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Eradicating malaria remains a big challenge for computer scientists, mathematicians, epidemi-
ologists, entomologists, physicians and many others. Their approaches range from recovering 
patients to eradicating the disease. However, collaboration, not always efficient between all these 
scientists, leads to the implementation of incomplete prototypes or to an under-exploitation of 
their results. Environmental and climatic factors are part of these elements that are usually omit-
ted by computer scientists and mathematicians in the modelling of the malaria spread dynamic. 
Tropical countries, most affected by the disease are also mostly underdeveloped or developing 
countries, and therefore, statistical data are often lacking or difficult to access. Populations are 
constantly in motion over ecosystems with different environmental and climatic conditions, from 
a region to another. In this paper, we analyse the global asymptotic stability at the disease-free 
equilibrium of a metapopulation model including climatic factors.

1. Introduction

Malaria is still a major problem in almost all countries of the tropical area. According to the World Health Organization (WHO), 
approximately half the world’s population is exposed to the disease, 95 countries were affected by the transmission of malaria in 
2021 and recorded 247 million cases of malaria and 619,000 deaths (www .who .int). The Lowy Institute (Australia), through a study, 
predicts a prevalence of malaria that can be multiplied by 4 in 2050, compared to 1990 [9]. By the end of this century, the world’s 
population living in areas where malaria is endemic could drop from 45% to 60%.

One of the main questions of epidemiologists is whether or not there is or will be an epidemic. Mathematicians and computer 
scientists in their modelling and predictive analytics have as mission, among others, to provide answers. In epidemic, the number 
of new patients (infected, infectious) increases. Studying the global stability of the proposed model is important for its reliability. 
Study the stability of a system informs us about the disease evolution, in order especially to know if after a time, the disease will be 
contained, the number of new patients will stabilize around a point of equilibrium or if the disease will spread and therefore, if the 
healthy population will tend to disappear in favour of a population almost totally infected. This stability study is the focal point of 
our work.
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Table 1

Parameters and description.

Parameters Description

𝑛 number of patches
𝜑𝑖𝑗 ≥ 0, rate of human migration from the patch 𝑖 to the patch 𝑗
𝜇𝐻𝑖

natural mortality rate of humans in the patch 𝑖
𝜇𝑉 𝑖 natural mortality rate of mosquitoes in the patch 𝑖
𝛽𝑖 probability of infection of susceptible humans per mosquito bite inside the patch 𝑖. 𝑘𝑖 is the average number of such contacts. 

𝑏𝑖 = 𝑘𝑖𝛽𝑖
𝜔𝑖 probability of infection of susceptible mosquitoes per mosquito bite of the infected human inside the patch 𝑖. 𝑓𝑖 is the average 

number of such contacts
𝛿𝐻𝑖

rate of infected humans that become infectious in the patch 𝑖
𝜌𝐻𝑖

rate of infectious humans that become susceptible in the patch 𝑖
𝛿𝑉𝑖

rate of infected mosquitoes that become infectious in the patch 𝑖
𝛼𝐻𝑖

recovery rate of infectious humans in the patch 𝑖
𝑑𝐻𝑖

death-rate of infectious humans due to the disease
𝜀𝐻𝑖

recovery rate of recovered humans (eventually immunised) become susceptible later
Λ𝐻𝑖

the average recruitment of humans (by birth) in the patch 𝑖
Λ𝑉𝑖

the average recruitment of mosquitoes (by birth) in the patch 𝑖

2. Survey

Literature informs us about several models developed to fight against malaria and shows us that the importance and nuisance 
capacity of that disease still as complex to define. Equation approaches are important for the global forecast of the future behaviour 
of the system because they are formalized. Through an application of optimal control theory, Tchoumi et al. [11] showed that a 
combination of personal protection, treatment and vaccination of children under-five produces excellent results for fighting against 
malaria’s spread. But their model does not take into account climatic factors and human migrations. Only few of them integrated 
climatic factors in their modelling; Gaudart et al. [4] proposed a model which includes the NDVI vegetation index is an interesting 
lead, but this index, as the authors said, is very rarely available, especially in the tropical regions which are nevertheless the most 
concerned by malaria. Furthermore, they did not integrate human migrations and assumed as constant, human and mosquito sizes 
(births and deaths are neglected). Tsanou [10] proposed a metapopulation model, and showed that there is a threshold under which 
the disease disappears and above which the disease remains. In the Tsanou model, demography is neglected (populations sizes are 
constant), epidemiological parameters are the same for all patches. More, Tsanou did not take into consideration climatic factors. In 
our previous work [7], after an extensive survey on malaria and existing models, we proposed a metapopulation model including 
climatic factors and human migrations (without analysing the global asymptotic stability).

3. Our model

We analyze, in this paper, the global asymptotic stability of our model firstly defined in [7] and represented here by system of 
equations (1). The word patch that we will use represents a geographical location (a city, a region, a country, etc.)
Let 𝑁𝐻𝑖

(respectively 𝑁𝑉𝑖
) be the total humans population (respectively vectors) of the patch 𝑖. We also denote by 𝜑𝑖𝑗𝑆𝐻𝑖

the 
susceptible residents from the patch 𝑖 who are moving to the patch 𝑗. 𝜑𝑖𝑗𝐸𝐻𝑖

is the infected residents of patch 𝑖 who are moving to 
the patch 𝑗, 𝜑𝑖𝑗𝑅𝐻𝑖

the recovered and immunized residents from patch 𝑖 who are moving to the patch 𝑗, 𝑆𝑉𝑖
represents the susceptible 

mosquitoes residents in the patch 𝑖, 𝐸𝑉𝑖
the infected mosquitoes residents in the patch 𝑖, and 𝐼𝑉𝑖 the infectious mosquitoes residents 

in the patch 𝑖. Table 1 shows different parameters and their description.
Our system has the form:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝑆̇𝐻𝑖
=Λ𝐻𝑖

+ 𝜖𝐻𝑖
𝑅𝐻𝑖

+
𝑛∑

𝑗=1
𝑗≠𝑖

𝜑𝑗𝑖𝑆𝐻𝑗
− 𝑆𝐻𝑖

𝑛∑
𝑗=1
𝑗≠𝑖

𝜑𝑖𝑗 − 𝑘𝑖𝛽𝑖
𝑆𝐻𝑖

𝑁𝐻𝑖

𝐼𝑉𝑖 − 𝜇𝐻𝑖
𝑆𝐻𝑖

,

𝐸̇𝐻𝑖
=

𝑛∑
𝑗=1
𝑗≠𝑖

𝜑𝑗𝑖𝐸𝐻𝑗
−𝐸𝐻𝑖

𝑛∑
𝑗=1
𝑗≠𝑖

𝜑𝑖𝑗 + 𝑘𝑖𝛽𝑖
𝑆𝐻𝑖

𝑁𝐻𝑖

𝐼𝑉𝑖 − 𝛿𝐻𝑖
𝐸𝐻𝑖

− 𝜇𝐻𝑖
𝐸𝐻𝑖

,

𝐼̇𝐻𝑖
= 𝛿𝐻𝑖

𝐸𝐻𝑖
− 𝛼𝐻𝑖

𝐼𝐻𝑖
− 𝑑𝐻𝑖

𝐼𝐻𝑖
− 𝜇𝐻𝑖

𝐼𝐻𝑖
,

𝑅̇𝐻𝑖
=

𝑛∑
𝑗=1
𝑗≠𝑖

𝜑𝑗𝑖𝑅𝐻𝑗
+ 𝛼𝐻𝑖

𝐼𝐻𝑖
−𝑅𝐻𝑖

𝑛∑
𝑗=1
𝑗≠𝑖

𝜑𝑖𝑗 − 𝜖𝐻𝑖
𝑅𝐻𝑖

− 𝜇𝐻𝑖
𝑅𝐻𝑖

,

𝑆̇𝑉𝑖
=Λ𝑉𝑖

− 𝑓𝑖𝜔𝑖

𝑆𝑉𝑖

𝑁𝐻𝑖

𝐼𝐻𝑖
− 𝜋𝑉𝑖𝑆𝑉𝑖

,

𝐸̇𝑉𝑖
= 𝑓𝑖𝜔𝑖

𝑆𝑉𝑖

𝑁𝐻𝑖

𝐼𝐻𝑖
− 𝛿𝑉𝑖𝐸𝑉𝑖

− 𝜋𝑉𝑖𝐸𝑉𝑖
,

𝐼̇𝑉𝑖 = 𝛿𝑉𝑖𝐸𝑉𝑖
− 𝜋𝑉𝑖𝐼𝑉𝑖 .

(1)
2

With initial conditions (𝑆𝐻𝑖
(0), 𝐸𝐻𝑖

(0), 𝐼𝐻𝑖
(0), 𝑅𝐻𝑖

(0), 𝑆𝑉𝑖
(0), 𝐸𝑉𝑖

(0), 𝐼𝑉𝑖 (0)).



Heliyon 10 (2024) e31666J.-H. Noubissi and J.C. Kamgang

Table 2

Average monthly minimum temperatures and average monthly relative humidity for 
Yaounde city.

Source: www .climatemps .com.

Climatic factors January February March April

Average minimum temperature 17.1 20 13.9 19.7
Average relative humidity 62 62 65 67

Climatic factors May June July August

Average minimum temperature 19.5 19.3 19 19
Average relative humidity 70 73 74 75

Climatic factors September October November December

Average minimum temperature 19 18.9 19.2 19.1
Average relative humidity 73 72 66 60

Where

𝜋𝑉 𝑖 = −ln(𝑝𝑖(𝑇 ,𝑅𝐻)). (2)

And

𝑝(𝑇 ,𝑅𝐻) = exp( −1
𝑇 2 × 𝛽2 + 𝑇 × 𝛽1 + 𝛽0

). (3)

With ⎧⎪⎨⎪⎩
𝛽0 = 0.00113 ×𝑅𝐻2 − 0.158 ×𝑅𝐻 − 6.61,
𝛽1 = −2.32 × 10−4 ×𝑅𝐻2 + 0.0515 ×𝑅𝐻 + 1.06,
𝛽2 = 4 × 10−6 ×𝑅𝐻2 − 1.09 × 10−3 ×𝑅𝐻 − 0.0255.

𝜋𝑉 𝑖 is the mortality rate for a mosquito resident in the patch 𝑖 having temperature 𝑇 and relative humidity 𝑅𝐻 at a given time. This 
mortality rate is estimated from [6].

𝑝(𝑇 , 𝑅𝐻) is the probability of survival of mosquitoes at temperature 𝑇 and relative humidity 𝑅𝐻 , defined by [8].
Studying the global asymptotic stability of a system consists on determine the conditions in which the system remains in an 

equilibrium state or oscillates around this state. Two cases are usually considered: the disease-free equilibrium and the endemic 
equilibrium. Our study focuses on the case of disease-free equilibrium (DFE). We proceed with a 5-step approach:

(a) Study evolution of mosquitoes mortality depending on temperature and relative humidity;
(b) Define the basic model properties (positivity and boundedness of the solutions);
(c) Study the unicity of solutions at the disease-free equilibrium;
(d) Determine the basic reproduction number 𝑅0;
(e) Study the global asymptotic stability at the disease-free equilibrium.

4. Study of evolution of mosquito mortality depending on temperature and relative humidity

The system (1) shows a mosquitoes mortality 𝜋𝑉𝑖 = − ln(𝑝𝑖(𝑇 , 𝑅𝐻)) depending on temperature 𝑇 and relative humidity 𝑅𝐻 . It 
is important to observe the mortality evolution as a function depending on temperature and relative humidity. Table 2 shows the 
average monthly minimum temperatures and average monthly relative humidities of Yaounde city in Cameroon, a city corresponding 
to a 𝑆𝐸𝐼𝑅𝑆 model. We note that mosquitoes are usually active by night, when the temperature is usually minimum. The MATLAB

software is the one we used for our observations.

4.1. Mosquito survival depending on temperature and relative humidity

Remember that the probability of mosquito survival is given by the equation (3)
Fig. 1 shows that the probability of mosquito survival in Yaounde city is low when temperature and relative humidity are both 

low. On the other hand, this probability increases when the temperature is minimum and the humidity rise.

4.2. Mosquito mortality rate depending on temperature and relative humidity

Remember that the mortality rate as we presented it is given 𝜋𝑉 𝑖 = − ln(𝑝𝑖(𝑇 , 𝑅𝐻)).
Fig. 2 shows that in Yaounde city, the mortality rate is low when temperature and relative humidity are both high. On the other 
3

hand, this mortality increases when temperature and the relative humidity are both low.

http://www.climatemps.com
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Fig. 1. Probability of survival 𝑝(𝑇 ,𝑅𝐻) mosquitoes depending on the temperature 𝑇 and the relative humidity 𝑅𝐻 in Yaounde city.

Fig. 2. Mortality rate 𝜋𝑉𝑖
(𝑇 ,𝑅𝐻) mosquitoes depending on the temperature 𝑡 and relative humidity 𝑟ℎ in Yaounde city.

Mosquitoes mortality rate, as observed, is a function of temperature and relative humidity. These climatic factors are time 
dependent, therefore variable and should not be used as is for the mathematical analysis of our models. Thus, for the study of 
systems equilibrium, we propose to find analytical expressions for temperature and relative humidity as a function of time.

4.3. Analytical expression of temperature

We have to find an analytical expression which adjusts the minimum temperature in Yaounde city. Fig. 3 presents a staircase 
representation of the monthly minimum temperatures of Yaounde city over 24 months.

We can observe through the Fig. 3 that the temperature function is a periodic function of period 𝜃 = 12. Temperature being a 
4

time dependent function, Bacaer’s work [1] inspires us with an analytical expression of form
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Fig. 3. Minimum temperature 𝑇 as a function of time 𝑋 for the city of Yaounde.

Fig. 4. A calibration of the monthly minimum temperatures of Yaounde city.

𝑇 (𝑋) = 𝑇0[1 + 𝜀𝑐𝑜𝑠(𝜔𝑋 −𝜓)]. (4)

Where 𝜔 = 2𝜋
𝜃

and 𝑇0 is the average temperature. In fact, this equation is the equivalent of the Fourrier series development of the 
Temperature function 𝑇 to the order 1 which has the form 𝑇 (𝑋) = 𝑎0 + 𝑎1𝑐𝑜𝑠(𝜔𝑋) + 𝑏1𝑠𝑖𝑛(𝜔𝑋).

Fig. 4 presents the result of a calibration of the monthly minimum temperatures for Yaounde city performed with the equation 
(4), using 𝑐𝑓𝑡𝑜𝑜𝑙 function of 𝑀𝑎𝑡𝑙𝑎𝑏. With this equation, we have, at 95% degree of confidence:

𝜔 = 2𝜋
𝜃

= 2𝜋
12

= 𝜋

6
, 𝑇0 = 18.64, 𝜀 = −0.04278, 𝜓 = 1.131

4.4. Analytical expression of relative humidity

We have to find an analytical expression that adjusts the minimum temperature in Yaounde city. Fig. 5 shows a staircase repre-
sentation of the monthly humidity in Yaounde city over 24 months.

Fig. 5 shows that the relative humidity function is a periodic function of period 𝜃 = 12. The equation inspired by Bacaer’s work 
becomes

𝑅𝐻(𝑋) =𝑅𝐻0[1 + 𝜀𝑐𝑜𝑠(𝜔𝑋 −𝜓)]. (5)

𝑅𝐻0 is the monthly relative humidities average, 𝑅𝐻(𝑋) being the equivalent of the Fourrier series development of the relative 
humidity function 𝑅𝐻 to the order 1 which has the form 𝑅𝐻(𝑋) = 𝑎0 + 𝑎1𝑐𝑜𝑠(𝜔𝑋) + 𝑏1𝑠𝑖𝑛(𝜔𝑋).

Fig. 6 shows the result of a calibration of the monthly relative humidity for Yaounde city carried out with the equation (5), using 
𝑐𝑓𝑡𝑜𝑜𝑙 function of 𝑀𝑎𝑡𝑙𝑎𝑏. We have, at 95% degree of confidence:

𝜔 = 2𝜋
𝜃

= 2𝜋
12

= 𝜋

6
; 𝑅𝐻0 = 68.24
5

𝜀 = −0.1011, 𝜓 = 0.7213
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Fig. 5. Relative humidity 𝑅𝐻 as a function of time 𝑋 for Yaounde city.

Fig. 6. A calibration of the monthly relative humidity of Yaounde city.

5. Basic model properties

5.1. Positivity and boundedness of the solutions

We study in this part positivity and boundedness of the solutions which correspond to the various compartments.

5.1.1. Positivity of the solutions

Proposition 5.1. For all 𝑖 = 1, 2, ..., 𝑛 and 𝑡 ≥ 0,

𝑆𝐻𝑖
(𝑡) ≥ 0, 𝐸𝐻𝑖

(𝑡) ≥ 0, 𝐼𝐻𝑖
(𝑡) ≥ 0, 𝑅𝐻𝑖

(𝑡) ≥ 0, 𝑆𝑉𝑖
(𝑡) ≥ 0, 𝐸𝑉𝑖

(𝑡) ≥ 0, 𝐼𝑉𝑖 (𝑡) ≥ 0.

Proof. At the initial conditions, we have:

𝑆𝐻𝑖
(0) = 𝜓𝑖

1 ≥ 0, 𝐸𝐻𝑖
(0) = 𝜓𝑖

2 ≥ 0, 𝐼𝐻𝑖
(0) = 𝜓𝑖

3 ≥ 0, 𝑅𝐻𝑖
(0) = 𝜓𝑖

4 ≥ 0,

𝑆𝑉𝑖
(0) = 𝜓𝑖

5 ≥ 0, 𝐸𝑉𝑖
(0) = 𝜓𝑖

6 ≥ 0, 𝐼𝑉𝑖 (0) = 𝜓𝑖
7 ≥ 0.

• Suppose there is a positive 𝑡1 and an integer 𝑖1 such as
𝑆𝐻𝑖1

(𝑡1) = 0 and 𝑆𝐻𝑖
(𝑡) > 0, 𝐸𝐻𝑖

(𝑡) > 0, 𝐼𝐻𝑖
(𝑡) > 0, 𝑅𝐻𝑖

(𝑡) > 0, 𝑆𝑉𝑖
(𝑡) > 0, 𝐸𝐻𝑖

(𝑡) > 0, 𝐼𝐻𝑖
(𝑡) > 0, for all 𝑖 = 1, 2, ..., 𝑛 and 0 ≤ 𝑡 ≤ 𝑡1.

Furthermore, with (1), we have 𝑆̇𝐻𝑖1
(𝑡1) ≥Λ𝐻𝑖1

> 0, which contradicts the initial hypothesis 𝑆𝐻𝑖1
(𝑡) > 0 = 𝑆𝐻𝑖1

(𝑡1).
• Suppose there is a positive 𝑡2 and an integer 𝑖2 such as
𝐸𝐻𝑖2

(𝑡2) = 0 and 𝑆𝐻𝑖
(𝑡) > 0, 𝐸𝐻𝑖

(𝑡) > 0, 𝐼𝐻𝑖
(𝑡) > 0, 𝑅𝐻𝑖

(𝑡) > 0, for all 𝑖 = 1, 2, ..., 𝑛 and 0 ≤ 𝑡 ≤ 𝑡2.
6

According to (1), we have 𝐸̇𝐻𝑖2
(𝑡2) > 0, which contradicts the initial hypothesis 𝐸𝐻𝑖2

(𝑡) > 0 =𝐸𝐻𝑖2
(𝑡2).
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• Suppose there is a positive 𝑡3 and an integer 𝑖3 such as
𝐼𝐻𝑖3

(𝑡3) = 0 and 𝑆𝐻𝑖
(𝑡) > 0, 𝐸𝐻𝑖

(𝑡) > 0, 𝐼𝐻𝑖
(𝑡) > 0, 𝑅𝐻𝑖

(𝑡) > 0, for all 𝑖 = 1, 2, ..., 𝑛 and 0 ≤ 𝑡 ≤ 𝑡3.

According to (1), we have 𝐼̇𝐻𝑖3
(𝑡3) > 0, which contradicts the initial hypothesis 𝐼𝐻𝑖3

(𝑡) > 0 = 𝐼𝐻𝑖3
(𝑡3).

• Suppose there is a positive 𝑡4 and an integer 𝑖4 such as
𝑅𝐻𝑖4

(𝑡4) = 0 and 𝑆𝐻𝑖
(𝑡) > 0, 𝐸𝐻𝑖

(𝑡) > 0, 𝐼𝐻𝑖
(𝑡) > 0, 𝑅𝐻𝑖

(𝑡) > 0, for all 𝑖 = 1, 2, ..., 𝑛 and 0 ≤ 𝑡 ≤ 𝑡4.

Furthermore, with (1), on a 𝑅̇𝐻𝑖4
(𝑡4) ≥Λ𝐻𝑖4

> 0, which contradicts the initial hypothesis 𝑅𝐻𝑖4
(𝑡) > 0 =𝑅𝐻𝑖4

(𝑡4).
We proceed in an analogous way to show that 𝑆𝑉𝑖

(𝑡) > 0, 𝐸𝑉𝑖
(𝑡) > 0 and 𝐼𝑉𝑖 (𝑡) > 0, for all 𝑖 = 1, 2, ..., 𝑛 and 𝑡 ≥ 0.

5.1.2. Boundedness of the solutions

We must show that the total populations of mosquitoes and humans are bounded.
The dynamic of mosquitoes population in each patch 𝑖 is given by equation (6).

𝑁̇𝑉𝑖
=Λ𝑉𝑖

− 𝜋𝑉𝑖𝑁𝑉𝑖
. (6)

Since 𝜋𝑖𝑚𝑖𝑛 ≤ 𝜋𝑉 𝑖 ≤ 𝜋𝑖𝑚𝑎𝑥 , with:
𝜋𝑖𝑚𝑖𝑛 as the minimum mortality rate of mosquitoes in the patch 𝑖,
𝜋𝑖𝑚𝑎𝑥 as the maximum rate of mosquito mortality in the patch 𝑖.
We have the inequality (7):

Λ𝑉𝑖
− 𝜋𝑖𝑚𝑎𝑥𝑁𝑉𝑖

≤ 𝑁̇𝑉𝑖
≤Λ𝑉𝑖

− 𝜋𝑖𝑚𝑖𝑛𝑁𝑉𝑖
. (7)

Equation 𝑁̇𝑉𝑖
= Λ𝑉𝑖

−𝜋𝑖𝑚𝑎𝑥𝑁𝑉𝑖
has solution 𝑁𝑉𝑖

(𝑡) =𝑁0
𝑉𝑖
𝑒
−𝜋𝑖𝑚𝑎𝑥 𝑡 +

Λ𝑉𝑖

𝜋𝑖𝑚𝑎𝑥
(1 − 𝑒

−𝜋𝑖𝑚𝑎𝑥 𝑡), and equation 𝑁̇𝑉𝑖
=Λ𝑉𝑖

−𝜋𝑖𝑚𝑖𝑛𝑁𝑉𝑖
has solution 

𝑁𝑉𝑖
(𝑡) =𝑁0

𝑉𝑖
𝑒
−𝜋𝑖𝑚𝑖𝑛 𝑡 +

Λ𝑉𝑖

𝜋𝑖𝑚𝑎𝑥
(1 − 𝑒

−𝜋𝑖𝑚𝑖𝑛 𝑡).
Applying Grönwall’s inequality, we obtain:

𝑁0
𝑉𝑖
𝑒
−𝜋𝑖𝑚𝑎𝑥 𝑡 +

Λ𝑉𝑖

𝜋𝑖𝑚𝑎𝑥
(1 − 𝑒

−𝜋𝑖𝑚𝑎𝑥 𝑡) ≤𝑁𝑉𝑖
(𝑡) ≤𝑁0

𝑉𝑖
𝑒
−𝜋𝑖𝑚𝑖𝑛 𝑡 +

Λ𝑉𝑖

𝜋𝑖𝑚𝑖𝑛
(1 − 𝑒

−𝜋𝑖𝑚𝑖𝑛 𝑡).
At the limit crossing, we have the inequality (8):

Λ𝑉𝑖

𝜋𝑖𝑚𝑎𝑥

≤ lim
𝑡→+∞

𝑁𝑉𝑖
(𝑡) ≤

Λ𝑉𝑖

𝜋𝑖𝑚𝑖𝑛

. (8)

The system of equations (9) defines Φ1
𝑖

and Φ2
𝑖

as:

⎧⎪⎪⎨⎪⎪⎩
Φ1

𝑖
= 𝜙𝑗𝑖 =

𝑛∑
𝑗=1
𝑗≠𝑖

𝜑𝑗𝑖(𝑆𝐻𝑗
+𝐸𝐻𝑗

+𝑅𝐻𝑗
),

Φ2
𝑖
= 𝜙𝑖𝑗 = (𝑆𝐻𝑖

+𝐸𝐻𝑖
+𝑅𝐻𝑖

)
𝑛∑

𝑗=1
𝑗≠𝑖

𝜑𝑖𝑗 .

(9)

The dynamic of humans population for each patch 𝑖 is given by equation (10):

𝑁̇𝐻𝑖
=Λ𝐻𝑖

+Φ1
𝑖
−Φ2

𝑖
− 𝑑𝐻𝑖

𝐼𝐻𝑖
− 𝜇𝐻𝑖

𝑁𝐻𝑖
. (10)

To prove that humans population in each patch is bounded, we choose to show that the total humans population in all patches is 
bounded as defined in equation (11).

𝑛∑
𝑖=1

𝑁̇𝐻𝑖
=

𝑛∑
𝑖=1

Λ𝐻𝑖
+

𝑛∑
𝑖=1

Φ1
𝑖
−

𝑛∑
𝑖=1

Φ2
𝑖
−

𝑛∑
𝑖=1

𝑑𝐻𝑖
𝐼𝐻𝑖

−
𝑛∑

𝑖=1
𝜇𝐻𝑖

𝑁𝐻𝑖
. (11)

Proposition 5.2. The system (1) has the form of a closed graph, all migrations between different patches cancel each other out.

𝑛∑
𝑖=1

Φ2
𝑖
=

𝑛∑
𝑖=1

Φ1
𝑖
.

Proof. We set ΔΦ1 =
𝑛∑

𝑖=1
Φ2

𝑖
−

𝑛∑
𝑖=1

Φ1
𝑖
.

ΔΦ1 =
𝑛∑

𝑖=1
[(𝑆𝐻𝑖

+𝐸𝐻𝑖
+𝑅𝐻𝑖

)(𝜑𝑖1 +𝜑𝑖2 + ...+𝜑𝑖𝑛)]

𝑛∑

7

−
𝑖=1

[𝜑1𝑖(𝑆𝐻1
+𝐸𝐻1

+𝑅𝐻1
) + 𝜙2𝑖(𝑆𝐻2

+𝐸𝐻2
+𝑅𝐻2

) + ...+𝜑𝑛𝑖(𝑆𝐻𝑛
+𝐸𝐻𝑛

+𝑅𝐻𝑛
)]
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=
𝑛∑

𝑖=1
[𝜑𝑖1(𝑆𝐻𝑖

+𝐸𝐻𝑖
+𝑅𝐻𝑖

) +𝜑𝑖2(𝑆𝐻𝑖
+𝐸𝐻𝑖

+𝑅𝐻𝑖
) + ...+ 𝜙𝑖𝑛(𝑆𝐻𝑖

+𝐸𝐻𝑖
+𝑅𝐻𝑖

)]

−
𝑛∑

𝑖=1
[𝜑1𝑖(𝑆𝐻1

+𝐸𝐻1
+𝑅𝐻1

) +𝜑2𝑖(𝑆𝐻2
+𝐸𝐻2

+𝑅𝐻2
) + ...+𝜑𝑛𝑖(𝑆𝐻𝑛

+𝐸𝐻𝑛
+𝑅𝐻𝑛

)]

ΔΦ = 𝜑11(𝑆𝐻1
+𝐸𝐻1

+𝑅𝐻1
) +𝜑12(𝑆𝐻1

+𝐸𝐻1
+𝑅𝐻1

) + ...+𝜑1𝑛(𝑆𝐻1
+𝐸𝐻1

+𝑅𝐻1
)

+𝜑21(𝑆𝐻2
+𝐸𝐻2

+𝑅𝐻2
) +𝜑22(𝑆𝐻2

+𝐸𝐻2
+𝑅𝐻2

) + ...+𝜑2𝑛(𝑆𝐻2
+𝐸𝐻2

+𝑅𝐻2
)

+...

+𝜑𝑛1(𝑆𝐻𝑛
+𝐸𝐻𝑛

+𝑅𝐻𝑛
) +𝜑𝑛2(𝑆𝐻𝑛

+𝐸𝐻𝑛
+𝑅𝐻𝑛

) + ...+𝜑𝑛𝑛(𝑆𝐻𝑛
+𝐸𝐻𝑛

+𝑅𝐻𝑛
)

−𝜑11(𝑆𝐻1
+𝐸𝐻1

+𝑅𝐻1
) −𝜑21(𝑆𝐻2

+𝐸𝐻2
+𝑅𝐻2

) − ...−𝜑𝑛1(𝑆𝐻𝑛
+𝐸𝐻𝑛

+𝑅𝐻𝑛
)

−𝜑12(𝑆𝐻1
+𝐸𝐻1

+𝑅𝐻1
) −𝜑22(𝑆𝐻2

+𝐸𝐻2
+𝑅𝐻2

) + ...−𝜑𝑛2(𝑆𝐻𝑛
+𝐸𝐻𝑛

+𝑅𝐻𝑛
)

−...

−𝜑1𝑛(𝑆𝐻1
+𝐸𝐻1

+𝑅𝐻1
) −𝜑2𝑛(𝑆𝐻2

+𝐸𝐻2
+𝑅𝐻2

) + ...−𝜑𝑛𝑛(𝑆𝐻𝑛
+𝐸𝐻𝑛

+𝑅𝐻𝑛
)

= 0.

Equation (11) becomes:

𝑛∑
𝑖=1

𝑁̇𝐻𝑖
=

𝑛∑
𝑖=1

Λ𝐻𝑖
−

𝑛∑
𝑖=1

𝑑𝐻𝑖
𝐼𝐻𝑖

−
𝑛∑

𝑖=1
𝜇𝐻𝑖

𝑁𝐻𝑖
. (12)

Knowing that −𝑑𝐻𝑖
𝑁𝐻𝑖

≤ −𝑑𝐻𝑖
𝐼𝐻𝑖

, with equation (12), we have inequality (13):

𝑛∑
𝑖=1

Λ𝐻𝑖
−

𝑛∑
𝑖=1

𝑑𝐻𝑖
𝑁𝐻𝑖

−
𝑛∑

𝑖=1
𝜇𝐻𝑖

𝑁𝐻𝑖
≤

𝑛∑
𝑖=1

𝑁̇𝐻𝑖
≤

𝑛∑
𝑖=1

Λ𝐻𝑖
−

𝑛∑
𝑖=1

𝜇𝐻𝑖
𝑁𝐻𝑖

, (13)

i.e.
𝑛∑

𝑖=1
Λ𝐻𝑖

−
𝑛∑

𝑖=1
(𝑑𝐻𝑖

+ 𝜇𝐻𝑖
)𝑁𝐻𝑖

≤

𝑛∑
𝑖=1

𝑁̇𝐻𝑖
≤

𝑛∑
𝑖=1

Λ𝐻𝑖
−

𝑛∑
𝑖=1

𝜇𝐻𝑖
𝑁𝐻𝑖

. (14)

With inequality (14) we have:

𝑛∑
𝑖=1

Λ𝐻𝑖
− 𝑛(𝑚𝑎𝑥(𝑑𝐻𝑖

) +𝑚𝑎𝑥(𝜇𝐻𝑖
))

𝑛∑
𝑖=1

𝑁𝐻𝑖
≤

𝑛∑
𝑖=1

𝑁̇𝐻𝑖
≤

𝑛∑
𝑖=1

Λ𝐻𝑖
− 𝑛𝑚𝑖𝑛(𝜇𝐻𝑖

)
𝑛∑

𝑖=1
𝑁𝐻𝑖

. (15)

We set

Γ𝐻𝑖
=

𝑛∑
𝑖=1

Λ𝐻𝑖
, 𝐻𝑖 =

𝑛∑
𝑖=1

𝑁𝐻𝑖
, 𝐻̇𝑖 =

𝑛∑
𝑖=1

𝑁̇𝐻𝑖
with 𝐻0

𝑖
=

𝑛∑
𝑖=1

𝑁0
𝐻𝑖

.

Inequality (15) becomes inequality (16):

Γ𝐻𝑖
− 𝑛(𝑚𝑎𝑥(𝑑𝐻𝑖

) +𝑚𝑎𝑥(𝜇𝐻𝑖
))𝐻𝑖 ≤ 𝐻̇𝑖 ≤ Γ𝐻𝑖

− 𝑛𝑚𝑖𝑛(𝜇𝐻𝑖
)𝐻𝑖. (16)

Equation 𝐻̇𝑖 = Γ𝐻𝑖
− 𝑛(𝑚𝑎𝑥(𝑑𝐻𝑖

) +𝑚𝑎𝑥(𝜇𝐻𝑖
))𝐻𝑖 has as solution:

𝐻𝑖(𝑡) =𝐻0
𝑖
𝑒
−𝑛(𝑚𝑎𝑥(𝑑𝐻𝑖

)+𝑚𝑎𝑥(𝜇𝐻𝑖
))𝑡 +

Γ𝐻𝑖

𝑛(𝑚𝑎𝑥(𝑑𝐻𝑖
) +𝑚𝑎𝑥(𝜇𝐻𝑖

))
(1 − 𝑒

−𝑛(𝑚𝑎𝑥(𝑑𝐻𝑖
)+𝑚𝑎𝑥(𝜇𝐻𝑖

))𝑡)

and equation 𝐻̇𝑖 = Γ𝐻𝑖
− 𝑛𝑚𝑖𝑛(𝜇𝐻𝑖

)𝐻𝑖 has as solution

𝐻𝑖(𝑡) =𝐻0
𝑖
𝑒
−𝑛𝑚𝑖𝑛(𝜇𝐻𝑖

)𝑡 +
Γ𝐻𝑖

𝑛(𝑚𝑖𝑛𝜇𝐻𝑖
)
(1 − 𝑒

−𝑛𝑚𝑖𝑛(𝜇𝐻𝑖
)𝑡)

Applying Grönwall’s inequality, we obtain:

𝐻0
𝑖
𝑒
−𝑛(𝑚𝑎𝑥(𝑑𝐻𝑖

)+𝑚𝑎𝑥(𝜇𝐻𝑖
))𝑡 +

Γ𝐻𝑖

𝑛(𝑚𝑎𝑥(𝑑𝐻𝑖
) +𝑚𝑎𝑥(𝜇𝐻𝑖

))
(1 − 𝑒

−𝑛(𝑚𝑎𝑥(𝑑𝐻𝑖
)+𝑚𝑎𝑥(𝜇𝐻𝑖

))𝑡)

≤𝐻𝑖(𝑡) ≤𝐻0
𝑖
𝑒
−𝑛𝑚𝑖𝑛(𝜇𝐻𝑖

)𝑡 +
Γ𝐻𝑖

𝑛𝑚𝑖𝑛(𝜇𝐻𝑖
)
(1 − 𝑒

−𝑛𝑚𝑖𝑛(𝜇𝐻𝑖
)𝑡)
8

At the limit crossing, we have inequality (17):
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Γ𝐻𝑖

𝑛(𝑚𝑎𝑥(𝑑𝐻𝑖
) +𝑚𝑎𝑥(𝜇𝐻𝑖

))
≤ lim

𝑡→+∞
𝐻𝑖(𝑡) ≤

Γ𝐻𝑖

𝑛𝑚𝑖𝑛(𝜇𝐻𝑖
)
, (17)

i.e.

𝑛∑
𝑖=1

Λ𝐻𝑖

𝑛(𝑚𝑎𝑥(𝑑𝐻𝑖
) +𝑚𝑎𝑥(𝜇𝐻𝑖

))
≤ lim

𝑡→+∞

𝑛∑
𝑖=1

𝑁𝐻𝑖
(𝑡) ≤

𝑛∑
𝑖=1

Λ𝐻𝑖

𝑛𝑚𝑖𝑛(𝜇𝐻𝑖
)
. (18)

Inequalities (8) and (18) show that mosquitoes and humans populations are bounded.

6. Disease-free equilibrium (DFE)

The dynamic of the system (1) is given by:

𝑁̇𝐻𝑖
=Λ𝐻𝑖

− 𝜇𝐻𝑖
𝑁𝐻𝑖

+
𝑛∑

𝑗=1
𝑗≠𝑖

𝜑𝑗𝑖(𝑆𝐻𝑗
+𝐸𝐻𝑗

+𝑅𝐻𝑗
) − (𝑆𝐻𝑖

+𝐸𝐻𝑖
+𝑅𝐻𝑖

)
𝑛∑

𝑗=1
𝑗≠𝑖

𝜑𝑖𝑗 − 𝑑𝐻𝑖
𝐼𝐻𝑖

and 𝑁̇𝑉𝑖
=Λ𝑉𝑖

− 𝜋𝑉𝑖𝑁𝑉𝑖
.

Where 𝜋𝑉 𝑖 = − ln(𝑝𝑖(𝑇 , 𝑅𝐻)), with 𝑝𝑖(𝑇 , 𝑅𝐻) = exp( −1
𝑇 2×𝛽2+𝑇×𝛽1+𝛽0

).
𝑝𝑖 is a probability if: 𝑇 2𝛽2 + 𝑇 𝛽1 + 𝛽0 > 0.
We discretize space time 𝑋 such as 𝑋 = {𝑡𝑘, 𝑘 = 1, 2, ..., 𝑚}, where 𝑚 is the number of subdivisions of the period studied.
Hence, 𝑝𝑖 is defined for all couples (𝑇𝑡𝑘 , 𝑅𝐻𝑡𝑘

) of the patch 𝑖 checking inequality (19):

𝑇 2
𝑡𝑘
𝛽2𝑡𝑘

+ 𝑇𝑡𝑘𝛽1𝑡𝑘
+ 𝛽0𝑡𝑘

> 0. (19)

With

⎧⎪⎨⎪⎩
𝛽0𝑡𝑘

= 0.00113 ×𝑅𝐻2
𝑡𝑘
− 0.158 ×𝑅𝐻𝑡𝑘

− 6.61
𝛽1𝑡𝑘

= −2.32 × 10−4 ×𝑅𝐻2
𝑡𝑘
+ 0.0515 ×𝑅𝐻𝑡𝑘

+ 1.06
𝛽2𝑡𝑘

= 4 × 10−6 ×𝑅𝐻2
𝑡𝑘
− 1.09 × 10−3 ×𝑅𝐻𝑡𝑘

− 0.0255

The disease-free equilibrium corresponds to the state where we only have healthy individuals. We have: 𝐸𝐻 = 𝐼𝐻 =𝑅𝐻 =𝐸𝑉 =
𝐼𝑉 = 0.
The system (1) at the DFE gives:

𝑁̇𝐻𝑖
=Λ𝐻𝑖

− 𝜇𝐻𝑖
𝑁𝐻𝑖

+
𝑛∑

𝑗=1
𝑗≠𝑖

𝜑𝑗𝑖𝑆𝐻𝑗
−

𝑛∑
𝑗=1
𝑗≠𝑖

𝜑𝑖𝑗𝑆𝐻𝑖
and 𝑁̇𝑉𝑖

=Λ𝑉𝑖
− 𝜋𝑉𝑖𝑁𝑉𝑖

.

Humans population grows if the numbers of births and immigrants are greater than the numbers of deaths and emigrants; it 
decreases if the numbers of births and immigrants are lower than the numbers of deaths and emigrants; it stabilizes when they are 
equals. Mosquitoes population increases if the number of births is greater than the number of deaths, decreases if the number of 
births is less than the number of deaths and stabilizes when they are equals.

At the DFE, we have the system of equations (20):

⎧⎪⎨⎪⎩
Λ𝐻𝑖

+
𝑛∑

𝑗=1
𝑗≠𝑖

𝜑𝑗𝑖𝑆𝐻𝑗
−

𝑛∑
𝑗=1
𝑗≠𝑖

𝜑𝑖𝑗𝑆𝐻𝑖
− 𝜇𝐻𝑖

𝑆𝐻𝑖
= 0,

Λ𝑉𝑖
− 𝜋𝑉𝑖𝑆𝑉𝑖

= 0.

(20)

With 𝑖 = 1, 2, ..., 𝑛.
I.e.

⎧⎪⎨⎪⎩
𝜇𝐻𝑖

𝑆𝐻𝑖
+

𝑛∑
𝑗=1
𝑗≠𝑖

𝜑𝑖𝑗𝑆𝐻𝑖
−

𝑛∑
𝑗=1
𝑗≠𝑖

𝜑𝑗𝑖𝑆𝐻𝑗
=Λ𝐻𝑖

,

𝜋𝑉𝑖𝑆𝑉𝑖
=Λ𝑉𝑖

.

(21)

In matrix form, the system (21) becomes the system of equations (22):{
𝐷𝐻𝑆𝐻 = Λ𝐻,
9

𝐷𝑉 𝑆𝑉 =Λ𝑉 ,
(22)
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where 𝐷𝐻 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(𝜇𝐻1
+

𝑛∑
𝑗=1
𝑗≠1

𝜑1𝑗 ) −𝜑21 −𝜑31 ... −𝜑𝑛1

−𝜑12 (𝜇𝐻2
+

𝑛∑
𝑗=1
𝑗≠2

𝜑2𝑗 ) −𝜑32 ... −𝜑𝑛2

. . . . .

. . . . .

−𝜑1𝑛 −𝜑2𝑛 −𝜑3𝑛 ... (𝜇𝐻𝑛
+

𝑛∑
𝑗=1
𝑗≠𝑛

𝜑𝑛𝑗 )

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
and 𝐷𝑉 =

⎛⎜⎜⎜⎜⎜⎝

𝜋𝑉1 0 0 ... 0
0 𝜋𝑉2 0 ... 0
. . . . .

. . . . .

0 0 0 ... 𝜋𝑉𝑛

⎞⎟⎟⎟⎟⎟⎠
𝑆𝐻 = (𝑆𝐻1

, 𝑆𝐻2
, ..., 𝑆𝐻𝑛

)𝑇 and Λ𝐻 = (Λ𝐻1
,Λ𝐻2

, ...,Λ𝐻𝑛
)𝑇 .

𝑆𝑉 = (𝑆𝑉1
, 𝑆𝑉2

, ..., 𝑆𝑉𝑛
)𝑇 and Λ𝑉 = (Λ𝑉1

,Λ𝑉2
, ...,Λ𝑉𝑛

)𝑇 .

All non-diagonal elements of 𝐷𝐻 being negative and all the principal minors strictly positive, 𝐷𝐻 is then a reversible 𝑀−𝑀𝑎𝑡𝑟𝑖𝑥, 
and 𝐷−1

𝐻
≥ 0. 𝐷𝑉 being a diagonal matrix with positive values, it is therefore reversible. So the system (20) admits per unit of time, 

a unique solution 𝑆0 = ((𝑆0
𝐻1

, 𝑆0
𝐻2

, ..., 𝑆0
𝐻𝑛

)𝑇 , (𝑆0
𝑉1
, 𝑆0

𝑉2
, ..., 𝑆0

𝑉𝑛
)𝑇 ) = (𝐷−1

𝐻
Λ𝐻, 𝐷−1

𝑉
Λ𝑉 ) > 0. Therefore, at the Disease-free equilibrium, 

the system (1) admits per unit of time, a single solution 𝑃 0
𝑖
= (𝑆0

𝐻𝑖
, 0, 0, 0, 𝑆0

𝑉𝑖
, 0, 0).

7. Basic reproduction number 𝑹𝟎

Proposition 7.1. The basic reproduction number

𝑅0 =
1

𝑁∗
𝐻𝑖

×

√√√√√√√√
𝛿𝐻𝑖

𝛿𝑉𝑖𝑘𝑖𝛽𝑖𝑓𝑖𝑤𝑖𝑆
∗
𝐻𝑖
𝑆∗
𝑉𝑖

𝜋0𝑖 (
𝑛∑

𝑗=1
𝑗≠𝑖

𝜑𝑖𝑗 + 𝛿𝐻𝑖
+ 𝜇𝐻𝑖

)(𝛼𝐻𝑖
+ 𝑑𝐻𝑖

+ 𝜇𝐻𝑖
)(𝛿𝑉𝑖 + 𝜋𝑉𝑖 )

Where 𝜋0𝑖 = − ln(𝑝𝑖(𝑇0, 𝑅𝐻0)) is the average mortality rate of mosquitoes in the patch 𝑖, from calibrations of 𝑇 and 𝑅𝐻 presented 
in sections 4.3 and 4.4.

Proof. The Next generation method proposed by Diekmann et al. [2], then Driessche and Watmough [3] is the one chosen for our 
demonstration.
We use here the average mosquitoes mortality rate in the patch 𝑖, 𝜋0𝑖 = − ln(𝑝𝑖(𝑇0, 𝑅𝐻0)).

𝐹 =

⎛⎜⎜⎜⎜⎜⎜⎝

0 0 0 𝑘𝑖𝛽𝑖

𝑆∗
𝐻𝑖

𝑁∗
𝐻𝑖

0 0 𝑓𝑖𝑤𝑖

𝑆∗
𝑉𝑖

𝑁∗
𝐻𝑖

0

0 0 0 0
0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎠

𝑉 =

⎛⎜⎜⎜⎜⎜
−(

𝑛∑
𝑗=1
𝑗≠𝑖

𝜑𝑖𝑗 + 𝛿𝐻𝑖
+ 𝜇𝐻𝑖

) 0 0 0

0 −(𝛿𝑉𝑖 + 𝜋0𝑖 ) 0 0
𝛿𝐻𝑖

0 −(𝛼𝐻𝑖
+ 𝑑𝐻𝑖

+ 𝜇𝐻𝑖
) 0

⎞⎟⎟⎟⎟⎟

10

⎜⎝ 0 𝛿𝑉𝑖 0 −𝜋0𝑖
⎟⎠



Heliyon 10 (2024) e31666J.-H. Noubissi and J.C. Kamgang

𝑉 −1 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

− 1

(
𝑛∑

𝑗=1
𝑗≠𝑖

𝜑𝑖𝑗+𝛿𝐻𝑖
+𝜇𝐻𝑖

)
0 0 0

0 − 1
(𝛿𝑉𝑖+𝜋0𝑖 )

0 0

−
𝛿𝐻𝑖

(
𝑛∑

𝑗=1
𝑗≠𝑖

𝜑𝑖𝑗+𝛿𝐻𝑖
+𝜇𝐻𝑖

)(𝛼𝐻𝑖
+𝑑𝐻𝑖

+𝜇𝐻𝑖
)

0 − 1
(𝛼𝐻𝑖

+𝑑𝐻𝑖
+𝜇𝐻𝑖

) 0

0 −
𝛿𝑉𝑖

𝜋0𝑖 (𝛿𝑉𝑖+𝜋0𝑖 )
0 − 1

𝜋0𝑖

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

𝐹 ∗ 𝑉 −1 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 −
𝛿𝑉𝑖

𝑘𝑖𝛽𝑖𝑆
∗
𝐻𝑖

𝜋0𝑖 (𝛿𝑉𝑖+𝜋0𝑖 )𝑁
∗
𝐻𝑖

0 −
𝑘𝑖𝛽𝑖𝑆

∗
𝐻𝑖

𝜋0𝑖𝑁
∗
𝐻𝑖

−
𝛿𝐻𝑖

𝑓𝑖𝑤𝑖𝑆
∗
𝑉𝑖

(
𝑛∑

𝑗=1
𝑗≠𝑖

𝜑𝑖𝑗+𝛿𝐻𝑖
+𝜇𝐻𝑖

)(𝛼𝐻𝑖
+𝑑𝐻𝑖

+𝜇𝐻𝑖
)𝑁∗

𝐻𝑖

0 −
𝑓𝑖𝑤𝑖𝑆

∗
𝑉𝑖

(𝛼𝐻𝑖
+𝑑𝐻𝑖

+𝜇𝐻𝑖
)𝑁∗

𝐻𝑖

0

0 0 0 0
0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
𝑃 (𝑋) = |𝑋𝐼 − 𝐹𝑉 −1|

𝑃 (𝑋) =

||||||||||||||||

𝑋 −
𝛿𝑉𝑖

𝑘𝑖𝛽𝑖𝑆
∗
𝐻𝑖

𝜋0𝑖 (𝛿𝑉𝑖+𝜋0𝑖 )𝑁
∗
𝐻𝑖

0 −
𝑘𝑖𝛽𝑖𝑆

∗
𝐻𝑖

𝜋0𝑖𝑁
∗
𝐻𝑖

−
𝛿𝐻𝑖

𝑓𝑖𝑤𝑖𝑆
∗
𝑉𝑖

(
𝑛∑

𝑗=1
𝑗≠𝑖

𝜑𝑖𝑗+𝛿𝐻𝑖
+𝜇𝐻𝑖

)(𝛼𝐻𝑖
+𝑑𝐻𝑖

+𝜇𝐻𝑖
)𝑁∗

𝐻𝑖

𝑋 −
𝑓𝑖𝑤𝑖𝑆

∗
𝑉𝑖

(𝛼𝐻𝑖
+𝑑𝐻𝑖

+𝜇𝐻𝑖
)𝑁∗

𝐻𝑖

0

0 0 𝑋 0
0 0 0 𝑋

||||||||||||||||
𝑃 (𝑋) =𝑋4 −

𝛿𝐻𝑖
𝛿𝑉𝑖𝑘𝑖𝛽𝑖𝑓𝑖𝑤𝑖𝑆

∗
𝐻𝑖
𝑆∗
𝑉𝑖

𝜋0𝑖 (
𝑛∑

𝑗=1
𝑗≠𝑖

𝜑𝑖𝑗 + 𝛿𝐻𝑖
+ 𝜇𝐻𝑖

)(𝛼𝐻𝑖
+ 𝑑𝐻𝑖

+ 𝜇𝐻𝑖
)(𝛿𝑉𝑖 + 𝜋0𝑖 )𝑁

∗2
𝐻𝑖

𝑋2

We obtain:

𝑅0 = 𝜌(𝐹𝑉 −1) = 1
𝑁∗

𝐻𝑖

×

√√√√√√√√
𝛿𝐻𝑖

𝛿𝑉𝑖𝑘𝑖𝛽𝑖𝑓𝑖𝑤𝑖𝑆
∗
𝐻𝑖
𝑆∗
𝑉𝑖

𝜋0𝑖 (
𝑛∑

𝑗=1
𝑗≠𝑖

𝜑𝑖𝑗 + 𝛿𝐻𝑖
+ 𝜇𝐻𝑖

)(𝛼𝐻𝑖
+ 𝑑𝐻𝑖

+ 𝜇𝐻𝑖
)(𝛿𝑉𝑖 + 𝜋0𝑖 )

8. Global asymptotic stability at the disease-free equilibrium (DFE)

In this section, we have to show that when 𝑅0 < 1, there is a positively invariant set where our system (1) is globally asymptoti-
cally stable at the DFE.

We consider, as mosquitoes mortality rate in the patch 𝑖, the average mosquitoes mortality rate 𝜋0𝑖 for the patch 𝑖, from calibra-
tions of 𝑇 and 𝑅𝐻 presented in sections 4.3 and 4.4. We set 𝜋𝑉𝑖 = 𝜋0𝑖 = −𝑙𝑛(𝑝𝑖(𝑇0, 𝑅𝐻0)).
The system (1) can be rewritten in linear form as well. We obtain the system (23)

𝑥̇ =𝐴(𝑥)𝑥+ 𝑏(𝑥)↔

{
𝑥̇𝑆𝑖

=𝐴𝑆𝑖
(𝑥).𝑥𝑆𝑖

+𝐴𝑆𝑖𝐼𝑖
(𝑥).𝑥𝐼𝑖 + 𝑏𝑆𝑖

(𝑥),
𝑥̇𝐼𝑖 =𝐴𝐼𝑖

(𝑥).𝑥𝐼𝑖 .
(23)

The system (23) is defined on the positively invariant orthant set Ω ⊂ ℝ7
+. 𝑥𝑆𝑖

= (𝑆𝐻𝑖
; 𝑆𝑉𝑖

; 𝑅𝐻𝑖
) represents susceptible and recovered 

populations and 𝑥𝐼𝑖 = (𝐸𝐻𝑖
; 𝐸𝑉𝑖

; 𝐼𝐻𝑖
; 𝐼𝑉𝑖 ), infected and infectious populations.

𝐴𝑆𝑖
matrix can be rewritten as

𝐴𝑆𝑖
(𝑥) =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

−(
𝑛∑

𝑗=1
𝑗≠𝑖

𝜑𝑖𝑗 + 𝜇𝐻𝑖
+ 𝑘𝑖𝛽𝑖

𝐼𝑉𝑖

𝑁𝐻𝑖

) 0 𝜖𝐻𝑖

0 −(𝑓𝑖𝑤𝑖

𝐼𝐻𝑖

𝑁𝐻𝑖

+ 𝜋𝑉𝑖 ) 0

0 0 −(
𝑛∑

𝑗=1
𝑗≠𝑖

𝜑𝑖𝑗 + 𝜇𝐻𝑖
)

⎞⎟⎟⎟⎟⎟⎟⎟⎠

11

𝐴𝑆𝑖𝐼𝑖
matrix can be rewritten as
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Fig. 7. Graph associated to 𝐴𝐼 (𝑥) matrix.

𝐴𝑆𝑖𝐼𝑖
(𝑥) =

⎛⎜⎜⎜⎜⎝
0 0 0 −𝑘𝑖𝛽𝑖

𝐼𝑉𝑖

𝑁𝐻𝑖

0 0 −𝑓𝑖𝑤𝑖

𝐼𝐻𝑖

𝑁𝐻𝑖

0

0 0 𝛼𝐻𝑖
0

⎞⎟⎟⎟⎟⎠
𝐴𝐼𝑖

(𝑥) matrix can be rewritten as 𝐴𝐼𝑖
(𝑥) =

(
𝐴𝐼𝐸𝑖

(𝑥) 𝐴𝐼𝐸𝑖,𝐼𝑖
(𝑥)

𝐴𝐼𝐼𝑖,𝐸𝑖
(𝑥) 𝐴𝐼𝐼

(𝑥)

)
, where:

𝐴𝐼𝐸𝑖
(𝑥) =

⎛⎜⎜⎜⎝
−(

𝑛∑
𝑗=1
𝑗≠𝑖

𝜑𝑖𝑗 + 𝛿𝐻𝑖
+ 𝜇𝐻𝑖

) 0

0 −(𝛿𝑉𝑖 + 𝜋𝑉𝑖 )

⎞⎟⎟⎟⎠ ,
𝐴𝐼𝐸𝑖,𝐼𝑖

(𝑥) =
⎛⎜⎜⎝

0 𝑘𝑖𝛽𝑖
𝑆𝐻𝑖

𝑁𝐻𝑖

𝑓𝑖𝑤𝑖

𝑆𝑉𝑖

𝑁𝐻𝑖

0

⎞⎟⎟⎠ ,
𝐴𝐼𝐼𝑖,𝐸𝑖

(𝑥) =
(
𝛿𝐻𝑖

0
0 𝛿𝑉𝑖

)
, 𝐴𝐼𝐼𝑖

(𝑥) =
(
−(𝛼𝐻𝑖

+ 𝑑𝐻𝑖
+ 𝜇𝐻𝑖

) 0
0 −𝜋𝑉𝑖

)
.

∀𝑥 ∈ℝ7
+, matrices 𝐴(𝑥), 𝐴𝑆𝑖

(𝑥), 𝐴𝐼𝑖
(𝑥) are Metzler matrices.

Theorem 8.1. Let 𝜏 =
𝜇𝐻𝑖

𝑑𝐻𝑖
+𝜇𝐻𝑖

(𝜏 ≤ 1) and Ω̃ = {𝑥 ∈ Ω ∶ 𝑥 ≠ 0} a positively invariant set. When 𝑅0 < 𝜏 , the system (1) at the DFE is 

globally asymptotically stable (GAS) in {𝑥 ∈ Ω̃ ∶ 𝑥𝐼 = 0}.

Proof. We use Theorem 4.3 of Kamgang and Sallet [5] which establishes global asymptotic stability by respecting 5 conditions 
(𝑯𝟏 −𝑯𝟓). We have to prove that for our system (1), these 5 conditions are satisfied when 𝑅0 < 𝜏 .

(𝑯𝟏) Our system (1) must be dissipative on 𝛀.

Our system (1) is defined on the positively invariant orthant set Ω ⊂ ℝ7
+. It is a dissipative system on Ω.

(𝑯𝟐) Show that when there is no disease, the population will stabilize at the DFE.

The subsystem 𝑥̇𝑆 =𝐴𝑆 (𝑥𝑆, 0)(𝑥 − 𝑥∗
𝑆
) has the linear form defined by the system of equations (24):

⎧⎪⎨⎪⎩
𝑆̇𝐻𝑖

= (Λ𝐻𝑖
+

𝑛∑
𝑗=1
𝑗≠𝑖

𝜑𝑗𝑖𝑆𝐻𝑗
) − (

𝑛∑
𝑗=1
𝑗≠𝑖

𝜑𝑖𝑗 + 𝜇𝐻𝑖
)𝑆𝐻𝑖

+ 𝜖𝐻𝑖
𝑅𝐻𝑖

,

𝑆̇𝑉𝑖
=Λ𝑉𝑖

− 𝜋𝑉𝑖𝑆𝑉𝑖
.

(24)

This subsystem is globally asymptotically stable at the DFE 

⎛⎜⎜⎜⎜⎝
(Λ𝐻𝑖

+
𝑛∑

𝑗=1
𝑗≠𝑖

𝜑𝑗𝑖𝑆𝐻𝑗
)

(
𝑛∑

𝑗=1
𝑗≠𝑖

𝜑𝑖𝑗+𝜇𝐻𝑖
)

,
Λ𝑉𝑖

𝜋𝑉𝑖

⎞⎟⎟⎟⎟⎠
. The DFE satisfies the condition (𝐻2).

(𝑯𝟑) All non-diagonal elements of 𝑨𝑰 (𝒙) matrix have to be non-positive and there is no block of compartments which does 
not interact with others.

𝐴𝐼 (𝑥) matrix presented in (23) is a Metzler matrix, which can be represented at Fig. 7, where each node represents the different 
phases of infection.
The two properties necessary to satisfy the condition (𝐻3) are respected: all non-diagonal elements of 𝐴𝐼 (𝑥) matrix non-positive and 
the graph associated with the 𝐴𝐼 (𝑥) matrix is strongly connected, which shows that the 𝐴𝐼 (𝑥) matrix is irreducible.

(𝑯𝟒) There is an upper-bound for 𝑨𝑰 (𝒙) matrix.

Knowing that 1
𝑁

𝜙

𝐻𝑖

≥
1

𝑁𝐻𝑖

, 𝑆∗
𝐻𝑖

≥ 𝑆𝐻𝑖
and 𝑆∗

𝑉𝑖
≥ 𝑆𝑉𝑖

, we get as the upper bound of 𝐴𝐼 (𝑥),(
𝑀 𝑁

)

12

𝐴̄𝐼 (𝑥) = 𝑃 𝑄
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Where

𝑀 =
⎛⎜⎜⎜⎝
−(

𝑛∑
𝑗=1
𝑗≠𝑖

𝜑𝑖𝑗 + 𝛿𝐻𝑖
+ 𝜇𝐻𝑖

) 0

0 −(𝛿𝑉𝑖 + 𝜋𝑉𝑖 )

⎞⎟⎟⎟⎠ , 𝑁 =

⎛⎜⎜⎜⎜⎝
0 𝑘𝑖𝛽𝑖

𝑆∗
𝐻𝑖

𝑁
𝜙

𝐻𝑖

𝑓𝑖𝑤𝑖

𝑆∗
𝑉𝑖

𝑁
𝜙

𝐻𝑖

0

⎞⎟⎟⎟⎟⎠
,

𝑃 =
(
𝛿𝐻𝑖

0
0 𝛿𝑉𝑖

)
and 𝑄 =

(
−(𝛼𝐻𝑖

+ 𝑑𝐻𝑖
+ 𝜇𝐻𝑖

) 0
0 −𝜋𝑉𝑖

)
.

𝐴𝐼 (𝑥) ≤ 𝐴̄𝐼 (𝑥) for all 𝑥 ∈Ω and 𝐴𝐼 (𝑥∗) = 𝐴̄𝐼 (𝑥) for all 𝑥 ∈ Ω̃. The condition (𝐻4) is satisfied.

(𝑯𝟓) Show that 𝜶(𝑨̄𝑰 )<𝟎.

𝛼(𝐴̄𝐼 ) < 0⟺ 𝛼(𝑄− 𝑃𝑀−1𝑁) < 0.

Let: 𝑇 =𝑄 − 𝑃𝑀−1𝑁

𝑃𝑀−1 =

⎛⎜⎜⎜⎜⎝
−

𝛿𝐻𝑖
𝑛∑

𝑗=1
𝑗≠𝑖

𝜑𝑖𝑗+𝛿𝐻𝑖
+𝜇𝐻𝑖

0

0 −
𝛿𝑉𝑖

𝛿𝑉𝑖
+𝜋𝑉𝑖

⎞⎟⎟⎟⎟⎠
𝑃𝑀−1𝑁 =

⎛⎜⎜⎜⎜⎜⎝
0 −

𝑘𝑖𝛽𝑖𝛿𝐻𝑖
𝑆∗
𝐻𝑖

(
𝑛∑

𝑗=1
𝑗≠𝑖

𝜑𝑖𝑗+𝛿𝐻𝑖
+𝜇𝐻𝑖

)𝑁𝜙

𝐻𝑖

−
𝑓𝑖𝑤𝑖𝛿𝑉𝑖

𝑆∗
𝑉𝑖

(𝛿𝑉𝑖+𝜋𝑉𝑖 )𝑁
𝜙

𝐻𝑖

0

⎞⎟⎟⎟⎟⎟⎠
𝑇 =

⎛⎜⎜⎜⎜⎜⎝
−(𝛼𝐻𝑖

+ 𝑑𝐻𝑖
+ 𝜇𝐻𝑖

) −
𝑘𝑖𝛽𝑖𝛿𝐻𝑖

𝑆∗
𝐻𝑖

(
𝑛∑

𝑗=1
𝑗≠𝑖

𝜑𝑖𝑗+𝛿𝐻𝑖
+𝜇𝐻𝑖

)𝑁𝜙

𝐻𝑖

−
𝑓𝑖𝑤𝑖𝛿𝑉𝑖

𝑆∗
𝑉𝑖

(𝛿𝑉𝑖+𝜋𝑉𝑖 )𝑁
𝜙

𝐻𝑖

−𝜋𝑉𝑖

⎞⎟⎟⎟⎟⎟⎠
𝑇 is stable if 𝑇11 stable and (𝑇22 − 𝑇21𝑇

−1
11 𝑇12) stable.

𝑇11 = −(𝛼𝐻𝑖
+ 𝑑𝐻𝑖

+ 𝜇𝐻𝑖
) < 0; 𝑇11 is stable.

Let 𝜒 = 𝑇22 − 𝑇21𝑇
−1
11 𝑇12 = −𝜋𝑉𝑖 +

𝑓𝑖𝑤𝑖𝑘𝑖𝛽𝑖𝛿𝐻𝑖
𝛿𝑉𝑖

𝑆∗
𝐻𝑖

𝑆∗
𝑉𝑖

(𝛿𝑉𝑖+𝜋𝑉𝑖 )(𝛼𝐻𝑖
+𝑑𝐻𝑖

+𝜇𝐻𝑖
)(

𝑛∑
𝑗=1
𝑗≠𝑖

𝜑𝑖𝑗+𝛿𝐻𝑖
+𝜇𝐻𝑖

)𝑁𝜙2
𝐻𝑖

.

𝜒 is stable if 𝜒 < 0.

𝜒 < 0⇔
𝑓𝑖𝑤𝑖𝑘𝑖𝛽𝑖𝛿𝐻𝑖

𝛿𝑉𝑖𝑆
∗
𝐻𝑖
𝑆∗
𝑉𝑖

𝜋𝑉𝑖 (𝛿𝑉𝑖 + 𝜋𝑉𝑖 )(𝛼𝐻𝑖
+ 𝑑𝐻𝑖

+ 𝜇𝐻𝑖
)(

𝑛∑
𝑗=1
𝑗≠𝑖

𝜑𝑖𝑗 + 𝛿𝐻𝑖
+ 𝜇𝐻𝑖

)𝑁𝜙2

𝐻𝑖

< 1

𝑁∗
𝐻𝑖

=
𝑁𝐻𝑖

𝜇𝐻𝑖

and 𝑁
𝜙

𝐻𝑖
=

𝑁𝐻𝑖

(𝑑𝐻𝑖
+ 𝜇𝐻𝑖

)
, i.e. 𝑁

𝜙

𝐻𝑖
=

𝜇𝐻𝑖

𝑑𝐻𝑖
+ 𝜇𝐻𝑖

𝑁∗
𝐻𝑖

Hence, we have: 
𝑓𝑖𝑤𝑖𝑘𝑖𝛽𝑖𝛿𝐻𝑖

𝛿𝑉𝑖
𝑆∗
𝐻𝑖

𝑆∗
𝑉𝑖

𝜋𝑉𝑖
(𝛿𝑉𝑖+𝜋𝑉𝑖 )(𝛼𝐻𝑖

+𝑑𝐻𝑖
+𝜇𝐻𝑖

)(
𝑛∑

𝑗=1
𝑗≠𝑖

𝜑𝑖𝑗+𝛿𝐻𝑖
+𝜇𝐻𝑖

)𝑁∗2
𝐻𝑖

(
𝜇𝐻𝑖

𝑑𝐻𝑖
+𝜇𝐻𝑖

)2
< 1.

I.e.
𝑓𝑖𝑤𝑖𝑘𝑖𝛽𝑖𝛿𝐻𝑖

𝛿𝑉𝑖
𝑆∗
𝐻𝑖

𝑆∗
𝑉𝑖

𝜋𝑉𝑖
(𝛿𝑉𝑖+𝜋𝑉𝑖 )(𝛼𝐻𝑖

+𝑑𝐻𝑖
+𝜇𝐻𝑖

)(
𝑛∑

𝑗=1
𝑗≠𝑖

𝜑𝑖𝑗+𝛿𝐻𝑖
+𝜇𝐻𝑖

)𝑁∗2
𝐻𝑖

< (
𝜇𝐻𝑖

𝑑𝐻𝑖
+𝜇𝐻𝑖

)2.

I.e. 𝑅2
0 < (

𝜇𝐻𝑖

𝑑𝐻𝑖
+𝜇𝐻𝑖

)2.

Thus, 𝛼(𝐴̄𝐼 ) < 0 ⇔𝑅0 <
𝜇𝐻𝑖

𝑑𝐻𝑖
+𝜇𝐻𝑖

, which is the starting hypothesis. So, condition (𝐻5) is satisfied.

The conditions mentioned in Theorem 4.3 of Kamgang and Sallet [5] being satisfied, we deduce our system (1) is globally 
𝜇𝐻
13

asymptotically stable (GAS) at the DFE when 𝑅0 <
𝑖

𝑑𝐻𝑖
+𝜇𝐻𝑖

.
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Fig. 8. Representation of the compartmental models of Douala (right), Yaounde (middle) and Ngaoundere (left).

9. Numerical simulation

9.1. Environment

We consider three cities (Douala, Yaounde and Ngaoundere) of Cameroon country. The report of the National Strategic Plan for 
fighting against Malaria of the Ministry of Public Health in Cameroon [12] reveals that the transmission of malaria in Douala is 
continuous over the year, individuals who reside there benefit a permanent immunity after a time; we model this city by a SEIR 
model. The transmission is continuous for a major part of the year in Yaounde, residents get a temporary immunity after a time; 
we model by a SEIRS model (as defined by the system (1)). The malaria transmission is seasonal in Ngaoundere, residents have no
immunity; we model by a SEIS model. Fig. 8 shows three compartment models for Douala, Yaounde and Ngaoundere cities.

The SEIR model corresponding to the city of Douala can be represented by the system (25):

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝑆̇𝐻𝑖
=Λ𝐻𝑖

+
𝑛∑

𝑗=1
𝑗≠𝑖

𝜑𝑗𝑖𝑆𝐻𝑗 −
𝑛∑

𝑗=1
𝑗≠𝑖

𝜑𝑖𝑗𝑆𝐻𝑖 − 𝑘𝑖𝛽𝑖
𝑆𝐻𝑖

𝑁𝐻𝑖
𝐼𝑉 𝑖 − 𝜇𝐻𝑖𝑆𝐻𝑖,

𝐸̇𝐻𝑖
=

𝑛∑
𝑗=1
𝑗≠𝑖

𝜑𝑗𝑖𝐸𝐻𝑗 −
𝑛∑

𝑗=1
𝑗≠𝑖

𝜑𝑖𝑗𝐸𝐻𝑖 + 𝑘𝑖𝛽𝑖
𝑆𝐻𝑖

𝑁𝐻𝑖
𝐼𝑉 𝑖 − 𝛿𝐻𝑖𝐸𝐻𝑖 − 𝜇𝐻𝑖𝐸𝐻𝑖,

𝐼̇𝐻𝑖
= 𝛿𝐻𝑖𝐸𝐻𝑖 − 𝛼𝐻𝑖𝐼𝐻𝑖 − 𝑑𝐻𝑖𝐼𝐻𝑖 − 𝜇𝐻𝑖𝐼𝐻𝑖,

𝑅̇𝐻𝑖
=

𝑛∑
𝑗=1
𝑗≠𝑖

𝜑𝑗𝑖𝑅𝐻𝑗 + 𝛼𝐻𝑖𝐼𝐻𝑖 −
𝑛∑

𝑗=1
𝑗≠𝑖

𝜑𝑖𝑗𝑅𝐻𝑖 − 𝜇𝐻𝑖𝑅𝐻𝑖,

𝑆̇𝑉𝑖
=Λ𝑉𝑖

− 𝑓𝑖𝜔𝑖
𝑆𝑉 𝑖

𝑁𝐻𝑖
𝐼𝐻𝑖 − 𝜋𝑉𝑖𝑆𝑉 𝑖,

𝐸̇𝑉𝑖
= 𝑓𝑖𝜔𝑖

𝑆𝑉 𝑖

𝑁𝐻𝑖
𝐼𝐻𝑖 − 𝛿𝑉 𝑖𝐸𝑉 𝑖 − 𝜋𝑉𝑖𝐸𝑉 𝑖,

𝐼̇𝑉𝑖 = 𝛿𝑉 𝑖𝐸𝑉 𝑖 − 𝜋𝑉𝑖𝐼𝑉 𝑖.

(25)

Where 𝜋𝑉𝑖 is the mortality rate including climatic factors defined at the equation (2).
Initial conditions are (𝑆𝐻𝑖

(0), 𝐸𝐻𝑖
(0), 𝐼𝐻𝑖

(0), 𝑅𝐻𝑖
(0), 𝑆𝑉𝑖

(0), 𝐸𝑉𝑖
(0), 𝐼𝑉𝑖 (0)).

The SEIS model corresponding to the city of Ngaoundere can be represented by the system (26):

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

𝑆̇𝐻𝑖
=Λ𝐻𝑖

+ 𝜌𝐻𝑖𝐼𝐻𝑖 +
𝑛∑

𝑗=1
𝑗≠𝑖

𝜑𝑗𝑖𝑆𝐻𝑗 −
𝑛∑

𝑗=1
𝑗≠𝑖

𝜑𝑖𝑗𝑆𝐻𝑖 − 𝑘𝑖𝛽𝑖
𝑆𝐻𝑖

𝑁𝐻𝑖
𝐼𝑉 𝑖 − 𝜇𝐻𝑖𝑆𝐻𝑖,

𝐸̇𝐻𝑖
=

𝑛∑
𝑗=1
𝑗≠𝑖

𝜑𝑗𝑖𝐸𝐻𝑗 −
𝑛∑

𝑗=1
𝑗≠𝑖

𝜑𝑖𝑗𝐸𝐻𝑖 + 𝑘𝑖𝛽𝑖
𝑆𝐻𝑖

𝑁𝐻𝑖
𝐼𝑉 𝑖 − 𝛿𝐻𝑖𝐸𝐻𝑖 − 𝜇𝐻𝑖𝐸𝐻𝑖,

𝐼̇𝐻𝑖
= 𝛿𝐻𝑖𝐸𝐻𝑖 − 𝑑𝐻𝑖𝐼𝐻𝑖 − 𝜇𝐻𝑖𝐼𝐻𝑖 − 𝜌𝐻𝑖𝐼𝐻𝑖,

𝑆̇𝑉𝑖
=Λ𝑉𝑖

− 𝑓𝑖𝜔𝑖
𝑆𝑉 𝑖

𝑁𝐻𝑖
𝐼𝐻𝑖 − 𝜋𝑉𝑖𝑆𝑉 𝑖,

𝐸̇𝑉𝑖
= 𝑓𝑖𝜔𝑖

𝑆𝑉 𝑖

𝑁𝐻𝑖
𝐼𝐻𝑖 − 𝛿𝑉 𝑖𝐸𝑉 𝑖 − 𝜋𝑉𝑖𝐸𝑉 𝑖,

𝐼̇𝑉𝑖 = 𝛿𝑉 𝑖𝐸𝑉 𝑖 − 𝜋𝑉𝑖𝐼𝑉 𝑖.

(26)

Where 𝜋𝑉𝑖 is the mortality rate including climatic factors defined at the equation (2).
14

At initial conditions, we have (𝑆𝐻𝑖
(0), 𝐸𝐻𝑖

(0), 𝐼𝐻𝑖
(0), 𝑆𝑉𝑖

(0), 𝐸𝑉𝑖
(0), 𝐼𝑉𝑖 (0)).
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9.2. Data migration

The report on the General Population Census of Cameroon [24] shows a population of 1,907,479 inhabitants in Douala (𝑁𝐻𝑑𝑙𝑎 =
1907479), 1,817,524 inhabitants in Yaounde (𝑁𝐻𝑦𝑑𝑒 = 1817524). Ngaoundere has an estimated population of 262,747 inhabitants 
(𝑁𝐻𝑛𝑑 = 262747) [25]. In 2019, we carried out an investigation in Douala, Yaounde and Ngaoundere inside the railway company 
Camrail and some travel bus agencies like Garanti express, Touristique express and Buca voyages. We got the following information 
about daily migrations:

𝜙𝑌 𝑎𝑜𝑢𝑛𝑑𝑒⟶𝐷𝑜𝑢𝑎𝑙𝑎 =
496 + 2700
𝑁𝐻𝑦𝑑𝑒

= 3196
1817524

= 0.0018 = 0.18%;

𝜙𝐷𝑜𝑢𝑎𝑙𝑎⟶𝑌 𝑎𝑜𝑢𝑛𝑑𝑒 =
519 + 2800
𝑁𝐻𝑑𝑙𝑎

= 3319
1907479

= 0.0017 = 0.17%;

𝜙𝑌 𝑎𝑜𝑢𝑛𝑑𝑒⟶𝑁𝑔𝑎𝑜𝑢𝑛𝑑𝑒𝑟𝑒 =
788

𝑁𝐻𝑦𝑑𝑒

= 788
1817524

= 0.00043 = 0.043%;

𝜙𝑁𝑔𝑎𝑜𝑢𝑛𝑑𝑒𝑟𝑒⟶𝑌 𝑎𝑜𝑢𝑛𝑑𝑒 =
860

𝑁𝐻𝑛𝑑𝑒𝑟𝑒

= 860
262747

= 0.0033 = 0.33%.

9.3. Epidemiological data

Table 3 shows monthly temperatures (minimum) and relative humidity (maximum) for three cities (Douala, Yaounde and 
Ngaoundere) for years 2017 and 2018.

Table 4 (respectively Table 5 and Table 6) shows parameters of Yaounde (respectively Douala and Ngaoundere).

9.4. Influence of climatic factors

We illustrate influence of climatic factors by comparing a model without taking into account climatic factors against a model 
including climatic factors.

If we neglect climatic factors, our SEIR model could be represented by the system of equations (27):⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝑆̇𝐻𝑖
=Λ𝐻𝑖

+
𝑛∑

𝑗=1
𝑗≠𝑖

𝜑𝑗𝑖𝑆𝐻𝑗 −
𝑛∑

𝑗=1
𝑗≠𝑖

𝜑𝑖𝑗𝑆𝐻𝑖 − 𝑘𝑖𝛽𝑖
𝑆𝐻𝑖

𝑁𝐻𝑖
𝐼𝑉 𝑖 − 𝜇𝐻𝑖𝑆𝐻𝑖,

𝐸̇𝐻𝑖
=

𝑛∑
𝑗=1
𝑗≠𝑖

𝜑𝑗𝑖𝐸𝐻𝑗 −
𝑛∑

𝑗=1
𝑗≠𝑖

𝜑𝑖𝑗𝐸𝐻𝑖 + 𝑘𝑖𝛽𝑖
𝑆𝐻𝑖

𝑁𝐻𝑖
𝐼𝑉 𝑖 − 𝛿𝐻𝑖𝐸𝐻𝑖 − 𝜇𝐻𝑖𝐸𝐻𝑖,

𝐼̇𝐻𝑖
= 𝛿𝐻𝑖𝐸𝐻𝑖 − 𝛼𝐻𝑖𝐼𝐻𝑖 − 𝑑𝐻𝑖𝐼𝐻𝑖 − 𝜇𝐻𝑖𝐼𝐻𝑖,

𝑅̇𝐻𝑖
=

𝑛∑
𝑗=1
𝑗≠𝑖

𝜑𝑗𝑖𝑅𝐻𝑗 + 𝛼𝐻𝑖𝐼𝐻𝑖 −
𝑛∑

𝑗=1
𝑗≠𝑖

𝜑𝑖𝑗𝑅𝐻𝑖 − 𝜇𝐻𝑖𝑅𝐻𝑖,

𝑆̇𝑉𝑖
=Λ𝑉𝑖

− 𝑓𝑖𝜔𝑖
𝑆𝑉 𝑖

𝑁𝐻𝑖
𝐼𝐻𝑖 − 𝜇𝑉 𝑖𝑆𝑉 𝑖,

𝐸̇𝑉𝑖
= 𝑓𝑖𝜔𝑖

𝑆𝑉 𝑖

𝑁𝐻𝑖
𝐼𝐻𝑖 − 𝛿𝑉 𝑖𝐸𝑉 𝑖 − 𝜇𝑉 𝑖𝐸𝑉 𝑖,

𝐼̇𝑉𝑖 = 𝛿𝑉 𝑖𝐸𝑉 𝑖 − 𝜇𝑉 𝑖𝐼𝑉 𝑖.

(27)

Initial conditions are (𝑆𝐻𝑖
(0), 𝐸𝐻𝑖

(0), 𝐼𝐻𝑖
(0), 𝑅𝐻𝑖

(0), 𝑆𝑉𝑖
(0), 𝐸𝑉𝑖

(0), 𝐼𝑉𝑖 (0)).
If we neglect climatic factors, our SEIRS model could be represented by the system (28):⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝑆̇𝐻𝑖
=Λ𝐻𝑖

+ 𝜖𝐻𝑖
𝑅𝐻𝑖

+
𝑛∑

𝑗=1
𝑗≠𝑖

𝜑𝑗𝑖𝑆𝐻𝑗
− 𝑆𝐻𝑖

𝑛∑
𝑗=1
𝑗≠𝑖

𝜑𝑖𝑗 − 𝑘𝑖𝛽𝑖
𝑆𝐻𝑖

𝑁𝐻𝑖

𝐼𝑉𝑖 − 𝜇𝐻𝑖
𝑆𝐻𝑖

,

𝐸̇𝐻𝑖
=

𝑛∑
𝑗=1
𝑗≠𝑖

𝜑𝑗𝑖𝐸𝐻𝑗
−𝐸𝐻𝑖

𝑛∑
𝑗=1
𝑗≠𝑖

𝜑𝑖𝑗 + 𝑘𝑖𝛽𝑖
𝑆𝐻𝑖

𝑁𝐻𝑖

𝐼𝑉𝑖 − 𝛿𝐻𝑖
𝐸𝐻𝑖

− 𝜇𝐻𝑖
𝐸𝐻𝑖

,

𝐼̇𝐻𝑖
= 𝛿𝐻𝑖

𝐸𝐻𝑖
− 𝛼𝐻𝑖

𝐼𝐻𝑖
− 𝑑𝐻𝑖

𝐼𝐻𝑖
− 𝜇𝐻𝑖

𝐼𝐻𝑖
,

𝑅̇𝐻𝑖
=

𝑛∑
𝑗=1
𝑗≠𝑖

𝜑𝑗𝑖𝑅𝐻𝑗
+ 𝛼𝐻𝑖

𝐼𝐻𝑖
−𝑅𝐻𝑖

𝑛∑
𝑗=1
𝑗≠𝑖

𝜑𝑖𝑗 − 𝜖𝐻𝑖
𝑅𝐻𝑖

− 𝜇𝐻𝑖
𝑅𝐻𝑖

,

𝑆̇𝑉𝑖
=Λ𝑉𝑖

− 𝑓𝑖𝜔𝑖

𝑆𝑉𝑖

𝑁𝐻𝑖

𝐼𝐻𝑖
− 𝜇𝑉𝑖

𝑆𝑉𝑖
,

𝐸̇𝑉𝑖
= 𝑓𝑖𝜔𝑖

𝑆𝑉𝑖

𝑁𝐻𝑖

𝐼𝐻𝑖
− 𝛿𝑉𝑖𝐸𝑉𝑖

− 𝜇𝑉𝑖
𝐸𝑉𝑖

,

𝐼̇𝑉𝑖 = 𝛿𝑉𝑖𝐸𝑉𝑖
− 𝜇𝑉𝑖

𝐼𝑉𝑖 .

(28)
15

With initial conditions (𝑆𝐻𝑖
(0), 𝐸𝐻𝑖

(0), 𝐼𝐻𝑖
(0), 𝑅𝐻𝑖

(0), 𝑆𝑉𝑖
(0), 𝐸𝑉𝑖

(0), 𝐼𝑉𝑖 (0)).
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Table 3

Monthly temperatures (minimum) and relative humidity (maximum) for Douala, Yaounde and 
Ngaoundere for the years 2017 and 2018.

Source: www .wunderground .com.

Climatic factors January February March April

Temperature (min) of Douala 25(2017) 
24(2018)

24(2017) 
24(2018)

24(2017) 
23(2018)

24(2017) 
24(2018)

Relative humidity (max) of Douala 99(2017) 
99(2018)

98(2017) 
97(2018)

98(2017) 
97(2018)

98(2017) 
98(2018)

Temperature (min) of Yaounde 21(2017) 
20(2018)

21(2017) 
20(2018)

20(2017) 
21(2018)

20(2017) 
20(2018)

Relative humidity (max) of Yaounde 94(2017) 
95(2018)

93(2017) 
95(2018)

94(2017) 
94(2018)

94(2017) 
95(2018)

Temperature (min) of Ngaoundere 14(2017) 
10(2018)

17(2017) 
12(2018)

20(2017) 
16(2018)

20(2017) 
19(2018)

Relative humidity (max) of Ngaoundere 58(2017) 
71(2018)

45(2017) 
65(2018)

76(2017) 
77(2018)

87(2017) 
94(2018)

Climatic factors May June July August

Temperature (min) of Douala 25(2017) 
24(2018)

24(2017) 
24(2018)

24(2017) 
23(2018)

23(2017) 
22(2018)

Relative humidity (max) of Douala 99(2017) 
99(2018)

98(2017) 
97(2018)

100(2017) 
100(2018)

99(2017) 
100(2018)

Temperature (min) of Yaounde 21(2017) 
20(2018)

21(2017) 
20(2018)

20(2017) 
20(2018)

20(2017) 
20(2018)

Relative humidity (max) of Yaounde 94(2017) 
95(2018)

93(2017) 
95(2018)

94(2017) 
95(2018)

94(2017) 
94(2018)

Temperature (min) of Ngaoundere 14(2017) 
10(2018)

17(2017) 
12(2018)

17(2017) 
18(2018)

17(2017) 
18(2018)

Relative humidity (max) of Ngaoundere 58(2017) 
71(2018)

45(2017) 
65(2018)

96(2017) 
99(2018)

98(2017) 
100(2018)

Climatic factors September October November December

Temperature (min) of Douala 23(2017) 
23(2018)

23(2017) 
23(2018)

23(2017) 
24(2018)

21(2017) 
24(2018)

Relative humidity (max) of Douala 100(2017) 
100(2018)

100(2017) 
100(2018)

99(2017) 
100(2018)

100(2017) 
99(2018)

Temperature (min) of Yaounde 20(2017) 
20(2018)

20(2017) 
20(2018)

20(2017) 
20(2018)

19(2017) 
20(2018)

Relative humidity (max) of Yaounde 94(2017) 
97(2018)

96(2017) 
97(2018)

96(2017) 
98(2018)

95(2017) 
96(2018)

Temperature (min) of Ngaoundere 17(2017) 
17(2018)

17(2017) 
17(2018)

14(2017) 
14(2018)

13(2017) 
11(2018)

Relative (max) of Ngaoundere 98(2017) 
100(2018)

94(2017) 
99(2018)

88(2017) 
90(2018)

82(2017) 
78(2018)

Table 4

Parameters of Yaounde.

Parameters Λ𝐻𝑦𝑑𝑒 Λ𝑉 𝑦𝑑𝑒 𝜇𝐻𝑦𝑑𝑒 𝜇𝑉 𝑦𝑑𝑒 𝑏𝐻𝑦𝑑𝑒 𝜀𝐻𝑦𝑑𝑒

Values 57000 6500 0.009 0.033 0.044 0.002
References [13] [14] [15] [16] [17]

Parameters 𝜔𝑦𝑑𝑒 𝑓𝑦𝑑𝑒 𝛿𝐻𝑦𝑑𝑒 𝛿𝑉 𝑦𝑑𝑒 𝛼𝐻𝑦𝑑𝑒 𝑑𝐻𝑦𝑑𝑒

Values 0.11 0.01 0.09 0.091 0.100 3.01%
References [18] [16] [17] [17] [17] [19]

Table 5

Parameters of Douala.

Parameters Λ𝐻𝑑𝑙𝑎 Λ𝑉 𝑑𝑙𝑎 𝜇𝐻𝑑𝑙𝑎 𝜇𝑉 𝑑𝑙𝑎 𝑏𝐻𝑑𝑙𝑎 𝜔𝑑𝑙𝑎

Values 60000 13000 0.012 0.033 3.94 0.35
References [13] [14] [15] [20] [18]

Parameters 𝑓𝑑𝑙𝑎 𝛿𝐻𝑑𝑙𝑎 𝛿𝑉 𝑑𝑙𝑎 𝛼𝐻𝑑𝑙𝑎 𝑑𝐻𝑑𝑙𝑎

Values 0.022 0.09 0.083 0.10 3.01%
References [20] [17] [17] [17] [19]
16

http://www.wunderground.com
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Table 6

Parameters of Ngaoundere.

Parameters Λ𝐻𝑛𝑑 Λ𝑉 𝑛𝑑 𝜇𝐻𝑛𝑑 𝜇𝑉 𝑛𝑑 𝑏𝐻𝑛𝑑 𝜔𝑛𝑑

Values 7000 6500 0.021 0.033 0.63 0.11
References [22] [22] [15] [21] [18]

Parameters 𝑓𝑛𝑑 𝛿𝐻𝑛𝑑 𝛿𝑉 𝑛𝑑 𝜌𝐻𝑛𝑑 𝑑𝐻𝑛𝑑

Values 0.01 0.10 0.091 0.008 3.01%
References [21] [17] [17] [17] [19]

Fig. 9. Comparison of the evolution in Douala of infectious humans including climatic factors with their evolution without considering climatic factors.

Ignoring climatic factors given as a SEIS model, the system (29):

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

𝑆̇𝐻𝑖
=Λ𝐻𝑖

+ 𝜌𝐻𝑖𝐼𝐻𝑖
+

𝑛∑
𝑗=1
𝑗≠𝑖

𝜑𝑗𝑖𝑆𝐻𝑗
−

𝑛∑
𝑗=1
𝑗≠𝑖

𝜑𝑖𝑗𝑆𝐻𝑖
− 𝑘𝑖𝛽𝑖

𝑆𝐻𝑖

𝑁𝐻𝑖

𝐼𝑉 𝑖 − 𝜇𝐻𝑖
𝑆𝐻𝑖

,

𝐸̇𝐻𝑖
=

𝑛∑
𝑗=1
𝑗≠𝑖

𝜑𝑗𝑖𝐸𝐻𝑗
−

𝑛∑
𝑗=1
𝑗≠𝑖

𝜑𝑖𝑗𝐸𝐻𝑖
+ 𝑘𝑖𝛽𝑖

𝑆𝐻𝑖

𝑁𝐻𝑖

𝐼𝑉 𝑖 − 𝛿𝐻𝑖
𝐸𝐻𝑖

− 𝜇𝐻𝑖𝐸𝐻𝑖
,

𝐼̇𝐻𝑖
= 𝛿𝐻𝑖

𝐸𝐻𝑖
− 𝑑𝐻𝑖

𝐼𝐻𝑖
− 𝜇𝐻𝑖

𝐼𝐻𝑖
− 𝜌𝐻𝑖𝐼𝐻𝑖,

𝑆̇𝑉𝑖
=Λ𝑉𝑖

− 𝑓𝑖𝜔𝑖
𝑆𝑉 𝑖

𝑁𝐻𝑖

𝐼𝐻𝑖 − 𝜇𝑉𝑖
𝑆𝑉𝑖

,

𝐸̇𝑉𝑖
= 𝑓𝑖𝜔𝑖

𝑆𝑉𝑖

𝑁𝐻𝑖

𝐼𝐻𝑖
− 𝛿𝑉𝑖𝐸𝑉𝑖

− 𝜇𝑉𝑖
𝐸𝑉𝑖

,

𝐼̇𝑉𝑖 = 𝛿𝑉 𝑖𝐸𝑉𝑖
− 𝜇𝑉𝑖

𝐼𝑉𝑖 .

(29)

With initial conditions (𝑆𝐻𝑖
(0), 𝐸𝐻𝑖

(0), 𝐼𝐻𝑖
(0), 𝑆𝑉𝑖

(0), 𝐸𝑉𝑖
(0), 𝐼𝑉𝑖 (0)).

Using data described in section 9.2, we have Figs. 9, 10, 11.
We observe, with Fig. 9, that ignoring climatic factors in Douala displays a number of infectious humans below 20,000 after 

78 days and stabilizes around 0 (zero) after approximately 601 days. Consideration of climatic factors Douala shows a number of 
infectious humans stabilizing below 522,000 after 333 days.

In Yaounde (Fig. 10), we have a number of infectious humans below 10,000 after 55 days which stabilizes around 0 after 366 
days in the case where we do not consider climatic factors. Taking into account climatic factors shows a number of infectious humans 
below 20,000 after 64 days which stabilizes around 10,000 after 363 days.

In Ngaoundere (Fig. 11), taking into consideration climatic factors shows a number of infectious humans oscillating below 115,000 
with minimum values of 39,326 and 41,299 per 100th (respectively 438th) day and maximum values of 59,711, 114,986 and 106,866 
on the 29th (respectively 291st and 668th) day. Ignoring climatic factors, we have a number of infectious humans falling below 5,000 
after 100 days and stabilizing around 0 after 401 days.

9.5. Comparison between our results and real data from the hospital: case of Ngaoundere
17

Table 7 shows data from the Protestant Hospital of Ngaoundere.
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Fig. 10. Comparison of the evolution in Yaounde of infectious humans including climatic factors with their evolution without considering climatic factors.

Fig. 11. Comparison of the evolution in Ngaoundere of infectious humans including climatic factors with their evolution without considering climatic factors.

Fig. 12 shows that the number of infectious humans listed among patients fluctuates over the year and is maximum in October. 
Results with our modelling including climatic factors show that the number of infectious humans also fluctuates over the year and is 
the maximum on the 291st day of the year (Fig. 11), which also corresponds to a day in October.

10. Conclusion

In population dynamics, analyze the model stability is important, because it allows to validate the modelling, avoid artefacts 
and also to ensure the robustness of the modelling. This is the reason why we studied the stability of a metapopulation model. This 
study allowed us to define the conditions of the global asymptotic stability of our model. Our work constitutes an advance in the 
understanding the dynamics spread of malaria in a metapopulation context, including climatic factors. Our analysis focused on the 
asymptotic stability in the case of disease-free equilibrium (DFE). It would also be interesting to carry out a mathematical analysis 
18

of our model in an endemic situation (EE).
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Table 7

Data from the Protestant Hospital of Ngaoundere: 
Humans with positive malaria (infectious) for the 
year 2013. Noubissi [23].

Month Patients Infectious patients

January 125 53
February 138 83
March 147 74
April 124 48
May 124 64
June 129 47
July 121 43
August 111 28
September 169 82
October 189 131
November 152 79
December 138 58

Total 1667 790

Fig. 12. Infectious humans in Ngaoundere.
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