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Abstract: Inequality of health services for different specialty categories not only occurs in different
areas in the world, but also happens in the online service platform. In the online health community
(OHC), health services often display inequality for different specialty categories, including both online
views and medical consultations for offline registered services. Moreover, how the city-level factors
impact the inequality of health services in OHC is still unknown. We designed a causal inference
study with data on distributions of serviced patients and online views in over 100 distinct specialty
categories on one of the largest OHCs in China. To derive the causal effect of the city-levels (two levels
inducing 1 and 0) on the Gini coefficient, we matched the focus cases in cities with rich healthcare
resources with the potential control cities. For each of the specialty categories, we first estimated
the average treatment effect of the specialty category’s Gini coefficient (SCGini) with the balanced
covariates. For the Gini coefficient of online views, the average treatment effect of level-1 cities is
0.573, which is 0.016 higher than that of the matched group. Similarly, for the Gini coefficient of
serviced patients, the average treatment effect of level-1 cities is 0.470, which is 0.029 higher than that
of the matched group. The results support the argument that the total Gini coefficient of the doctors
in OHCs shows that the inequality in health services is still very serious. This study contributes to the
development of a theoretically grounded understanding of the causal effect of city-level factors on the
inequality of health services in an online to offline health service setting. In the future, heterogeneous
results should be considered for distinct groups of doctors who provide different combinations of
online contributions and online attendance.

Keywords: inequality; health service; causality; medical specialty; consultation

1. Introduction

With the development of health services worldwide [1], the inequality of health services for
different specialty categories not only occurs in different areas, but also happens in online services,
i.e., rural-urban health disparities [2]. More importantly, substantial inequalities remain in the
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geographical distribution of medical resources (as illustrated in Figure 1). In particular, provinces in
western China have the lowest levels of health resources [3]. With its potential to mitigate the low
levels of medical resources in rural areas, the online health community (OHC) concept has become
a physician-patient communication platform [4] and a site for the public to share physician reviews.
Up to 500,000 people with chronic diseases have used PatientsLikeMe [5], an online health service in
USA, according to a report by The Economist [6]. However, few studies have focused on the inequality
of online health services, especially in the inequality of health services for different city-levels. As our
previous studies suggested [4], physicians with more past physician online contributions, with higher
review ratings, and not coming from cities with rich healthcare resources, were more willing to
participate in OHC activities. The city-level (or state level) has been studied in other areas, i.e., equity
in health [3] and public health [7]. However, the causal effect of the city-level on the inequality of
health service is still unknown, especially for online healthcare communities.
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Figure 1. Unequal geograpghical distribution of medical resources in the investigated online health
community. Beijing and Shanghai are the cites (city level = 1) with richer healthcare resources
(including a larger population of doctors) and patients than those of the other cities (city level = 0).
The size of circles indicates the number of patients, and the darkness of the color in the circles indicates
the number of doctors. Data were collected from the online health service platform www.haodf.com on
26 June 2017.

As our previous findings [4] suggested, in various specialty areas, the average levels of physician
online contribution are different. Even after the characteristics associated with the potential outcomes
are controlled for differences in observed characteristics, there are reasons to believe that the treated
and untreated differ in unobservable characteristics [8,9]. In this scenario, the treated and untreated
may not be directly comparable, even after adjusting for observed characteristics. The city-level is
an important factor that aggregates the information of geographical distribution and other related
resources distribution [10,11]. Can we still identify and estimate the causal effects of the (city-level)
characteristics on the inequality of health service between online views and offline serviced patients
for specialty categories? To find a solution to those issues, we designed a causal inference study to
examine the average treatment effect (ATE) of the city-level, identifying the difference of inequality of
health service between online views and offline serviced patients for specialty categories.

www.haodf.com
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1.1. Research Issues

Although the provision of OHCs can mitigate the low levels of medical resources in rural areas,
few studies have focused on the inequality of online health services, especially on the inequality of health
services for different specialty categories. The OHC platform can be regarded as an online-to-offline
(O2O) system that provides both communication channels (interaction) for online medical services and
records (or feedback) for offline medical services. Although many pieces of research have suggested a
long tail phenomenon exists in the online product sale platform, seldom have they simultaneously
taken both the inequalities in online views and in the offline service (patients’ consultation) into
consideration. This study attempts to bridge this knowledge gap. We examine whether the online
health community reduces the inequality of health service for different specialty categories through a
retrospective study of the Lorenz curve of doctors’ service diversity. Our motivation is trying to answer
the following issues: (1) What kind of patterns characterize the distribution of medical service delivery
in distinct specialty categories in the online health community? (2) How does the factor ‘city-level’
impact the inequality of health services in OHCs? (3) How to identify the difference of the response of
the Gini coefficient with the treatment variable of the city-level and other confounding variables?

1.2. Literature Review

Among OHC platform users, the three types of services with the highest usage rate [4] are
medical information inquiry (10.8%), online registration (10.4%), and online consultation services
(6.4%) [12]. Meanwhile, the online health community can also have the facilities, including guiding
the patients to go to hospitals for necessary conditions and multiple virtual visits with their doctors
to save time, travel costs and avoid environmental pollution [13]. As the posters of Good Doctor
(the OHC with the largest population of registered doctors in China) online platform says “based
on patients” self-introduction of their conditions, those comments presented by doctors can only be
deemed as references rather than direct guidelines for diagnosis and treatment”. Since patients often
seek information (doctor’s outpatient time, their personal introduction and review rating, etc.) about
doctors on the OHC, they also revisit the community to give feedback (i.e., ratings, online registration,
thank-you letters, and gifts) to their doctors after the face to face medical service. Although many
studies have suggested a long tail phenomenon exists in online product sale platforms [14,15] and
online and offline prices are similar [16], few of them took the inequalities of doctors’ service delivery
(online or offline service) into consideration.

Studies have investigated the influence of the general structure of inequality on the service value and
practices in society. One study [15] investigated the inequality of online sales in recommender systems.
Focusing on the distribution of its demand and revenue, their study associated the average influence of
the network on each category with the inequality, and quantified the inequality using the Gini coefficient.
Using ordinary least-squares regression, the study [17] estimated the association between a category’s
Gini coefficient (RevenueGini) and the average PageRank of its books (AvgPageRank). This paper is
among the first to measure the concentration of health service delivery in OHCs.

The Lorenz curve was first proposed as a graphical statistic tool to express the concentration of
wealth in a population in 1905 [18]. Thus one can select any quantile to characterize concentration.
Alternatively, the Gini coefficient [1] as a summary index of concentration was frequently applied for
studying the concentration of income in a population and had been implemented to many problems.
Recently, the Lorenz curve and Gini coefficient have also seen applications in the area of health and
medical services research. For example, the Lorenz curve and Gini coefficient have been implemented
to explore the relation between distribution of health professionals and the distribution of patients [18].
On the basis of some quantity of interest, the inference of both the Lorenz curve and the Gini coefficient
involves ranking the units of observation and estimating cumulative proportions.

A number of approaches are capable of revealing the associative relationships between the
outcomes and the related independent variables at a significant statistic level. The causal inference
method takes the advantages of non-significant related covariates, which assigns treatment experiments
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on different units. However, challenges lie in the identification of the population average causal effect
of the treatment on the dependent variables. Average treatment effect is a term which refers to the
measure comparing treatments (or policies) in randomized experiments [19]. Although treatment
effect originated in the medical literature concerned with the causal effects of binary treatments, such as
drug trials, the term is now applied more generally, such as evaluation of policy interventions and
dynamic treatment regimes. In a randomized experiment, the ATE can be estimated using a differential
comparison in mean outcomes for treated and untreated units. However, the ATE is generally deemed
as a causal parameter of interest. With random assignment mechanism, both observational studies and
experimental study designs may enable the investigator to estimate an ATE in a variety of methods.
When the ATE is estimated by the difference between these two averages, it is also an estimate of the
central tendency of the distribution of unobservable individual-level causal effects [20]. With a sample
randomly constituted from a population, the ATE from the sample (the SATE) can asymptotically
converge to the population ATE (or PATE) [21]. The primary goal of causal analysis is to explore
the selected effects of a particular cause, rather than the search for all possible causes of a particular
outcome or other relative effects. The rise of the counterfactual inference model has increased the
popularity of data analysis procedures which are most clearly useful for the discovery of causality.
For a saturated regression model, the lack of covariate balance will be revealed to the investigator when
the regression routine drops the coefficient for the zero cells. However, if a constrained regression
model were fit, such as if covariates were modelled as a simple linear term interacted with treatment,
the regression model would yield seemingly reasonable coefficients. Under unconfoundedness or
exogenous treatment assignment, estimation of ATE is often hampered by a lack of covariate balance.
This lack of covariate balance leads to imprecise estimates and often makes estimators sensitive to
the specification of models. With observational data, it is desirable for influencing causal effects to
replicate a randomized experiment by obtaining covariate balance between the treatment and control
groups. This goal of randomization can often be obtained through choosing well-matched samples of
the original treatment and control units, thereby reducing bias due to the confounding covariates [22].
In such a context, researchers have often used informal methods for trimming the sample [23]. To find
the region of overlap, the propensity score method may not capture all dimensions of the common
support; subsequent matching is implemented to achieve covariate balance [20].

2. Materials and Methods

2.1. Research Models

In the research design, the treatment variable (city-level) represents the doctor’s location status at
a specific time. Second, the mean and variance of the number of doctors’ articles across the specialty
categories, mean in the degree of voted diversity, mean of doctors’ review rating and mean in doctors’
online contribution as independent variables are considered as the covariates. Based on this framework,
we can verify whether doctors’ average treatment effect of cities with rich healthcare resources on the
inequality of health service is the same for online service (online reviews) and offline service delivery
(serviced patients) in different specialty categories.

Gini coefficient [24] was introduced to reveal the distributions (patterns) within categories in
a way that is comparable across doctors’ specialty areas by calculating the Gini coefficient of each
category of the doctors’ online service. In applications, the Gini coefficient frequently accompanies
a graphical presentation of the Lorenz curve. To comparative analyses of the inequalities in service
delivery of online service and in the offline service delivery, we defined two concepts with the Gini
coefficient, Gini coefficient of service delivery and Gini coefficient of patient reviews.

The difference of Gini coefficients (of serviced patients or online views) was the dependent variable
of interest, and the average number of articles, average breadth of service diversity, average doctor
review rating and average doctor online contribution are set as the covariate variables and the city-level
(Ti) as the treatment variable. The treatment variable is a binary (0–1) variable, which represents the
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doctors staying the cities of rich healthcare resources or not at the data acquisition time. The treatment
variable is employed to test the average treatment effects of their status. For example, for all the
specialty categories, the statistical analysis is designed and conducted for those doctors from cities
of rich healthcare resources (i.e., Beijing and Shanghai) Ti = 1 and (other cities in China) Ti = 0,
respectively. The choice of Beijing and Shanghai is based on two aspects. First, the healthcare resources
in those two cities are much richer than those in other cities or even provinces in China. Approximately
22% of all physicians are working in Beijing or Shanghai, the two largest cities in China. This naturally
reflects the relative inequality of the health service of medical resources in large cities. In all the 31
regions, Shanghai ranked first on the perspective of health care institutions (number per 10,000 km2),
health technical personnel, beds in health care institutions and health investment, while Beijing
occupied the second place [25]. Second, those two cities are often formally treated as special cases,
compared to any other cities in China. One study [26] revealed that Shanghai with the highest level of
economic development had more advanced computed tomography and magnetic resonance imaging
machines, and higher government subsidies on these two types of equipment.

The average treatment effects study has many strengths. First, this model will avoid selection
bias in the estimation of treatment effects. The bias problem is critical for analyzing imbalanced
data, i.e., the distribution of numbers of owning Ti = 1 is not overlapped with that of owning
Ti = 0. Second, although other independent variables may attract the readers on the topic of this
area, the average treatment effects of city-level (Ti) in the inequality of health service attract the most
important concerns in the OHC stakeholders. The definitions and measurements of all variables are
listed in Table 1.

Table 1. Variable Definitions and Measurements.

Variables Definitions Measurements

Dependent Variables

SCGini j(SP)
Specialty category’s Gini

coefficient of serviced
patients

Gini coefficient of doctors’ service delivery (serviced
patients) for the doctors clustered in specialty category j

SCGini j(OR) Specialty category’s Gini
coefficient of online views

Gini coefficient of doctors’ online views for the doctors
clustered in specialty category j

Covariates

NDAMea j Average number of articles
Average number of articles of the doctors clustered in

specialty category j, and NDAi is the number of articles of
the doctor i

BVSMea j
Average breadth of service

diversity

Average breadth of the voted specialties (from patient
votes) of all the doctors clustered in specialty category j,

and BVSi is the breadth of the voted specialties (from
patient votes) of the doctor i

DRRMea j Average doctor review rating

Mean of the overall ratings in user reviews of the doctors
clustered in the specialty category j (scoring from 1–5,
already excluding 0), and DRRi is the number of the

overall ratings in user reviews of the doctor i

DOCMea j
Average doctor online

contribution

Mean of doctors’ online contribution across the category’s
doctors clustered in specialty category j, and DOCi is the

number of doctors’ online contribution of the doctor i

Treatment variables: Divide the Samples Separately

CITYi City level
A dummy variable Ti with two levels: level-1 indicates
doctors from resource-rich cities (Beijing and Shanghai);

level-0 indicates doctors from other cities

With the two dependent variables, we can estimate the doctors’ average treatment effect of cities of
rich healthcare resources on the inequality of health service in different specialty categories separately
and compared them between online views and offline service (patients).
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2.2. Materials

Through web crawler technology, data from the Good Doctor website were collected (on 26 July
2017) and filtered for the purposes of the study. In the data set of 142,448 samples, 140,344 doctors with
personal homepages were commonly considered to be genuinely involved in this OHC. The collected
data set contained all the values of this study as well as the doctor’s identity document (personal web
site) and other de-identified information. The following filtering criterion was set to design an
observational retrospective study; (a) Amount of served patients for doctor i′ is larger than 0, and the
volume of patient online reviews for doctor i′ is larger than 0. (b) The number of doctors’ articles is
larger than 0, number of reviews rating larger than 0, doctor i′ is online contributions larger than 0 and
the number of patients’ votes larger than 0.

After filtering, 9644 samples of doctors remained from the original data set. Meanwhile, 114 specialty
categories were filtered from the original 132 categories. The data acquired and filtering process is
illustrated in Figure 2.
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Figure 2. Data Acquired and Filtering Process (Accessed From Good Doctor Website).

The filtered samples have the following characteristics. First, our samples were from a large
heterogeneous population with diverse backgrounds. The 9644 doctors came from 127 different specialty
categories and 1338 different hospitals widely distributed throughout China. Second, the number of
service deliveries and the number of patient reviews were collected for the retrieved doctors on the
OHC. Although their usage time was different, the corresponding values of the independent variables
were also collected during the same period for their usage time. Third, the number of doctors’ articles
were collected without distinguishing between the original articles and reprinted long articles (not the
communication posts with patients). We also collected the doctors’ review ratings (regarded as online
word-of-mouth) from the stars labeled on the OHC. The average score of these ratings is 2.756 for all
the sample data on a scale from 1 (the lowest) to 5 (the highest). Moreover, despite the association with
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the posted articles on the website, the contribution scores of the doctors were also impacted by many
other factors, including the posted articles communicating with the patients online on the website.
The other values we collected were the patient votes, which were different from the doctors’ review
votes for the word-of-mouth rating and the case records of doctors’ accumulated clinical experience.
Finally, the values of the location of hospitals were also collected for those doctors clustered in the
samples. After filtering, 2603 (27%) of all the doctors were from Beijing or Shanghai, which are China’s
two largest developed cities (level-1), while the other 7041(73%) doctors from the other cities (level-0).
Thus, a causal inference study can be designed with those collected and filtered data samples.

2.3. Measures

Before examining the OHC platform’ effects, it is necessary to distinguish between service delivery
and service diversity. Service diversity typically measures how many different services a doctor offers.
It is a supply-side measure of breadth. In contrast, we use the diversity of service delivery to describe
the concentration of market shares conditional on doctors’ assortment decisions [27].Here we introduce
the Gini Coefficient to quantify the concentration of service delivery in OHC, because the Gini index is
much easier for us to understand the distribution of inequality as a ratio of two areas in Lorenz curve
diagrams than the other inequality metrics (i.e., S-Gini index) [24].

2.3.1. Gini Coefficient: Quantifying the Distribution of Service Inequality

To identify the causal effect of cities of rich healthcare resources on service inequality, our research
framework is designed as a retrospective observational study. We aim to investigate the outcomes from
two aspects: (a) Gini coefficient of service delivery: offline registered patients, and (b) Gini coefficient
of patient reviews: online service. Thus, the dependent variable will be used to reveal the patterns
(i.e., inequality phenomena) of the doctors’ online service and reveal the relationship between specialty
category’s Gini coefficient (SCGini) and doctors’ endorsement on a diversity of specialty categories.

Let L(p) be the Lorenz curve [24] denoting the percentage of the provider’s service delivery
generated by the lowest (100× p)% of doctors clustered in the same specialty area during a fixed
time period. In our analysis, the Lorenz Curve L(p) is drawn inside a square box with the x-axis
being a cumulative percentage of doctors’ serviced patients (service delivery) and the y-axis being the
cumulative percentage of service delivery for doctors clustered in the same specialty area during a
fixed time period. The Lorenz curve of a category’s service delivery ranks the services (online medical
consultation) in increasing order of the amount of past served patients, then plots the cumulative
fraction L(p) of the amount of service delivery (served patients) associated with each ascending rank
percentile p, where 0 < p < 1.

This study on the total amount of doctor i’s past served patients online will provide evidence to
factors of success on which the potential customers select an online doctor and reveal the evolving
mechanism of clinical acceptance of telemedicine. SPi. is measured as the cumulative size of the
served patients (referring to the doctors’ service delivery) in the past. Therefore, the volume of service
delivery for doctors clustered in the same specialty area during a fixed time period, SP j is calculated
by summing the total amount of past served patients of all the doctors in the same specialty area:

SP j =

N j∑
i=1

SPi( j) (1)

where SPi( j) is the total amount of doctor i’s past served patients online in the specialty category
(discipline) j, N j is the number of doctors clustered in the specialty category j.
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Thus, the Gini coefficient of distribution of service delivery SCGini defined by [15]. The Gini
coefficient SCGini measures the distributional inequality of the amount of service delivery
(serviced patients). The SCGini of serviced patients for the specialty category j is defined as:

SCGini j(SP) =
Area

(
SC j, 45

◦
)

0.5
(2)

Area
(
SC j, 45

◦
)
=

∫ 1

0
(p− L(p))dp (3)

where Area
(
SP j, 45

◦
)

is the area between the Lorenz Curve of service delivery and a 45
◦

line.
Thus, SCGini measures how much L(p) deviates from the 45

◦

line, SCGini ∈ [0, 1]. A value SCGini
= 0 reflects diversity (all services have equal service delivery), whereas values near one represent
concentration (a small number of services account for most of the service delivery).

When service delivery is perfectly evenly distributed among products, the Lorenz Curve L(p)
coincides with a 45

◦

line and the Gini Coefficient SCGini equals zero. As the distribution becomes
more concentrated, the L(p) curves away from a 45

◦

line and the SCGini increases. Thus, SCGini is an
aggregate inequality measure and vary anywhere from 0 (perfect equality) to 1 (perfect inequality).
Perfect equality in our case illustrates that all the doctors in that category (specialty area) have the
same number of service delivery, and perfect inequality illustrates one doctor in the category service
all the patients in that specialty area and all other doctors in the category have zero of served patients.

Similar to the definition of SCGini j(SP), the Gini coefficient SCGini measures the distributional
inequality of the number of patient reviews for the doctors in the sociality category.

First, the volume of patient online reviews for doctors clustered in the same specialty area during
a fixed time period, OR j is calculated by summing the total amount of past online reviews ORi(j) of all
the doctors in the same specialty area:

OR j =

N j∑
i=1

PRi( j) (4)

where PRi( j) is the total amount of doctor i’s past patients reviews for doctor i in the specialty category
(discipline) j, N j is the number of doctors clustered in the specialty category j.

SCGini of patient reviews for the specialty category j is defined as:

SCGini j(OR) =
Area

(
OR j, 45

◦
)

0.5
(5)

A value SCGini (OR) = 0 reflects diversity (all doctors have equal online reviews), whereas values
near one represent concentration (a small number of doctors account for most of the online reviews).

2.3.2. Measures of Doctors’ Endorsement

To test this main conjecture, we use the mean and variance of the number of doctors’ articles
across the specialty categories, mean in the degree of voted diversity, mean of doctors’ review rating
and mean in doctors’ online contribution as independent variables.

a) Mean of the number of doctors’ articles:
In this study, we measured the number of doctors’ articles through a cumulative count of the

articles of each doctor listed on the Good Doctor website. NDAMea j is measured as the mean of the
number of doctors’ articles for doctors clustered in the specialty category j:

NDAMea j =

∑N j

i=1 NDAi( j)

N j
(6)
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where NDAi( j) is the number of doctors’ articles of the doctor i clustered in the specialty category j, N j
is the number of doctors clustered in the specialty category j.

b) Degree of voted diversity:
Given the voting states (Si, Votes(Si)), Si = {Si1, Si2, . . . , Sim} is the vector of doctor i’s service

specialty labeled by the serviced patients in specialty category j, and Votes(Si) is the corresponding
volume vector of their votes. The total amount of doctor i’s service specialties labeled by the
serviced patients:

BVSi( j) =
m∑

j=1

1( Votes(Si)>0) (7)

BVSMea j is measured as the average breadth of the voted specialties (from patient votes) of all
the doctors clustered in specialty category j.

BVSMea j =

∑N j

i=1 BVSi( j)

N j
(8)

where BVSi( j)s the breadth of the voted specialties (from patient votes) of the doctor i in specialty
category j, and N j the number of doctors clustered in the specialty category j.

c) Mean of the doctors’ review rating:
In this study, we measured the physicians’ ratings in user reviews through the star scores listed

on the Good Doctor website. DRRMea j is measured as the mean of the ratings in user reviews of the
doctors clustered in the specialty category j:

DRRMea j =

∑N j

i=1 DRRi( j)

N j
(9)

where DRRi( j) is the ratings in user reviews of the doctor i clustered in the specialty category N j is the
number of doctors clustered in the specialty category j.

d) Mean of the doctors’ online contribution:
Essentially, the existence of online contributions means that members are involved in

community-related activities, such as sharing information actively, responding positively to other
members’ questions, and intuitively interacting with other members [16,19]. In this study, we measured
the physicians’ online contribution through the contribution scores listed on the Good Doctor website.
There are three principal ways in which the contribution score can change. First, when physicians
update their personal information, such as outpatient information and consultation range, in a
timely manner, their contribution scores can be increased through the OHC administrator’s audit.
Second, physicians are encouraged to post medical articles for patients on the website. After the article
is referenced by the Good Doctor website, the contribution score is updated. Third, if a physician can
answer a patient’s question online, his/her contribution score will be increased. DOCMea j is measured
as the mean of the contribution score for the doctors clustered in the specialty category j:

DOCMea j =

∑N j

i=1 DOCi( j)

N j
(10)

where DOCi( j) is the contribution score for the doctor i clustered in the specialty category N j is the
number of doctors clustered in the specialty category j.
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2.3.3. Propensity Score: Measure of the Likelihood Being Treated

The propensity score is often employed to reduce the dimensionality of the causal influence
problem. The propensity score is the conditional probability of assignment to a particular treatment
gen a vector of observed covariates [28].

Let p(Xi) be the probability of unit i having been assigned to treatment, and the propensity score
was defined as [29]:

p(Xi) = Pr(Ti|Xi) = E((Ti|Xi)) (11)

where Pr(Ti|Xi) is the probability of being assigned to the treatment given Xi and E(x) is the expectation
operator of x, Ti is a dummy variable with two levels as detailed in Table 1. Here Xi denotes the
covariates, i.e., NDAi, DRRi and DOCi. Usually, the propensity score was estimated by training the
logistic regression [29]:

logit(Ti) = β0 + β1NDAi + β2BVSi + β3DRRi + β4DOCi + εt (12)

where β0 is the coefficient of the constant term and β j = 1, 2, 3, 4, are the coefficients of control variables
as detailed in Table 1. The error term εi obeys normal distribution with mean 0 and variance σ2.

To achieve a balanced control-treatment case dataset, matching on pre-treatment covariates is one
popular method. We match control-treatment cases on pre-treatment covariates with the propensity
score. In the matching process, the scalar can be preset for the number of matches which should
be found, i.e., the default value 1 is for one-to-one matching. More similar units are more likely to
experience more similar trends so the parallel path assumption may be more plausible. Finally, we run
the causal effect regression model with the matched data-set.

2.4. Statistical Analyses

Having defined our two main variables—service diversity and Gini—we now turn to our empirical
analysis. To test the main conjecture of whether doctors’ patient votes will affect service usage, it’s easy
to think about the associative relationship between the covariates and the outcomes. We first fit these
data for ten specialty areas by examining how an increase in its influence might enhance or diminish
the long tail of medical service demand, rather than fit the size of serviced patients and scale of vote
data for the individual doctors. However, we are not only investigating the associative relationship of
main effects but also revealing the causal effect of the treatment variable on the outcome, the inequality
of health service for different specialty categories.

To further reveal the causal effect, the statistical analysis is designed and conducted for those
doctors, respectively. The average treatment effect [19] refers to the causal effect of the binary
(0–1) variable T on an outcome variable of interest, comparing their average outcomes with sample
covariate balanced:

ATE
(
SCGini j, T

)
= E

(
SCGini j(T = 1) − SCGini j(T = 0)

)
(13)

where E(x) is the expectation of x.
For all the specialty categories, the SCGini j consists of two aspects, the specialty category’s

Gini coefficient of serviced patients and the specialty category’s Gini coefficient of online reviews.
Those results will be employed to verify the effectiveness of online service and offline service.

In the form of regression [20], the causal effect α can be a model with the linear model:

Y j = µ+ αT j + βX j + ε j (14)

where Y j denotes the outcomes of the jth units, namely, the Gini coefficient of the j-th categories; T j the
indicator of treatment variable, and X j the covariates and ε j the error for unit j.
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The coefficient for the treatment indicator α still represents the average treatment effect,
but controlling for covariates can improve the efficiency of the estimate. More generally, the regression
can control for multiple covariate predictors. As the covariates can be substituted by the observational
variables, the causal inference using regression [20] on the treatment variable can be formed as:

Ln
(
SCGini j

)
= µ + αT j +

 β1Ln
(
NDAMea j

)
+ β2Ln

(
BVSMea j

)
+

β3Ln
(
DRRMea j

)
+ β4Ln

(
DOCMea j

)  + ε j (15)

where Y j is substituted by Ln
(
SCGini j

)
, the logarithm transform of the Gini coefficient of patients

or views.

3. Results

3.1. Overlap of the Confounding Variables

With the propensity score matching theory [30], we analyzed the experimental data using logistic
regression (10) with one main effect (on treatment) for each covariate. The nearest neighbor method
was implemented to achieve control cases to the focus cases.

First, as the literature usually has done [22,31], graphical diagnostics are helpful for quickly
assessing the covariate balance. The histogram distributions of propensity scores in the original and
matched groups are also useful for assessing common support. Although the densities of raw treatment
and matched treatment cases did not change, those of raw control and match controls took significantly
changes. The results show an adequate overlap of the propensity scores, with a good control match for
each treatment unit.

Second, plots in Figure 3a show dots with a size proportional to their weight, which is also useful for
weighting or subclassification. Meanwhile, the absolute standardized difference is helpful for comparing
the mean of continuous variables between treatment groups, illustrated in Figure 3b. Those results
were obtained in R with the package MatchIt [9]. The results of the absolute standardized difference
suggested that the matched data achieved better covariate balance than all data before matching.
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To diagnose the balance of the control-case data, we also compared the focus cases and matched
control cases. Table 2 lists the statistics of the selected matched patient characteristics. The results
provided empirical evidence that no statistically significant difference exists between those two groups
of cases. To make the samples covariate balance, 2603 control cases were selected from the 7041 samples
to compare with the package MatchIt [9].

Table 2. Statistics of the Selected Matched Patient Characteristics.

Variables Focus Cases
(n = 2603)

Matched Controls
(n = 2603)

95% CI * in Difference
After Matching

p-Value After
Matching

NDA(i) 31.235 31.581 (−6.521; 7.215) 0.921
BVS(i) 9.244 9.376 (−0.067; 0.330) 0.194
DRR(i) 2.818 2.809 (−0.048; 0.029) 0.628
DOC(i) 34065.2 32516.6 (−4903.7; 1806.7) 0.366

*CI: confidence interval. NDA : Number of articles of each doctor; BVS : Breadth of the voted specialties; DRR :
Number of the overall ratings in user reviews of each doctor; DOC : Number of doctors’ online contribution.

3.2. Lorenz Curve of the Inequality Service

The OHC system associated the average influence of the reputation award on the doctors’ serviced
patients and online views in each category, with the inequality measure (Gini coefficient) derived from
the category’s Lorenz curve.

To diagnosis the difference of the cases in those two groups, we examined the data with Welch
two sample t-test, as demonstrated in Table 3. Before matching, the means of patients are 1698 for
the group control and 2680 for the focus cases. Since the null hypothesis is rejected, the alternative
hypothesis is the true difference in means is not equal to 0. The results show that the mean of focus
cases and that of the matched cases is significantly different.
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Table 3. Statistics of the Empirical Experimental Data (n = 2603).

Mean of Focus
Cases

Mean of Matched
Controls 95% CI * in Difference p-Value

Patients before matching 1698 2680 (−1158; −805) <0.001
Patients after matching 2465 2680 (−436; 6) 0.056
Views before matching 1,065,312 2,191,087 (−1340802; −910749) <0.001
Views after matching 1,771,188 2,191,087 (−695284; −144514) 0.003

*CI: confidence interval.

With the cases of control-case matching, the Gini coefficients of the empirical experimental data
were compared among focus cases, control cases after matching and those before matching. We also
compared the Gini of all the cases after matching and those of all the cases before matching, shown as
in Table 4. Figure 4 deploys the Lorenz curve of the empirical experimental data on patients and views
after matching and before matching.

Table 4. Statistics (Gini Coefficients) of the Empirical Experimental Data.

Gini of Focus
Cases

Gini of
Controls After

Matching

Gini of Controls
Before Matching

Gini of All the
Cases after
Matching

Gini of All the
Cases Before

Matching

SP 0.635 0.629 0.604 0.632 0.622
OR 0.758 0.789 0.780 0.774 0.783

Difference 0.123 0.16 0.176 0.142 0.161
n 2603 2603 7041 5206 9644

Note: SP—serviced patients; OR—online reviews.
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The results in Table 4 show three essential facts. First, the number of views shows much higher
inequality than that of patients for all the cases, the focus cases and the controls (no matter before
matching or after matching). Second, the number of patients of focus cases shows higher inequality
than those of controls, but the number of views of focus cases shows lower inequality than those of
controls (both before matching and after matching). On patients, the difference of Gini coefficients
between focus cases and controls after matching is 0.006 (=0.635–0.629), and that between focus cases
and controls before matching is 0.031. On views, the difference of Gini coefficients between focus
cases and controls after matching is −0.031 (=0.758–0.789), and that between focus cases and controls
before matching is −0.022. Third, the number of patients of all the cases after matching show higher
inequality than that of before matching, but the number of views of all the cases after matching show
lower inequality than that of before matching. Moreover, the difference of inequality of health service
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between online views and offline serviced patients is 0.161 before matching in the 9644 cases, and 0.142
after matching for the 5206 cases.

3.3. Causal Effects of City-level on Services Inequality

We first identified the causal effects of cities of rich healthcare resources on online service and
offline service with equation (13). Here we deduced the causal effect with the definition, which is
different from the identification process of average treatment effect using regression. This is because
the experimental data were provided with complete observations (not counterfactual) on the covariates.
For Gini coefficients the specialty categories, 101 entities remained after filtering the NA values in the
Gini coefficient table. The distribution of those Gini coefficients was deployed by the Gini coefficient
of serviced patients and the views. For the Gini coefficient of serviced patients, 95% quantile of
SCGini j(SP) of focus cases is 0.721, which is 0.052 higher than that of the matched group. The 50%
quantile of SCGini j(SP) of focus cases is 0. 531, which is 0.025 higher than that of the matched group.
And the average treatment effect of level-1 cities (the mean of SCGini j(SP) of focus cases) is 0.470,
which is 0.029 higher than that of the matched group. Similarly, for the Gini coefficient of online views,
the 95% quantile of SCGini j(OR) of focus cases is 0.840, which is 0.035 higher than that of the matched
group. The 50% quantile of SCGini j(OR) of focus cases is 0.642, which is 0.015 higher than that of the
matched group. And the average treatment effect of level-1 cities (the mean of SCGini j(OR) of focus
cases) is 0.573, which is 0.016 higher than that of the matched group. Moreover, the difference between
the average treatment effect of online views and that of offline serviced patients is 0.103 for the 101
specialties categories. In total, the results support the argument that the inequality of health service
in level-1 cities is much higher (more serious) than that outside of those level-1 cities for different
specialty categories. It also provides evidence that the patients are more likely to be aggregated in
level-1 cities, and they are more likely to be served by the doctors.

4. Discussion

Although this paper is designed as a causal inference about the inequality of health service between
online views and offline serviced patients for specialty categories, we also analyzed the associative
relationship between those covariates and the (SCGini) responses of inequality of health service. With
the cases before matching, we estimated the correlation between specialty category’s Gini coefficients
and the other predictors (covariates), including the mean of the number of doctors’ articles across the
specialty categories, mean in the degree of voted diversity, mean of doctors’ review rating and mean in
doctors’ online contribution. The correlation between the Gini of the coefficient of serviced patients
(SCGini j(SP)) and the logarithm of NDAMea j, BVSMea j, DRRMea j, and DOCMea j are relatively low
(0.03, 0.05, 0.17 and 0.10, respectively). Similar results are depicted for the correlation between the
logarithm of SCGini j(OR) and the covariates. Based on these correlations, the variation of the response
variable (SCGini j(SP) and SCGini j(OR)) may not be mainly explained by the covariates. As the results
show, their R-Squared values are very low (R2 = 2.5% and R2 = 3.8%, respectively), illustrating that
the model using ordinary regression is not interpretable to a substantial amount of variance in the
dependent variable. The results support our argument that when the associative relationship with the
constraints of strong related independent variables is not statistically significant, the causal inference
method takes the advantages of non- significant related covariates by assigning treatment experiments
on different units. The larger NDAMea, DRRMea, and BVSMea are, the inequality of SCGini j(SP) would
be lower, but a larger DOCMea would increase the inequality of SCGini j(SP).

4.1. Principal Results

In the original data, the top four specialty categories of doctors’ serviced patients are gynecologic and
pediatrics, five senses of Chinese traditional medicine (CTM), occupational disease and prosthodontics,
with their average number of doctors’ serviced patients over 5000. However, CTM surgery,
plant medicines, CTM infectious disease medicines, osteoporosis, and periodontitis are the lowest five
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specialty categories with a number of average doctors’ serviced patients under 800. The Gini coefficient
of serviced patients ranges from 0.136–0.759 with a mean 0.564, which suggested that the inequality of
health service in the online health community is relatively serious for the specialty categories. The total
Gini coefficients of all the doctors in OHC are 0.632 for serviced patients and 0.774 for online views
after control-case matching, and the Gini coefficient in level-1 cities is much higher (0.006 for serviced
patients and −0.031 for online views) than those in the other cities.

Essentially, we should first realize that our empirical results cannot be used to explain all of the
doctors’ specialties to serve patients but to interpret the causal effect of the city-level on the inequality
of health service. As shown in Tables 3 and 4, the causal effect of the city location on Gini coefficient
was driven with the matched cases, which are the focus cases in level-1 cities with the potential
control cities in the covariates of with the covariates as number of articles, breadth of service diversity,
doctor’s review rating, doctor’s online contribution. Our findings show that, in various specialty areas,
the average treatment effect of level-1 cities are different for doctors’ specialty categories. For the Gini
coefficient of serviced patients in over 100 specialty categories, the average treatment effect of level-1
cities is 0.470, which is 0.029 higher than that of the matched group. Similarly, for the Gini coefficient
of online views, the average treatment effect of level-1 cities is 0.573, which is 0.016 higher than that of
the matched group.

Finally, we make specific recommendations for OHC managers to reduce the inequality in the
distribution of doctors’ service delivery among specialty categories based on our findings. For example,
platform managers should make an effort to reduce the service inequality, improving the referral
system and assigning the patients to the matched doctors with the appropriate service diversity.
Holding average influence constant, the association between the influence of the specificity diversity
and the distributions service delivery was enhanced when the influence was spread more evenly
across the doctors in the clinical title, rather than concentrated on a few doctors within the clinical title.
For example, when the doctor encountered a not well-experienced disease case (with low votes for a
few voted specialties), she/he may directly refuse to provide the online medical consultation service
and suggested the patient to referral to another doctor or go to the hospital.

4.2. Limitations

Although the difference of inequalities between the units of cases from the level-1 cities and the
others in OHC were reflected, more investigations need to be designed on the causality and policy
evaluation. In the future, heterogeneity of the results should be considered for distinct groups of doctors
who devoted different combinations of online contributions and online attendance. According to the
scholarly commonsense of the coauthors, the samples may be grouped by their mean online contributions
and online attendance values. As the samples did not completely conform to the standard normal
distributions but were nevertheless supported, the mean value was used to represent the entire data set.

First, the number of doctors’ articles was collected at a specific time for this study. To further
investigate the contribution of doctors’ articles, more properties of doctors’ articles could be abstracted
in the future from the website, including the number of doctors’ articles written by themselves, number
of doctors’ articles copies from others, the average count of words in a doctor’ articles, the average
times of reviewing for a doctor’ articles, etc. Second, the measure of serviced patients used to rank
experimental units when estimating the empirical Lorenz curve, and the corresponding Gini coefficient
was subject to random error. This error could also lead to an incorrect ranking of experimental units
that inevitably results in a curve that exaggerates the degree of diversity (variation) among doctors.
Furthermore, all the data were collected from one single OHC, the Good Doctor website. Since the size
of each individual doctor’ specialty was calculated in the patient voting process from 26–27 August
2017, there exists a bias in the measurement time interval. Moreover, propensity score matching
(PSM) [32] in this study only accounted for observed (and observable) covariates, but the unobserved
factors may influence assignment to treatment and outcomes while they cannot be accounted for in the
matching procedure [33]. As PSM only controls for observed variables, there can still be hidden biases
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caused by latent variables after matching [34]. In the worst case, hidden bias may increase because
matching on observed variables can unleash bias due to dormant unobserved confounders [35].

5. Conclusions

The causal inference method takes the advantages of non-significant related covariates,
which assigns treatment experiments on different units. The research design in this paper avoids
selection bias in the estimation of treatment effects. The Lorenz curve has been documented for
a number of service diversities enrolled in OHCs. The distribution of the online service delivery
(of patient virtual visits) across the physicians in a specialty category was characterized by a Lorenz
curve in which the cumulative proportion of the volume of service delivery was plotted against
the cumulative proportion of physicians in the same specialty category in the OHC. We designed a
causal inference study with data on distributions of serviced patients and online views in over 100
distinct specialty categories on one of the largest OHCs in China. For the Gini coefficient of serviced
patients in over 100 specialty categories, the average treatment effect of level-1 cities is 0.470, which is
0.029 higher than that of the matched group. Similarly, for the Gini coefficient of online views, the
average treatment effect of level-1 cities is 0.573, which is 0.016 higher than that of the matched group.
The results support the argument that the total Gini coefficient of all the doctors in the OHC shows
that the inequality of health service is still very serious. The inequality of health service in level-1 cities
is much higher (more serious) than that outside of those level-1 cities for different specialty categories.
Such ac differential effect at the city-level on the Gini coefficient of health service delivery also provides
evidence that the patients are more likely to be aggregated in level-1 cities, and they are more likely to
be served by the doctors.
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ATE Average treatment effect
OHC online health community
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DOC the contribution score for the doctors
CTM Chinese traditional medicine
PSM propensity score matching
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