versus time (Pbind = 0.9) in synapses with initially 50 free sites, with no

extra obstacles (A1 and A2) or 200 extra obstacles (B1 and B2) at t = 0. Sites were separated by 10 nm (A1 and B1) or 15 nm

(A2 and B2) and distributed in 1, 2, 4, or 7 clusters as indicated. Colors in A1. Mean (line) G SD (shaded areas), 10

independent simulations.

(C1-C2) Number of bound molecules after 37.5s of simulation run for the simulations described in A1 and B1 (C1) and

A2 and B2 (C2) (median and 25%–75% IQR, whiskers: 5%–95% range, one-way ANOVA, ns: not significant; *p < 0.05,

****p < 0.001).
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Figure 5. Molecular Crowding Favors Multiple Bindings and Reduces the Exchange of Molecules

Binding and exchange of large molecules (with Pbind = 0.9) in and out synapses at steady state. Synaptic areas had 50

binding sites and the indicated number of obstacles t = 0. Sites were distanced 10 nm (A1,B1, C1, and D1) or 15 nm (A2,

B2, C2, and D2) and distributed in 1 (black), 2 (red), 4 (blue), or 7 (magenta) clusters as indicated in A1. (Mean G SEM, 10

independent simulations, statistical comparisons in case of 200 obstacles: one-way ANOVA, ns: not significant,

****p < 0.0001).

(A1-A2) Number of bound molecules at the end of the simulation period (225s).

(B1-B2) Percentage of simulated molecules (total 200) that enter at least once in the synaptic area.

(C1-C2) Number of bindings (to the same or a different site) per molecule during the whole simulation run. (D1-D2)

Percentage of exchange (proportion of molecules that enter and exit the synaptic area at least once).
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Figure 6. Molecular Crowding Accelerate Synaptic Plasticity-like Change

Simulation of LTP-like (A and B) or LTD-like (C and D) changes in receptor trapping in synapses with 250 sites and 100 extra

obstacles at t = 0, distributed in 1, 2, 4, or 7 clusters as indicated (colors in A1 and C1). Sites were distanced 10 (Dist 10) or

15 (Dist 15) nm. Pbind was changed at time = 15s (10 independent simulations in each case).

(A and C) Ratio of bound molecules (with respect to those bound at time = 15 s) versus time for LTP (A) or LTD (C)

simulations. Mean (lines) G SD (shaded areas).

(B and D) Ratio of bound molecules (with respect to those bound at time = 15 s) at 37.5s (early) or at 225s (late,

shaded area) of simulation run for the simulations shown in A1 (B1), A2 (B2) and C1 (D1) and C2 (D2), respectively

(median and 25%–75% IQR, whiskers: 5%–95% range, one-way ANOVA, ns: not significant, *p < 0.05, **p < 0.01,

***p < 0.001, ****p < 0.0001).
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part by the capture of receptors themselves. Consequently, the net effect of crowding was determined by

the compaction and distribution of scaffolding sites. It is interesting to note that the compaction of sites

could be modulated for example by the polymerization state of actin cytoskeleton (Renner et al., 2009a

and references therein), and therefore it could be regulated by neuronal activity.

Another interesting feature of synapses is that scaffolding sites are always more abundant than receptors

(reviewed in Choquet and Triller, 2013; Specht, 2020). The whole structure of the post-synaptic density is

proposed to be the result of a network of weak interactions that is able to maintain a steady state, thanks

to a high number of free binding sites (reviewed in Specht, 2020). Indeed, some of the scaffolding sites for

receptors seem not to be easily available. Many receptors have the same residency time in synapses than

molecules that are not stabilized by the scaffold (Renner et al., 2012), which suggest that receptors moved

into the synaptic area but they could not establish a scaffolding interaction before diffusing away. This

observation highlights the importance of mechanisms that help retaining receptors in the synaptic area

by, for example, enhancing reactions. Importantly, theory indicates that molecular crowding may have

two opposite effects on the kinetics of interactions: more crowding implies less diffusivity and reaction op-

portunities, and at the same time, more probability of re-collision and re-binding (reviewed in Minton,

2006; Mugler et al., 2012). The results of our simulations suggest that this is the case of synapses. The fre-

quency of bindings varied upon the local level of crowding and were increased by compact and crowded

configurations. Benichou et al. (2010) described analytically this kind of spatial effect on first passage times

in case of compact (crowded medium) or not compact exploration. They demonstrated that when a

diffusing molecule explores sparsely its environment, the search time of the target is independent of the

starting point. However, when the exploration is dense, for example due to crowding, the position of

the starting point is not trivial. The results shown here are compatible with this concept of geometry-

controlled kinetics and supports its applicability to synapses.

Importantly, our model incorporates recent experimental data about the internal distribution of binding

sites in the synapse. Super-resolution microscopy has revealed the nanoscale organization of neurotrans-

mitter receptors, scaffolds, and signaling molecules (Broadhead et al., 2016; MacGillavry et al., 2013; Nair

et al., 2013; Hruska et al., 2018). Interestingly, multiple nanoclusters are not systematically observed,

implying that it is a feature of a sub-population of synapses (Lee et al., 2017). As the postsynaptic scaffold

can display internal rearrangements in living neurons (Kerr and Blanpied, 2012), synaptic nanoclusters seem

to be dynamic and depend upon neuronal activity (MacGillavry et al., 2013; Nair et al., 2013; Pennacchietti

et al., 2017). Therefore, we may expect that synapses can switch within two states, containing or not nano-

clusters of receptors and scaffold. Our results revealed that the distribution of scaffolding sites in more than

one cluster could be permissive for synaptic plasticity. The exchange of molecules in crowded synapses was

already enhanced in the case of two clusters and increased further with the number of clusters. Thus, the

number of nanodomains of receptors could be a proxy of the readiness of synapses to undergo plasticity.

This hypothesis is supported by two recent experimental reports. The work of Pennacchietti et al. (2017)

showed that inhibitory synapses that responded to the induction of LTP by incorporating more scaffold

molecules were those carrying several spots of Gephyrin. Hruska et al. (2018) found multiple nanodomains

in excitatory synapses whose number and dynamics positively correlated with the induction of LTP.

Crowding and distribution of binding sites probably play a non-negligible role in other dynamic membrane

domains, such as the immunological synapse (Treanor and Batista, 2007), focal adhesions (Rossier et al.,

2012), and the initial segment of the axon (Leterrier, 2018). In addition to this, many membrane molecules

were shown to create transient nanoclusters (i.e. channels, ion transporters and adhesion proteins; Shriv-

astava et al., 2013; Chamma et al., 2013, 2016; Heck et al., 2019; reviewed in Garcia-Parajo et al., 2014).

It would be interesting to know whether crowding affects the stability of these clusters as well, offering

an energetically low-cost and convenient way to control the function of these other signaling platforms.

Limitations of the Study

The main strength of simulations, namely to simplify a complex system to help its understanding, is also its

main weakness. Here, synapses were simulated considering only diffusing molecules of uniform size and

immobile scaffolds. Molecules were considered as perfect spheres; other steric effects may exist if the

irregular shape of molecules is considered. The number of simulated molecules was fixed, so endo- and

exocytosis phenomena were not taken into account. Many factors could be introduced to simulate a system

closer to real synapses, and this will be the subject of future studies.
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All methods can be found in the accompanying Transparent Methods supplemental file.
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temporal and spatial resolutions (see Transparent methods). Binding periods were
detected by Packing coefficient (Pc) analysis (see Transparent methods), and the
calculated values of effective kon and koff on these trajectories are shown on the left
panels. A : Trajectory with one short event of binding (red portion of the trajectory
in A1, and on Pc plot in A2). B: Trajectory with several events of binding (color
segments in B1 and B2).
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Figure S2: Simulation of capture of molecules in simulated synapses. Related to Figure
1. A: Number of bound molecules in time once the steady state was reached in synapses
containing 250 sites. The distance between sites was 15 nm. A1: mean (central line) and SD
(shaded areas) during a 15s-long period, for small (s1, size: 1nm in diameter) or large (s10,
size: 10 nm) molecules with the indicated probability of binding Pbind. A2: window of 75s
showing the number of bound molecules for 10 simulations (each simulation depicted in a
different colors) for large molecules with Pbind=0.9. For the sake of clarity, only one every 75
time points are shown (one time point corresponds to 1ms). B: Examples of synaptic areas
with bound molecules (snapshots), representative of the steady state in synapses containing
250 sites, distanced 10 nm (B1) or 15 nm (B2). Bound molecules are shown in red (small ones)
or in blue (large ones). Empty sites are represented by grey dots.



Figure S3: Capture of molecules in simulated synapses with reduced Pfree (0.5x10-4).
Related to Figure 1. Number of bound molecules in synapses with 250 sites distanced 10
nm (A1) or 15 nm (A2), in steady state, for small (s1) or large (s10, gray area) molecules and
low (B1) or high (B2) Pbind (median, 25-75 IQR and 5%-95% range, 10 independent
simulations, unpaired t-test, ****: p<0.0001).
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Figure S4: Capture of molecules in simulated synapses with random distribution
of scaffolding sites. Related to Figure 1. A: Schemes of 250 randomly distributed
binding sites, in a synapse of 210 nm in diameter and 10 nm as a minimum distance
between sites (A1) or a synapse of 320 nm in diameter and 15 nm as the minimum
distance between sites (A2). B: Number of bound molecules in synapses as in A, in
steady state, for small (s1) or large (s10, gray area) molecules and low (B1) or high (B2)
Pbind (median, 25-75 IQR and 5%-95% range, 10 independent simulations, unpaired t-
test, ***: p<0.001, ****: p<0.0001).
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Figure S5: Availability of sites. Related to Figure 1. Examples of synaptic areas
containing 250 sites, distanced 10 nm (A) or 15 nm (B). Sites are shown in color (size of sites
not in scale) depending on the relative number of molecules that were bound to them, for
small (Size 1nm; A1 and B1) or large (Size 10 nm; A2 and B2) molecules. Results correspond
to molecules with Pbind=0.9. In red: sites that were often occupied (more than 66% of
bindings); in green: sites that collected 33 to 66% of bindings; in blue: sites that were
occasionally occupied (less than 33% of bindings). All the sites were visited at least once
during the simulation run (225s). Note that the sites in the center of synapses are less
efficient to capture large molecules (A2 and B2).
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Figure  S6: Molecular crowding slows down the capture of new molecules. 
Related to Figure 3.  Number of small (A1, A2) or large (B1,B2) molecules bound
(Pbind =0.9 ) vs time during the whole simulation run (225s) in synapses with initially
50 free sites and with 0, 100 or 200 extra obstacles at t=0 as indicated (colors in A1). 
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Figure S7: Molecular crowding favors multiple bindings and reduces the exchange of
molecules. Related to Figure 5. Binding and exchange of molecules (size=10 nm and Pbind

=0.1) in and out synapses at steady state. Synaptic areas had 50 binding sites and the
indicated number of obstacles at t=0. Sites were distanced 10 nm (A1,B1,C1,D1) or 15 nm
(A2,B2,C2,D2) and distributed in 1,2,4 or 7 clusters (color code in A1). Values are the mean
± s.e.m. of 10 independent simulations (statistical comparisons in case of 200 obstacles:
one-way ANOVA, ns: not significant, ****:p<0.0001). A: Number of bound molecules at
the end of the simulation period (225s). B: Percentage of simulated molecules that enter at
least once in the synaptic area. C: Number of bindings (to the same or a different site) per
molecule during the whole simulation run. D: Percentage of exchange (proportion of
molecules that enter and exit the synaptic area at least once).
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Figure S8: In absence of crowding, the distribution of sites in multiple clusters promotes
the exchange of molecules. Related to Figure 5. Binding and exchange of molecules in
absence of crowding (size=1 nm and Pbind =0.9) in and out synapses at steady state. Synaptic
areas had 50 binding sites and the indicated number of obstacles at t=0. Sites were distanced
10 nm (A1,B1,C1,D1) or 15 nm (A2,B2,C2,D2) and distributed in 1,2,4 or 7 clusters (color code
in A1). Values are the mean ± s.e.m. of 10 independent simulations (statistical comparisons in
case of 200 obstacles: one-way ANOVA, ns: not significant, *: p<0.05, **: p<0,01). A:
Number of bound molecules at the end of the simulation period (225s). B: Percentage of
simulated molecules that enter at least once in the synaptic area. C: Number of bindings (to
the same or a different site) per molecule during the whole simulation run. D: Percentage of
exchange (proportion of molecules that enter and exit the synaptic area at least once).
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Transparent methods 

Monte Carlo simulations 

The simulation script was coded in Matlab (The MathWorks) and run in a personal computer. Trajectories 
were simulated in a 2D space (square of 15 x 15 µm) introducing rebound conditions on each side to 
keep all the molecules (200 in total) in the area and reach equilibrium. In the center of this square, the 
binding sites area was simulated as a circle with the minimum diameter needed to hold at least 250 
binding sites. Binding sites (squares of 3 nm in size) were distributed at randomly selected nodes of a 
hexagonal grid (Fig.1A). Nodes were separated 10 (cercle of 190 nm) or 15 nm (cercle of 300 nm). 
Alternatively, sites were distributed randomly on the entire cercle, respecting a minimum distance of 10 
nm or 15 nm. In this case, cercles were somehow larger (210 nm or 320 nm in diameter, respectively).  

In case of synapses with several clusters of sites (Fig. 2A), the diameters of individual clusters were 140-
210 nm in case of two clusters, 100-150 nm in case of four clusters, 75-115 nm for seven clusters (sizes 
corresponding to sites distanced 10 and 15 nm, respectively). Clusters were distributed in a cercle of 
250-550 nm in diameter, compatible with the reported sizes of the post-synaptic density (Specht et al., 
2013; reviewed in Choquet and Triller, 2014). They were positioned so to leave at least 30 nm of free 
space between them.  

Trajectories were simulated as in Renner et al. (2017), with some modifications. The x and y components 
of the i-th displacement step in the trajectory were randomly selected from two independent normal 
distributions with the mean of zero and the variance equal to 2 Dsim Δt. Dsim was 0.02 µm2/s. The difficulty 
of particle-based Brownian dynamics simulations is to choose a time step Δt small enough to accurately 
describe reaction-diffusion processes without sacrificing computation efficiency, taking into account the 
period of time relevant for the system. As a trade-off, two time steps Δt were used: Δt = 1 ms was used 
in regions far from binding sites (no binding site in a distance that could be travelled in one time step) 
and Δt = 0.1 ms in the vicinity of a binding site. The presence of binding sites within this distance was 
analyzed before any movement was done, to choose Δt for the next step. With Dsim = 0.02 µm2/s the 
typical displacement of free molecules in one time step was 8.9 nm with Δt = 1 ms and 2.8 nm with Δt = 
0.1 ms.  

Molecules and obstacles were simulated as circles of 1 or 10 nm in diameter. Obstacles behave as a 
separate type of molecules that occupied nodes of the hexagonal grid. They were kept unreactive and 
immobile during all the simulation run. When one molecule hit another (mobile or immobile) or 
obstacles, it bounced back. When the molecule passed on top of a binding site, it remained quasi-
immobile (Dsim=10-4 µm2/s, the mobility of scaffolding sites in synapses, see in Supplemental references 
Hanus et al., 2006) on top of it if its probability of interaction Pbind was above a number R randomly 
generated from a uniform distribution. The stabilization lasted until the probability for detachment, Pfree, 
exceeded another random number. Pfree, which represents koff, was set to 0.5 or 1x10-4 to obtain similar 
effective koff that those calculated from experimental data (see Packing coefficient analysis below).  Pbind, 
which represents kon, was also chosen (0.1 or 0.9) regarding experimental values of effective kon. 

Plasticity-like changes were simulated by modifying Pbind after 15s of simulation at steady state. The total 
length of the simulation run was 225s. For LTP simulations, Pbind changed from 0.1 to 0.9. For LTD, Pbind 
changed from 0.9 to 0.1. 

10-20 independent simulation rounds were run for each case. The random generator was seeded on 
the current time to produce a different sequence of numbers each time. 

Bindings were registered during the simulation. The number of bound molecules was evaluated at given 
time points of the run. To calculate the percentage of molecules entering the synaptic region and the 
percentage of exchange, the synaptic area was defined as the convex hull containing all the binding 
sites. The position of the molecules was then evaluated with respect to this area. The percentage of 
molecules that enter the synaptic area at steady state was calculated with respect to the number of 
simulated molecules, during the last 75 s of the run. The percentage of exchange corresponded to the 
proportion of molecules that enter and exit the synapse at least once during the last 75 s of the run 
(100% means that all the molecules that enter the synaptic area did not remain in it during the whole the 
run).  



“SPT-like” simulated trajectories and Packing coefficient analysis  

To verify whether simulated trajectories had similar characteristics than experimental ones, they were 
converted to the temporal and spatial resolutions of trajectories obtained previously with SPT in the 
laboratory. Only one every 75 time points was kept (to simulate the acquisition frequency of 18 Hz) and 

a gaussian noise was added to each position of the molecule (mean zero and =20 nm) that corresponds 
to the localization accuracy of our SPT set up. 

On these “SPT-like” trajectories, we applied the packing coefficient (Pc) analysis (Renner et al., 2017) as 
for experimental ones. Briefly, Pc was calculated at each time point i as 

𝑃𝑐𝑖 =  ∑
(𝑥𝑖+1−𝑥𝑖)

2+(𝑦𝑖+1−𝑦𝑖)
2

𝑆𝑖
2

𝑖+𝑛−1
𝑖   

where xi, yi are the coordinates at time i; xi+1, yi+1 are the coordinates at time i+1, n is the length of the 
time window (n=30 time points) and Si is the surface area of the convex hull of the trajectory segment 
between time points i and i+n. Si was calculated using the convhull function in Matlab. Binding events 
were detected using Pcthresh=104 µm-2, corresponding to a confinement in an area with a diameter of ~20 
nm. This value was chosen considering the noise introduced into simulated trajectories. Periods of the 
trajectory avec higher Pc were considered as binding events. Effective kon was calculated as the 
frequency of these events; and effective koff, as the inverse of their duration (Renner et al., 2017). 

Statistical analyses  

Statistical analyses were done using two-tailed Student’s t or one way ANOVA with Turkey’s multiple 
comparison tests using Prism (GraphPad software, USA). Normality of distributions was checked with the 
Kolmogorov-Smirnov test. Images were prepared using Photoshop (Adobe Systems, USA).   
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