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SUMMARY

Background
The renin–angiotensin system (RAS) is a homeostatic pathway widely
known to regulate cardiovascular and renal physiology; however, little is
known about its influence in gastrointestinal tissues.

Aim
To elicit the anatomical distribution and physiological significance of the
components of the RAS in the gastrointestinal tract.

Methods
An extensive online literature review including Pubmed and Medline.

Results
There is evidence for RAS involvement in gastrointestinal physiology and
pathophysiology, with all the components required for autonomous regula-
tion identified throughout the gastrointestinal tract. The RAS is implicated
in the regulation of glucose, amino acid, fluid and electrolyte absorption
and secretion, motility, inflammation, blood flow and possibly malignant
disease within the gastrointestinal tract. Animal studies investigating the
effects of RAS blockade in a range of conditions including inflammatory
bowel disease, functional gut disorders, gastrointestinal malignancy and
even intestinal ischaemia have been encouraging to date. Given the ready
availability of drugs that modify the RAS and their excellent safety profile,
an opportunity exists for investigation of their possible therapeutic role in a
variety of human gastrointestinal diseases.

Conclusions
The gastrointestinal renin–angiotensin system appears to be intricately
involved in a number of physiological processes, and provides a possible
target for novel investigative and therapeutic approaches.
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INTRODUCTION
The renin–angiotensin system (RAS) plays a central role
in regulating cardiovascular and renal physiology. The
contemporary view of the RAS has evolved from that of
a simple linear pathway involving the conversion of
angiotensinogen to angiotensin II (Ang II) via a two-step
process facilitated by renin and angiotensin converting
enzyme (ACE), to a much more complex system involv-
ing homologues of ACE and multiple angiotensin pep-
tides which play supplementary and counter-regulatory
roles (Figure 1). The RAS was, for many years, thought
of as an endocrine system with enzymes and peptides
released into the systemic circulation to act on target
organs. More recently, it has been recognised that most
organs including the brain, kidney, heart, liver, pancreas,
reproductive organs, skin and the gastrointestinal tract
constitutively express all the components required to
allow autonomous function of a local intra-organ RAS,
where it performs both paracrine and autocrine func-
tions.

UNDERSTANDING THE COMPONENTS OF THE RAS
– OLD AND NEW
Table 1 summarises the current view of the RAS, the key
components and their physiological and clinical effects.
Essentially, the relative activity of two counterbalancing
pathways determines the predominant tissue effect.

The proinflammatory, profibrotic pathway includes
the classical RAS components ACE and Ang II, and
renin, prorenin, chymase and neutral endopeptidase
(NEP, also known as neprilysin). Renin, a glycoprotein
derived predominantly from the juxtaglomerular appara-
tus in the kidney, is an aspartyl protease that cleaves the
liver-derived angiotensinogen to angiotensin I. Both
renin and its proenzyme prorenin, which was previously
considered physiologically inactive,1 have now been dem-
onstrated to have independent pro-inflammatory and
pro-fibrotic effects via signalling through the pro(renin)
receptor (PRR).2

The classical RAS comprising the zinc metalloprotein-
ase ACE and Ang II induces vasoconstriction, salt and
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Figure 1 | The contemporary renin–angiotensin system (RAS). ACE, angiotensin converting enzyme; NEP, neutral
endopeptidase; Am, aminopeptidase; AT1R, angiotensin type 1 receptor; AT2R, angiotensin type 2 receptor; AT4R,
angiotensin type 4 receptor; PRR, (pro)renin receptor.

Aliment Pharmacol Ther 2012; 35: 414-428 415

ª 2012 Blackwell Publishing Ltd

Review: the renin–angiotensin system in the gastrointestinal tract



Ta
bl
e
1
|
RA

S
co
m
po

ne
nt
s
an

d
th
ei
r
m
ol
ec
ul
ar

an
d
ph

ys
io
lo
gi
ca
l
ef
fe
ct
s

RA
S
co
m
po

ne
nt
s

M
ed

ia
tin

g
re
ce
pt
or

M
ol
ec
ul
ar

si
gn

al
s
id
en

ti
fi
ed

Pr
ed

om
in
an

t
ph

ys
io
lo
gi
ca
l
an

d
cl
in
ic
al

ef
fe
ct
s

Re
ni
n
an
d
pr
or
en

in
(P
ro
)r
en

in
re
ce
pt
or

(P
RR

)
A
ct
iv
at
es

ex
tr
ac
el
lu
la
r
si
gn

al
-r
eg
ul
at
ed

ki
na
se
s

(E
RK

)
1/
2,
TG

Fb
,c

ol
la
ge
ns
,fi

br
on

ec
tin

,C
O
X
-2

2
D
ia
be

tic
m
ic
ro
va
sc
ul
ar

co
m
pl
ic
at
io
ns
,p

os
si
bl
y

ca
rd
ia
c
an
d
re
na
lfi

br
os
is
14
3

C
la
ss
ic
al

RA
S
co
m
po

ne
nt
s:

A
C
E,

A
ng

II
A
ng

io
te
ns
in

ty
pe

1
re
ce
pt
or

(A
T
1R
)

A
ct
iv
at
io
n
of

ph
os
ph

ol
ip
as
e
C
,m

ito
ge
n-
ac
tiv

at
ed

pr
ot
ei
n
(M

A
P)

ki
na
se
,i
ni
tia

tio
n
of

N
A
D
PH

ox
id
as
e,

si
gn

al
tr
an
sd
uc
er

an
d
in
hi
bi
to
r
of

tr
an
sc
ri
pt
io
n
(S
TA

T
)
1
ac
tiv

at
io
n,

ub
iq
ui
tin

at
io
n

of
Ik
B;

le
ad
in
g
to

in
cr
ea
se
d
IL
-6
,T

N
Fa
,T
G
Fb
,

fi
br
ob

la
st

gr
ow

th
fa
ct
or

(F
G
F)
,v
as
cu
la
r

en
do

th
el
ia
l
gr
ow

th
fa
ct
or

(V
EG

F)
,i
ns
ul
in

lik
e

gr
ow

th
fa
ct
or

(I
G
F)
-1
14
4
–1
4
8

V
as
oc
on

st
ri
ct
io
n,

sa
lt
an
d
w
at
er

re
te
nt
io
n,

th
ir
st

re
sp
on

se
,c

ar
di
ac

hy
pe

rt
ro
ph

y,
tis
su
e
in
fl
am

m
at
io
n
an
d
fi
br
os
is

A
lte

rn
at
iv
e
RA

S
co
m
po

ne
nt
s:

A
C
E2

,A
ng

(1
–7
)

M
as

re
ce
pt
or

In
hi
bi
tio

n
of

ER
K
1/
2,

M
A
P
ki
na
se
,s
tim

ul
at
io
n

of
ni
tr
ic

ox
id
e
(N

O
)
re
le
as
e
th
ro
ug

h
en

do
th
el
ia
l

ni
tr
ic

ox
id
e
sy
nt
et
as
e,

m
ay

di
re
ct
ly

an
ta
go

ni
se

th
e
A
T
1R

th
ro
ug

h
he

te
ro
di
m
er
is
at
io
n1

4
9

V
as
od

ila
ta
tio

n,
an
tih

yp
er
te
ns
iv
e,

an
ti-
th
ro
m
bo

tic
,

ca
rd
io
pr
ot
ec
tiv

e,
an
ti-
in
fl
am

m
at
or
y
an
d

an
ti-
fi
br
ot
ic

A
ng

io
te
ns
in

III
A
ng

io
te
ns
in

ty
pe

1
re
ce
pt
or

(A
T
1R
)

In
cr
ea
se
s
m
on

oc
yt
e
ch
em

oa
tt
ra
ct
an
t
pr
ot
ei
n

(M
C
P-
1)
,N

Fj
B
an
d
ac
tiv

at
in
g
pr
ot
ei
n-
1
(A

P-
1)

ac
tiv

ity
in

re
na
lm

es
an
gi
al
ce
lls

15
0
;a

ld
os
te
ro
ne

se
cr
et
io
n
fr
om

ad
re
na
lg
la
nd

s1
5
1

Pr
oi
nfl

am
m
at
or
y,

po
ss
ib
ly

re
na
lfi

br
os
is

A
ng

io
te
ns
in

IV
A
ng

io
te
ns
in

ty
pe

II
re
ce
pt
or

(A
T
2R

)
In
hi
bi
tio

n
of

ty
ro
si
ne

ki
na
se
/S

TA
T
si
gn

al
lin
g
pa
th
w
ay

an
d
N
Fj

B
st
im

ul
at
es

ni
tr
ic

ox
id
e
pr
od

uc
tio

n,
m
ay

di
re
ct
ly

an
ta
go

ni
se

th
e
A
T
1R

th
ro
ug

h
he

te
ro
di
m
er
is
at
io
n1

5
2
–1
5
5

A
nt
i-
in
fl
am

m
at
or
y,

ce
nt
ra
ln

er
vo
us

sy
st
em

ef
fe
ct
s
(n
eu

ro
na
ld

ev
el
op

m
en

t,
le
ar
ni
ng

an
d
m
em

or
y)

A
ng

io
te
ns
in

ty
pe

4
re
ce
pt
or

(A
T
4
R)

C
hy
m
as
e

M
ay

co
nv
er
t
A
ng

I
to

A
ng

II,
ac
tiv

at
es

TG
Fb

an
d

M
M
P-
91

5
6

C
ar
di
ac

an
d
va
sc
ul
ar

fi
br
os
is

N
eu

ra
le

nd
op

ep
tid

as
e

(N
EP
,n

ep
ri
ly
si
n)

C
on

ve
rt
s
A
ng

I
to

A
ng

(1
–7
),
in
ac
tiv

at
es

at
ri
al

na
tr
iu
re
tic

pe
pt
id
ea
nd

ki
ni
ns
,9
m
ay

de
gr
ad
e
am

yl
oi
d
b
pe

pt
id
e1

0
V
as
oc
on

st
ri
ct
io
n,

an
tid

iu
re
si
s,
hy
pe

rt
en

si
on

11

A
C
E,

an
gi
ot
en

si
n
co
nv
er
tin

g
en

zy
m
e;

A
ng

II,
an
gi
ot
en

si
n
II;

RA
S,

re
ni
n–

an
gi
ot
en

si
n
sy
st
em

.

416 Aliment Pharmacol Ther 2012; 35: 414-428

ª 2012 Blackwell Publishing Ltd

M. Garg et al.



water retention, thirst response, cardiac hypertrophy, tis-
sue inflammation and fibrosis through the G-protein
coupled seven-transmembrane domain receptor angio-
tensin type I receptor (AT1R). Ang II also stimulates
adrenal gland secretion of aldosterone resulting in renal
sodium and water retention. Inhibition of this pathway
with either ACE inhibitors or AT1R antagonists has ben-
eficial effects in hypertension, cardiac failure, ischaemic
heart disease, diabetic nephropathy and renal fibrosis.

Chymase expressed in the heart and vascular wall and
secreted by activated mast cells, acts as an alternative
enzyme to ACE to generate Ang II from Ang I.3–6 NEP,
a membrane bound zinc metalloproteinase with a struc-
ture distinct from ACE, was discovered in the 1970s as a
key enzyme involved in the cleavage of bradykinin.7, 8 In
recent years, it has been shown to also have a role in the
formation of Ang (1–7) from Ang I, as an inactivator of
atrial natriuretic peptide9 and in the degradation of amy-
loid b peptide,10 a protein involved in the pathogenesis
of Alzheimer’s disease. The net effect of NEP inhibition
is vasodilatation and natriuresis, a property encompassed
by vasopeptidase inhibitors that target both ACE and
NEP and may have additional anti-hypertensive effects
to ACE inhibitors.11

In contrast, the alternative RAS, comprising ACE2
and Ang (1–7), acting via the G-protein coupled seven-
transmembrane receptor mas,12, 13 has vasodilatory,
antihypertensive, anti-thrombotic, cardioprotective, anti-
inflammatory and anti-fibrotic effects in a variety of
tissues.14–18 ACE2 is a zinc metalloproteinase and homo-
logue of ACE, which cleaves a single amino acid from
Ang II to form the heptapeptide Ang (1–7). Indeed, part
of the clinical benefit attributed to ACE inhibitors and
AT1R blockers (ARBs) may be through the diversion of
the classical RAS components towards Ang (1–7) with
subsequent mas receptor activation.18–20

The complexity of the RAS is further highlighted by
recent findings regarding the actions of other angiotensin
peptides including angiotensin III [Ang III, also denoted
as Ang (2–8)], angiotensin IV [Ang IV, also known as
Ang (3–8)] and the AT2 and AT4 receptors. Ang III is
formed by cleavage of Ang II by aminopeptidase A, and
Ang IV results from further conversion by aminopepti-
dase B or N (Figure 1).

The AT2 receptor (AT2R) has affinity for Ang II,
Ang III, Ang IV and Ang (1–7), and is also thought to
have effects counteracting the AT1R and analogous to
those of the mas receptor, with vasodilatory, anti-inflam-
matory and anti-proliferative downstream actions. Previ-
ously recognised largely for an important role in foetal

development, more recently, the AT2R has been shown
to be upregulated in atherosclerotic disease,21 cutaneous
wounds22 and pancreatic fibrosis,23 and to stimulate neu-
rite outgrowth, a marker of neuronal regeneration.24, 25

Ang III is believed to have actions analogous to Ang
II. Ang IV appears to have opposing effects to Ang II,
and acts predominantly via the AT2R and the AT4R,
formerly known as insulin regulated aminopeptidase
(IRAP).26 The greatest role of Ang IV is in the central
nervous system (CNS), where it has a positive effect on
neuronal development, learning and memory.27, 28

CONCEPT OF LOCAL RAS
There is considerable evidence that most or all of
the components of the RAS are present in a variety of
organs, supporting the theory that local expression
and modulation of the RAS play important roles in
tissue homeostasis. These roles may be summarised as
involving (1) fluid and electrolyte transport, (2) regio-
nal blood flow regulation and (3) promoting the
wound healing response, including cell proliferation,
inflammation and fibrosis. Some of the regional effects
of the RAS are listed below:

(i) In the kidney, local angiotensinogen is converted
by renin to Ang I, which in turn is cleaved by tubular
brush border ACE to Ang II to facilitate sodium and
fluid absorption via luminal AT1R. This may influence
blood pressure independent of systemic Ang II levels
and vascular tone.29, 30

(ii) The heart expresses renin, PRR, ACE, chymase,
angiotensinogen, AT1R and AT2R, and these compo-
nents modulate myocyte proliferation and cardiac
remodelling.6, 31–37

(iii) The brain has been shown to express renin, an-
giotensinogen, Ang II, Ang III, Ang IV, Ang (1–7),
AT1R, AT2R and AT4R, with these components
regulating blood pressure, fluid and electrolyte balance,
thirst, maintenance of the blood-brain barrier and
neuronal development including learning and memory
processes.38–44

(iv) The liver expresses renin, angiotensinogen, Ang
II, ACE, AT1R, Ang (1–7), ACE2 and mas receptors, all
of which are upregulated in the diseased liver.45, 46 Fur-
thermore, ARBs and Ang (1–7) have been demonstrated
to reduce liver fibrosis in animal models.47–49

(v) In the pancreas, Ang II has been shown to inhibit
glucose stimulated insulin secretion, and via AT1R and
AT2R, regulates exocrine enzyme secretion and the
microcirculation.50–52
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(vi) A local RAS has been identified and shown to be
involved in tissue homeostasis in the reproductive
organs, skin and even adipose tissue.53–58 Detailed
reviews of these and other local RAS effects are pub-
lished elsewhere.12, 30, 50, 54, 59–61

LOCALISATION AND FUNCTIONALITY OF THE RAS
IN THE GASTROINTESTINAL TRACT
Our understanding of the involvement of the RAS in the
gastrointestinal tract has gradually evolved over the past
five decades since the formulation of the hypothesis that
Ang II had a direct effect on intestinal smooth muscle in
addition to an indirect effect via myenteric plexus cho-
linergic neurons.62–64 Since then, many of the compo-
nents of the RAS have been identified throughout the
gastrointestinal tract. An overview of the current state of
knowledge is illustrated in Figure 2. The regions of the
gut are addressed separately here.

Small intestine
Most attention has been paid to the small intestine (Fig-
ure 2a), as outlined below:

(i) ACE, ACE2 and neutral endopeptidase: ACE has
been shown in humans to be located in abundance on
the brush border of epithelial cells and in the mesenteric
microvascular endothelium.65 ACE2 mRNA and protein
is present in large amounts in small intestinal epithelial
brush border, muscularis mucosa and muscularis pro-
pria, as well as microvascular endothelium and vascular
smooth muscle cells.66 Remarkably, the highest tissue
concentrations in the human body of ACE and ACE2
mRNA are found in the terminal ileum, duodenum and
colon.67, 68 Expression of NEP has been demonstrated in
the rat intestinal wall, and is suppressible by administra-
tion of the combined ACE/NEP inhibitor omapatrilat.69

(ii) Angiotensin receptors: AT1R has been localised to
the epithelial brush border.70 The circular and longitudi-
nal muscle layers and the myenteric plexus also strongly
express AT1R, but the AT2R appears to be largely
restricted to the myenteric plexus.71, 72 Small vessels in
the muscularis propria also express AT1R.71, 72 In early
studies in the rat intestine, Ang II binding sites were
reported to be confined to the muscularis,73 but subse-
quent reports have identified expression of AT1R and a
lesser amount of AT2R in the muscularis mucosa and
mucosa, including in epithelial cells.74, 75

(iii) Renin: mRNA for renin has been detected in the
human small intestine.76

(iv) Angiotensin peptides: Ang II has been detected in
the crypt and crypt-villus junction epithelial cells.70 To
date, the expression of angiotensinogen, Ang I or Ang
(1–7) in the human small intestine has not been
reported. However, angiotensinogen has been widely
localised in the rat brush border, epithelial cells, lamina
propria, muscularis mucosa, submucosal blood vessels
and muscularis propria.77 Angiotensinogen mRNA has
been isolated in concentrations of over one-third that of
the liver in the rat mesentery,78 and a high level of pro-
angiotensin-12, a precursor of Ang I, has been located in
the rat intestine.79

Thus, all of the required components for local produc-
tion and action of Ang II appear to be present in small
intestine.

There is now evidence of important roles for the RAS
in a variety of intestinal processes:

(i) Bicarbonate secretion: This is stimulated by Ang II
via AT1R and AT2R in the duodenum.80

(ii) Sodium and water absorption: In the jejunum
and ileum, this process appears to be modulated by
Ang II in conjunction with the enteric sympathetic
nervous system.81–83 When applied in low dose to rat
jejunum, Ang II stimulates sodium and water absorp-
tion through AT2R, but in high dose, it unexpectedly
inhibits absorption through AT1R.84 Both Ang II and
Ang III may also increase sodium and water absorption
via stimulation of release of noradrenaline from sympa-
thetic neurons, which in turn may act through adren-
ergic receptors on the basal surface of epithelial
cells.83, 85, 86

(iii) Glucose absorption: Ang II has also been shown
to inhibit rat jejunal sodium-dependent glucose trans-
porter (SGLT1)-mediated glucose uptake in vitro.77

(iv) Digestion and absorption of peptides: Both brush
border ACE and ACE2 are thought to function as pep-
tidases, allowing for mucosal digestion and absorption of
peptides.87, 88 ACE2 increases the activity of the neutral
amino acid transporter B0AT1, which is mutated in a
rare amino acid deficiency disorder, Hartnup disorder,
clinically manifested by cerebellar ataxia and pellagra-like
skin rash.89

(v) Secretion: A role for ACE2 in active secretion has
been suggested by the observation that ACE2 is the tar-
get for the coronavirus mediating severe acute respira-
tory syndrome, SARS-CoV. Some patients with this
infection suffer from watery diarrhoea, but the exact
mechanism remains to be determined.66
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Colon
There have been limited studies of RAS components in
the colonic wall (Figure 2b). By a combination of RT-
PCR and immunohistochemistry, renin was found in the
surface epithelium, lamina propria mesenchymal cells,
microvascular walls and muscularis mucosa. AT1R was

detected on surface epithelial cells and in crypt bases,
lamina propria macrophages, myofibroblasts and muco-
sal vessel walls, and weak expression of AT2R has been
found on surface epithelium, in crypts and in some mes-
enchymal cells.90 ACE was also weakly expressed in parts
of the surface epithelium, and more prominently in
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Figure 2 | Distribution of components of the RAS in the gastrointestinal tract. Diagrammatic representation of RAS
components in (a) small intestine, (b) colon, (c) stomach and (d) oesophagus.

Aliment Pharmacol Ther 2012; 35: 414-428 419

ª 2012 Blackwell Publishing Ltd

Review: the renin–angiotensin system in the gastrointestinal tract



mesenteric microvascular walls, lamina propria and sub-
mucosal mesenchymal cells.90 ACE2 appears to be
localised to the mesenteric microvascular endothelium in
the colon and is not present in the epithelium.66 Angiotensi-
nogen mRNA has also been isolated in homogenised rat
colon,78 but its expression has not been examined in the
human colon.

A more limited range of functional roles has been
attributed to components of the RAS in the colon than
in small intestine. Ang II has been shown to increase
sodium and water reabsorption in rats through NaCl
coupled transport.91 The response of circular and longi-
tudinal muscle contraction to Ang II also suggests a role
in normal colonic motility.92 As detailed below, the RAS
may also be involved in the inflammation associated
with IBD, as mucosal levels of Ang I and Ang II are
higher in patients with active Crohn’s colitis compared
with normal controls and patients with ulcerative
colitis.93

Stomach
Components of the RAS are present in the mucosal
biopsy specimens of gastric antrum and body from
healthy adults (Figure 2c).94 Renin and angiotensinogen
were both seen in lamina propria mesenchymal cells and
vascular endothelial cells. AT1R and AT2R were both
observed in gastric epithelium (mainly in the basal sur-
face), lamina propria mesenchymal cells and vascular
endothelium. AT1R were noted in a subgroup of endo-
crine cells in the base of antral mucosal glands, and ACE
and NEP in vascular endothelial cells, but not in other
parts of the mucosa. Other investigators, however, have
noted ACE in fundic chief cells and mucin secreting cells
of the antrum.95 Longitudinal and circular muscle of the
stomach has been demonstrated to respond in vitro to
Ang II, suggesting the presence of appropriate receptors
on gastric myocytes.96

To date, few functional or pathogenic roles have been
attributed to the RAS in the stomach. A role of local
RAS in gastric inflammation has been suggested by
higher expression of AT1R expression in Helicobacter
pylori positive than H. pylori negative patients94 and the
potentiation of ulceration in animal models by Ang
II.97, 98

Oesophagus
Immunoreactive ACE, AT1R and AT2R have been found
in the lamina propria microvascular walls, and AT1R
and AT2R were identified in the superficial stratified
epithelium99 and circular and longitudinal muscle of the

oesophagus100 (Figure 2d). Ang II caused contraction of
isolated oesophageal smooth muscle in vitro, and the
AT1R antagonist candesartan inhibited swallow-induced
peristaltic contractions in the distal oesophagus.100 The
expression of other RAS components has not been
reported.

POTENTIAL CLINICAL IMPLICATIONS OF RAS IN
GASTROINTESTINAL DISEASE
The presence of the various components of the RAS in
the gastrointestinal tract raise the possibility that modifi-
cation of this system locally may be a potential therapeu-
tic target in a myriad of gastrointestinal diseases where
current strategies are suboptimal. These include inflam-
matory bowel disease (IBD), gastrointestinal cancer, gut
motility disorders and mesenteric ischaemia. Although
clinical data are sparse, results from animal models
and pre-clinical studies provide support for further
investigation.

Inflammatory bowel disease
Information relevant to IBD has arisen from studies in
Crohn’s disease (CD) and ulcerative colitis (UC) and
animal models of both IBD and other chronic inflamma-
tory conditions.

Studies in patients with Crohn’s disease and ulcerative
colitis. Two components of the RAS have been studied.
The first is ACE, which was subject to intense interest
from the 1980’s in its role in sarcoidosis and other gran-
ulomatous conditions. Studies of serum ACE concentra-
tions yielded largely conflicting findings in IBD, with
many studies showing reduced levels101–104 and some
finding no difference.105–107 Many of these studies have
been limited by relatively small numbers of patients.

Serum ACE levels are associated with ACE gene inser-
tion/deletion (I/D) polymorphisms, with higher levels
seen with the DD polymorphism than ID or II.108 Mat-
suda et al. showed that the ACE gene polymorphism
variation was similar in 39 patients with CD and 43
patients with UC to 341 controls, but that serum ACE
levels were lower in patients with IBD after adjusting for
polymorphisms.101 Furthermore, they demonstrated that
ACE levels significantly increased in all of nine patients
with active CD when they achieved clinical remission. A
larger study involving 124 UC patients and 108 CD
patients also found no difference in ACE gene polymor-
phisms when compared with normal controls, but a sub-
group analysis revealed a higher proportion of DD genotype
in 25 UC patients with extra-intestinal manifestations, with
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an odds ratio (OR) of 4.08.109 Indeed, it is difficult to
reconcile these findings into a unifying hypothesis
regarding the role of ACE in IBD pathogenesis. It is pos-
sible that inflammatory cytokines such as TNF-a and
IL-1 downregulate systemic endothelial ACE produc-
tion,110 whereas Ang II produced via local intestinal
ACE contributes to tissue inflammation. Tissue ACE lev-
els have not been measured in active IBD.

The other major area of investigation has focussed on
angiotensin peptide levels in CD. Genotype analyses have
revealed a significant association of angiotensinogen-6
AA genotype (OR 2.38) in a cohort of 235 patients with
IBD. This genotype results in increased production of an-
giotensinogen via a substitution in its gene promoter.111

Indeed, mucosal levels of Ang I and Ang II are elevated
in rectosigmoid biopsies in patients with Crohn’s colitis
compared with patients with UC or normal controls,93

and a significant correlation was noted between these lev-
els and endoscopic grade of colitis. Although these find-
ings demonstrate that components of the local tissue RAS
probably play a part in inflammation, they do not prove
any causal link in the pathogenesis of IBD. Nonetheless,
they suggest that inhibition of the local RAS provides a
potential avenue for targeting inflammation and fibrosis.

Studies in animal models. Angiotensin converting
enzyme inhibition or angiotensin receptor antagonism
have been shown to produce a number of beneficial
anti-inflammatory effects in rodent models of intestinal
inflammation. Ang II and AT1a receptor expression are
both upregulated in dextran sodium sulphate (DSS)-
induced colitis, a widely studied mouse model of colitis,
and inflammation was significantly ameliorated in AT1a
receptor-deficient mice.112 The ACE inhibitor enalaprilat,
given parenterally, reduced inflammation and TNF-a,113

and topical enalaprilat reduced TGF-b expression and
fibrosis in mice with DSS-colitis.114 Administration of
the ARB, valsartan, significantly reduced macroscopic
inflammation, TNF-a, TGF-b and IL-18 in mice with tri-
nitrobenzene sulphonic acid (TNBS) induced colitis,
reduced microscopic inflammation and raised IL-10 (an
anti-inflammatory cytokine secreted by regulatory T
cells) in DSS-colitis.115, 116 The ACE inhibitor captopril
reduced macroscopic and microscopic inflammation,
fibrosis and TGFb mRNA expression in mice with
TNBS-induced colitis.117 Homozygous deficiency of an-
giotensinogen protects against TNBS-induced colitis,
with reduced IL1-b, IFN-c and greater IL-4 and IL-10
production than wild-type mice.116 Animal studies have
not been restricted to the classical RAS pathway. NEP

knockout mice have been shown to have more severe
colitis in response to dinitrobenzene sulphonic acid than
wild-type mice, which is prevented by the administration
of recombinant NEP.118

Other evidence to suggest that RAS dysfunction may
potentiate immune-based diseases such as IBD and pro-
vide a target for therapy comes from recent studies
involving models for multiple sclerosis (MS). T helper
type 1 (Th1) and type 17 (Th17) cells are strongly impli-
cated in the pathogenesis of IBD, especially CD, and lis-
inopril and candesartan have been demonstrated to
suppress Th1 and Th17 cytokine expression and induce
Foxp3+ regulatory T cells in experimental autoimmune
encephalitis (EAE), a mouse model of MS.119 Other
groups have shown a crucial role for Ang II and AT1R
in EAE59, 120 and murine autoimmune nephritis.121

Gastrointestinal cancers
The possible involvement of perturbed RAS components
in solid organ malignancies represents a fascinating
expansion of our insight into local tissue RAS. Early
epidemiological studies demonstrated a reduced risk of
incident and fatal cancer in patients on ACE inhibitors
versus those on other anti-hypertensive medication.122, 123

In contrast, a recent meta-analysis reported a higher risk
of lung cancer in patients taking ARBs124; however, two
large meta-analyses since then have reported no
increased risk.125, 126 All these studies have been limited
by their retrospective design.

Increasing in vitro and pre-clinical data suggest a pro-
tective effect of AT1R inhibition against cancer cell pro-
liferation, invasion and metastasis in a variety of solid
organs.127 In gastric cancer, AT1R and Ang II are
expressed to a greater extent than in adjacent normal tis-
sue.128 The AT1R and ACE gene polymorphism D allele
increase risk of nodal metastasis and tumour stage in
patients with intestinal-type gastric cancer.129 In gastric
cancer cell cultures, Ang II stimulates MAP kinase,
NFjB and survivin activation, increasing proliferation.128

The most likely mechanism by which the RAS may
influence cancer biology is through increasing angiogene-
sis,130, 131 via increased expression of vascular endothelial
growth factor (VEFG) signalling.130–132

In mouse models, ACE inhibition and ARBs reduced
colorectal cancer liver metastases 133 and prolonged sur-
vival in peritoneal carcinomatosis.128 Indeed, ACE inhib-
itor use independently protected against distal metastasis
in a single centre retrospective review of patients with
colorectal carcinoma.134 Also, patients treated with ACE
inhibitors had a non-significant trend towards reduction
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in risk of oesophageal adenocarcinoma in a retrospective
study of the UK general practice research database.135

Recently, there have been intriguing insights into the
involvement of the RAS in Peutz-Jeghers Syndrome
(PJS). Shorning and colleagues have shown that in mice
LKB1 gene deletion, which is associated with PJS, results
in marked transcriptional upregulation of the renin gene
Ren1, and also increased ACE expression and Ang II
production.70 In human PJS tumour tissue, AT1R was
noted to be increased in stromal tissue, but reduced in
the epithelium.70

Gut motility disorders
The functional role of the RAS in smooth muscle con-
traction suggests that it might be a target in motility dys-
function. For example, the ability of Ang II blockade to
inhibit contraction of oesophageal body and lower
oesophageal sphincter (LES) smooth muscle, together
with the demonstrated reduction in the amplitude of
contraction of primary peristaltic oesophageal waves and
LES on manometry in vivo,100 suggests a possible role in
treatment of hypercontractile oesophageal disorders such
as diffuse oesophageal spasm, nutcracker oesophagus and
achalasia. Furthermore, selective AT1R-mediated con-
traction of the LES may be an option for treatment of
gastro-oesophageal reflux disease, a condition that affects
up to 15–20% of the population.136

The contribution of AT1R to small and large intestinal
muscle contractility also provides an opportunity to
intervene in functional intestinal and motility disorders
through AT1R agonism or blockade. Furthermore, the
role of ACE and ACE2 in intestinal fluid and electrolyte
absorption suggests a potential mechanism for modulat-
ing fluid shifts across the brush border, with subsequent
effects on stool consistency and frequency.

Mesenteric ischaemia
The RAS plays an important role in regulation of the
smooth muscle tone of the mesenteric vasculature. In
acute hypovolaemia and systemic sepsis, splanchnic vaso-
constriction occurs as a homeostatic response to preserve
cerebral and renal blood flow, predisposing the gut to
ischaemia. This splanchnic response has been shown to
correlate with a markedly increased expression of Ang
II.137 Furthermore, lower-body negative pressure induc-
tion in normal human volunteers has also been shown
to raise serum Ang II and reduce intestinal mucosal
nitric oxide production.138

The administration of candesartan maintained jejunal
and mucosal perfusion during severe hypovolaemia in

Table 2 | Potential therapeutic targets of the RAS

Mechanism
of action Drug/compound

Stage of
development

ACE Inhibitors Captopril Clinical use

Enalapril Clinical use

Fosinipril Clinical use

Lisinopril Clinical use

Perindopril Clinical use

Quinapril Clinical use

Ramipril Clinical use

Trandalopril Clinical use

AT1 receptor
blockers (ARB)

Azilsartan Clinical use

Candesartan Clinical use

Eprosartan Clinical use

Irbesartan Clinical use

Losartan Clinical use

Olmesartan Clinical use

Telmisartan Clinical use

Valsartan Clinical use

AT2 receptor
agonists

CGP42112A In vitro studies

Compound 21 Animal studies21, 157

Compound 22 Animal studies158

AT2 receptor
antagonists

Saralasin Animal studies159

PD123319 In vitro studies24, 25

AT4 receptor
antagonists

Divalinal Animal studies160

Ang (1–7)/Mas
receptor agonists

Ang (1–7) Animal
studies47, 161, 162

AVE 0991 Animal
studies47, 163–166

Mas receptor
antagonists

A-779 Animal studies161

ACE2 analogues Recombinant
hACE2
APN01

Animal studies167, 168

Phase I Clinical trial

ACE2 inhibitors C16 Animal studies 169

NEP inhibitors Omapatrilat
(dual NEP and
ACE inhibitor)

Withdrawn after
clinical trials170–172

LCZ696
(dual NEP and
AT1R antagonist)

Phase 3 clinical
trial173

(Pro)renin
receptor
antagonists

Handle region
peptide (HRP)

Animal
studies174–180

Direct renin
inhibitors

Aliskiren Clinical use

ACE, angiotensin converting enzyme; Ang II, angiotensin II;
NEP, neutral endopeptidase; RAS, renin–angiotensin system.
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pigs and reduced mortality.139, 140 A further porcine
study reported improved mucosal oxygen delivery, but
not an improvement in intestinal mucosal acidosis in
pigs administered candesartan during endotoxic shock.141

These results were replicated by Tardos et al. in pigs
with burn and endotoxin induced gut ischaemia. In this
model, intestinal permeability and bacterial translocation
were reduced with the administration of the Ang II
inhibitor DuP753.142

The obvious limiting factor in applying Ang II block-
ade in humans at risk of mesenteric ischaemia is the
potential for current ARBs and ACE inhibitors to cause
further hypotension and kidney injury, although no
adverse renal consequences were noted in one porcine
study.139

MANIPULATION OF LOCAL GASTROINTESTINAL
TRACT RAS – POTENTIAL TARGETS AND
LIMITATIONS
As a ubiquitous system with a wide array of homeostatic
roles, investigation into therapies that manipulate the
RAS has been extensive. Apart from the well-established
roles of AT1 receptor blockade and ACE inhibition in
the treatment of hypertension, cardiovascular and kidney
disease, new drugs targeting the mas receptor, AT2
receptor, AT4R, renin and NEP, as well as a recombi-
nant Ang (1–7), are under trial for various applications
(Table 2).

There is limited knowledge of the effect of currently
available ACE inhibitors and ARBs on gastrointestinal
function at doses employed for cardiovascular and renal
effect at a molecular level. Most of these drugs may
result in adverse effects including nausea, diarrhoea or
constipation in an idiosyncratic manner in between 1
and 3 per cent of patients, often noted in similar num-
bers of patients in the placebo arm in randomised con-

trolled trials. It is likely that gastrointestinal tissue
concentrations achieved by these medications at current
doses are insufficient to note clinical effect. Furthermore,
the effect of these drugs in pathological states, like func-
tional gut disorders or IBD, has not been described.

For applicability to human gastrointestinal disease,
drugs manipulating the RAS will need to target the rele-
vant areas of the gut to obtain satisfactory tissue effect
without systemic adverse reactions. Ideally, this will
comprise delivery to the mucosa, absorption and bind-
ing of cellular receptors and sufficient first pass hepatic
conversion to inactive metabolites to limit systemic
effect.

CONCLUSIONS
There is now a significant body of literature demonstrat-
ing the existence and pathophysiological relevance of
local tissue renin-angiotensin systems. Given the current
evidence of involvement of the RAS in gastrointestinal
fluid and electrolyte homeostasis, smooth muscle control,
inflammation and malignancy, it follows that manipula-
tion of this system could be of benefit in a range of GI
pathologies. Therapies targeting the gastrointestinal RAS
are attractive, given their excellent safety and tolerability
profile and confirmed benefits in other organs and dis-
eases. It is hoped that the recent emergence of further
experimental evidence supporting a role for the local
RAS in intestinal disorders will provide greater impetus
for the initiation of well-conducted clinical trials in
human disease.
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