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Background. Ferroptosis plays a vital role in hepatocellular carcinoma (HCC). CISD1 is known to regulate ferroptosis negatively.
However, the correlations of CISD1 to prognosis in HCC and its potential mechanism remain unclear. Aim. To investigate the
expression level and prognostic value of CISD1 in HCC. Methods. Gene expression and clinical data for 33 cancer types in
TCGA were downloaded from the UCSC Xena platform. Pan-cancer analysis was performed to determine the expression
profile and prognostic value of CISD1 in human cancers. GEO datasets and Human Protein Atlas (HPA) were used to verify
the mRNA and protein expression levels. The influence of CISD1 on clinical prognosis in HCC was evaluated using a Kaplan-
Meier plotter. The PPI network was constructed using the STRING database and Cytoscape. GO and KEGG pathways were
constructed using the “clusterProfiler” R package with the FDR cutoff of 0.05. The methylation at the CISD1 promoter was
detected using UALCAN and GEO datasets. The correlations between CISD1 and HCC immune infiltrates were investigated
via TIMER. Results. Pan-cancer analysis of TCGA data showed that CISD1 is differentially expressed in multiple tumors. Data
of gene expression microarrays reveal that the mRNA expression of CISD1 is higher in HCC than that in normal tissue. The
protein level of CISD1, validated by the Human Protein Atlas (HPA) database, was upregulated consistently with mRNA levels
in HCC samples. High CISD1 expression was associated with better overall survival (OS), disease-free survival (DFS), disease-
specific survival (DSS), and progression-free survival (PFS) in LGG, but with poorer OS, DFS, DSS, and PFS in LIHC. Protein-
protein interaction (PPI) analysis and GO/KEGG analysis showed that the PPI network and GO term of CISD1 were mainly
associated with energy and iron metabolism. Promoter hypomethylation correlated with overexpression of CISD1. CISD1
expression was positively correlated with infiltrating levels of CD8+ T cells, macrophages, neutrophils, and dendritic cells
(DCs) in HCC. Conclusions. These findings suggest that hypomethylation of the CISD1 promoter increases its expression in
HCC. CISD1 is associated with prognosis and immune infiltrating levels of CD8+ T cells, macrophages, neutrophils, and DCs
in HCC patients. These findings suggest that CISD1 can be used as a prognostic biomarker for determining prognosis in HCC.

1. Introduction

According to the World Health Organization’s (WHO’s)
recent update, liver cancer is ranked third based on mortality
worldwide after lung and colon cancers [1, 2]. Fifty percent
of all liver cancer patients in the world are in China, posing
a heavy burden on China’s medical and health services [3,
4]. Although the incidence of HCC has declined, disease-
specific mortality remains high [5]. Early diagnosis is vital
to improving the prognosis of liver cancer patients. In the

past 20 years, a large number of molecular biomarkers
including microRNAs, protein-coding genes, long noncod-
ing RNAs, and methylated gene promoters are abnormally
expressed in HCC patients, and most of them have potential
clinical application value [6]. However, the pathogenesis of
HCC is complex. It involves cell cycle regulation and signal
transduction and the interaction of multiple genes at multi-
ple steps [7]. New drug targets may be discovered via screen-
ing networks of genes associated with tumor formation,
progression, and metastasis.
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Distinct from apoptosis, necrosis, and pyroptosis, ferrop-
tosis is an oxidative, iron-dependent form of cell death. It is a
form of regulated passive cell death that is closely associated
with drug-resistant diseases [8]. Recent studies have shown
that ferroptosis plays an important role in anticancer drugs
resistance [9]. Artesunate resistance of head and neck cancer
(HNC) cells is resulted due to the activation of the Nrf2–ARE
pathway. The Nrf2 inhibition reverses the resistance of
cisplatin-resistant HNC cells to artesunate-induced ferropto-
sis [10]. Inhibition of ferroptosis in gastric cancer contributes
to its decreased sensitivity to paclitaxel and cisplatin leading
to tumor growth [11], suggesting its significant translational
effects in gastrointestinal tumors’ treatment. Previous studies
have reported that ferroptosis plays a vital role in HCC [12].
Sorafenib is the first-line therapeutic agent for liver cancer.
It can block the angiogenesis and growth of liver cancer
and significantly improve OS and TTP in patients with
advanced liver cancer [13]. Nevertheless, some hepatoma
cell lines are less sensitive to sorafenib-induced ferroptotic
cell death. Recently, Wang et al. showed that upregulation
of Glutathione S-transferase zeta 1 (GSTZ1) enzyme
enhanced sorafenib-induced ferroptosis in HCC cells by
inhibiting the NRF2/GPX4 axis [14]. CISD1, a CDGSH
iron-sulfur domain-containing protein, has been localized
in the outer membrane of the mitochondrion and is known
to regulate ferroptosis negatively [15]. CISD1 is linked with
cell oxidation processes and plays a key role in the regula-
tion of cellular respiration and ferroptosis. It has been
reported to suppress the activation of autophagy and con-
tribute to breast cancer progression [16]. Recently, Li
et al. reported that metaxin 1 (MTX1) upregulation in
HCC contributed to sorafenib resistance possibly involving
CISD1 mediated autophagy mechanisms [17].

Although levels of CISD1 mRNA are significantly
increased in different human cancer cells [16, 18–21], the
expression of CISD1 in HCC and its role are still not fully
elucidated. Therefore, this study used bioinformatics analy-
sis to explore the potential role and mechanisms of CISD1
in the context of HCC pathogenesis from various aspects
and different levels.

2. Materials and Methods

2.1. Datasets and Different Gene Expression Analysis. Gene
expression and survival data for 33 cancer types were
acquired from TCGA TARGET GTEx cohort in the UCSC
Xena platform [22]. mRNA expression data (GSE14520,
GSE25097) and methylation data (GSE54503) of hepatocel-
lular carcinoma were obtained from Gene Expression Omni-
bus (GEO) [23, 24]. Different expressions of CISD1 in pan-
cancer were detected by the Wilcoxon rank-sum test via the
R package. The ggplot2 package [25] was used to visualize
the results. Protein expressions of CISD1 were collected
from the Human Protein Atlas (HPA) website (https://
www.proteinatlas.org/).

2.2. Survival Analysis. Survival analysis was performed using
a univariate Cox regression hazard model, and survival
curves were derived from the Kaplan-Meier survival analysis

using the R package “survival” [26]. To confirm the prognos-
tic value of CISD1 in hepatocellular carcinoma patients, the
Kaplan-Meier plotter database was used employing the effect
of 54,675 genes on the survival of 10,461 cancer samples.
The correlation between CISD1 expression and survival in
hepatocellular carcinoma was analyzed by the Kaplan-
Meier plotter (http://kmplot.com/analysis/) [27].

2.3. Protein-Protein Interaction (PPI) Analysis. The String
[28] database was used to create the interaction network of
CISD1. A protein was considered interacting with CISD1
in the network if the interaction score was more than 0.7.
The active interaction sources include text mining, experi-
ments, databases, coexpression, neighborhood, gene fusion,
and cooccurrence. The result was downloaded as a TSV for-
mat and imported into Cytoscape for visualization. The
MCODE plug-in was used to identify the submodes from
the PPI network. The Cytoscape plug-in MCODE (molecu-
lar complex detection) [29] was used to identify highly con-
nected subclusters of proteins using a node score cutoff of 4
and node number cutoff of 5.

2.4. GO and KEGG Enrichment Analysis. KEGG pathway
analysis and Gene Ontology (GO) analysis of CISD1 and
its interacting proteins were performed using the clusterPro-
filer R package (v3.0.0) [30] with the FDR cutoff of 0.05. The
results were visualized using the histogram generated by the
“ggplot2” package [31].

2.5. CISD1 Promoter Methylation Analysis. Analysis of DNA
methylation level of CISD1 promoter in HCC from TCGA
was conducted using the UALCAN tool [31]. The DNA
methylation data of patients with HCC was downloaded
from the GEO datasets (GSE54503), and the DNA methyla-
tion level of the CISD1 promoter was verified by this dataset.
DNA methylation is catalyzed by the DNA methyltransfer-
ase family. Therefore, we analyzed the correlation between
CISD1 expression and the expression of four methyltransfer-
ases (DNMT1, DNMT2, DNMT3A, and DNMT3B) using
TCGA LIHC gene expression data.

2.6. TIMER Database Analysis. The TIMER [32] database
was used for analysis and visualization of the abundance of
tumor-infiltrating immune cells (https://cistrome.shinyapps
.io/timer/). The correlation analysis was evaluated in the
TIMER database using Spearman’s correlation analysis. We
analyzed the correlation of CISD1 expression with the abun-
dance of immune infiltrates, including B cells, CD4+ T cells,
CD8+ T cells, neutrophils, macrophages, and dendritic cells,
via gene modules.

3. Result

3.1. The mRNA Expression Level of CISD1 in Human Pan-
Cancer. The mRNA expression of CISD1 in multiple cancers
and tumor-adjacent normal tissues was analyzed using
TCGA database data to detect the difference in expression
of CISD1 in tumor and normal tissue. The result revealed
that the CISD1 expression was higher in breast cancer, chol-
angiocarcinoma, colon cancer, esophageal cancer, head and
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Figure 1: Continued.
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neck squamous cell carcinoma, hepatocellular carcinoma,
lung cancer, gastric cancer, and endometrial adenocarci-
noma compared to the normal tissues. In addition, lower
expression was observed in bladder cancer, brain cancer,
kidney cancer, and thyroid cancer in the same datasets
(Figure 1(a)). Considering the small number of normal sam-
ples in TCGA, we integrated the data of normal tissue in the
GTEx database and the data of TCGA tumor tissues to ana-
lyze the expression differences of CISD1 in 27 different
tumors (Figure 1(b)). The results of the previous analysis
were confirmed. In addition, CISD1 expression was also sig-
nificantly lower in myeloma, skin cancer, and testicular can-
cer compared with normal tissues and significantly higher in
cervical squamous cell carcinoma, ovarian cancer, prostate
cancer, and uterus cancer compared with normal tissues.

To further evaluate CISD1 expression in hepatocellular
carcinoma, we detected the different expressions of CISD1
between hepatocellular carcinoma and normal tissue with
TCGA LIHC data and two microarray expression data in
GEO (GSE14520, GSE25097). The data showed a signifi-
cantly high expression of CISD1 in HCC between unpaired
and paired samples test (Figures 1(c) and 1(d)). Both GEO

datasets showed that CISD1 expression was significantly
higher in hepatocellular carcinoma than in normal tissue
(Figures 1(e) and 1(f)).

To further determine the significance of CISD1 expres-
sion, the HPA (Human Protein Atlas) database was used
to explore the difference of protein levels expression of
CISD1 between HCC and normal liver tissues. The protein
expression of CISD1 in HCC was higher than that in hepa-
tocytes (Figures 1(g) and 1(h)).

3.2. Prognostic Value of CISD1 in Human Pan-Cancer. We
investigated the prognostic value of CISD1 in human can-
cers. The impact of CISD1 expression on survival rates was
analyzed using TCGA pan-cancer expression and clinical
data by the univariate Cox regression analysis and Kaplan-
Meier analysis. The results revealed that high CISD1 expres-
sion was significantly associated with poor OS of ACC (HR:
1.03 (1.01−1.04), p = 0:00450), BLCA (HR: 1.01 (1–1.02),
p = 0:03), BRCA (HR: 1.01 (1–1.02), p = 0:0053), LAML
(HR: 1.1 (1.02−1.18), p = 0:011), LIHC (HR: 1.02 (1.01−
1.03), p = 0:00016), LUAD (HR: 1.02 (1.01−1.03), p =
0:0011), and THYM (HR: 1.04 (1.01−1.07), p = 0:0014),
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Figure 1: The mRNA expression level of CISD1 in human pan-cancer. (a) Increased or decreased CISD1 mRNA expression in human pan-
cancer data of TCGA. (b) Increased or decreased CISD1 mRNA expression in human pan-cancer data of integrated TCGA and GETx. (c)
The mRNA expression of CISD1 was significantly higher in LICH samples than in the unpaired nontumor samples. (d) The mRNA
expression of CISD1 was significantly higher in LICH samples than in the paired nontumor samples. (e, f) Increased CISD1 mRNA
expression in datasets of hepatocarcinomas compared with normal tissues in the Oncomine database. Immunohistochemical results of
the HPA database showed that CISD1 protein was (g) moderately expressed in hepatocytes and (h) strongly expressed in
hepatocarcinoma cells.
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but with better OS in LGG (HR: 0.98 (0.96−0.99), p = 0:00170)
(Figures 2(a)–2(i)). Similarly, overexpression of CISD1 was
correlated with the poor DFS in LIHC (HR: 1.02 (1.01−1.03),
p = 0:0037), but with better DFS in LGG (HR: 0.93 (0.89−
0.98), p = 0:0035) (Supplementary Figure 1 A-C). Poorer
DSS in ACC (HR: 1.03 (1.01−1.05), p = 0:0039), BLCA
(HR: 1.01 (1−1.03), p = 0:0036), LIHC (HR: 1.02 (1.01−
1.03), p = 0:0031), LUAD (HR: 1.02 (1.01−1.04), p = 0:007),
and UCEC (HR: 1.02 (1−1.05), p = 0:002) and better DSS in
LGG (HR: 0.97 (0.95−0.98), p = 0:0002) were shown to corre-
late with higher CISD1 expression (Supplementary Figure 2
A-G). The results also showed that overexpression of CISD1

was associated with poor PFS in ACC (HR: 1.03 (1.01−1.04),
p = 0:00036), LIHC (HR: 1.02 (1.01−1.03), p = 0:0016),
LUAD (HR: 1.01 (1–1.03), p = 0:021), SKCM (HR: 1.01
(1–1.02), p = 0:011), and UCEC (HR: 1.02 (1–1.03), p =
0:0031), but with better PFS in LGG (HR: 0.98 (0.96−
0.99), p = 0:00015) (Supplementary Figure 3 A-G). These
findings indicate that high CISD1 mRNA expression is
associated with a poorer prognosis of OS, DFS, DSS, and
PFS in LIHC patients but with better OS, DFS, DSS, and
PFS in LGG patients.

We further examined the prognostic value of CISD1 in
hepatocellular carcinoma patients using the Kaplan-Meier
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Figure 2: CISD1 expression and correlation with overall survival (OS) in different cancers. The Kaplan-Meier analysis of CISD1 expression
in the (a) ACC, (b) BLCA, (c) BRCA, (d) LAML, (e) LGG, (f) LIHC, (g) LUAD, and (h) THYM. (i) The Forest plot illustrating the univariate
Cox regression analysis of the prognostic impact of CISD1 expression on OS in 33 “pan-cancer” forms.
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plotter database (http://kmplot.com/analysis/) with Affy-
metrix microarrays data [33]. Disease-specific survival,
disease-free survival, relapse-free survival, and overall sur-
vival were analyzed using the Kaplan-Meier survival anal-
ysis. The results showed that higher CISD1 mRNA
expression was correlated with the poor prognosis in liver
cancer (OS HR = 1:5 (1.06−2.12), p = 0:021; PFS HR = 1:32
(0.98−1.78), p = 0:071; RFS HR = 1:46 (1.04−2.03), p =
0:026; and DSS HR = 1:51 (0.97−2.35), p = 0:068)
(Figures 3(a)–3(d)).

3.3. High mRNA Expression of CISD1 Impacts the Prognosis
of Hepatocellular Carcinoma Patients Treated with
Sorafenib. To explore the relationship between CISD1
mRNA expression level and clinicopathological characteris-

tics of patients with HCC, we analyzed the impact of CISD1
expression level on prognosis in subgroups with different
clinicopathological characteristics in the Kaplan-Meier plot-
ter databases. Overexpression of the CISD1 was correlated
with poor survival in male HCC patients (OS HR = 1:85
(1.19-2.88), p = 0:0059; PFS HR = 1:49 (1.03-2.15), p =
0:032) and T3 stage HCC patients (OS HR = 2:51 (0.98-
6.43), p = 0:047; PFS HR = 2:68 (1.2-6.43), p = 0:013) as
shown in Table 1. In addition, high expression of CISD1
was associated with worse OS in Asian HCC patients (OS
HR = 1:87 (1.03-3.38), p = 0:035), stage I and II HCC
patients (OS HR = 1:64 (1.02-2.67), p = 0:047), and patients
with hepatitis virus-positive (OS HR = 2:12 (1.11-4.05), p =
0:019) (Table 1). However, high expression of CISD1
impacts the OS of none alcoholic patients (OS HR = 1:7
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Figure 3: The Kaplan-Meier survival curves comparing the high and low expressions of CISD1 in liver cancer Kaplan-Meier plotter
databases. (a) OS survival curves, (b) PFS survival curves, (c) RFS survival curves, and (d) DSS survival curves in liver cancer.
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(1.05-2.07), p = 0:028) compared with alcoholic HCC
patients (OS HR = 1:64 (0.85-3.12), p = 0:13) (Table 1). In
the sorafenib treatment subgroups, lower expression of
CISD1 was correlated with better OS (HR = 5:37 (1.37-
21.12), p = 0:0081) and PFS (HR = 6:42 (2.37-17.4), p =
5:60E − 05) (Table 1).

3.4. PPI and Function Enrichment Analysis of CISD1. Single-
protein PPI network analysis was performed by the STRING
tool. There were 18 edges and 11 nodes in the PPI network
(PPI enrichment p value = 0:0175) (Figure 4(a)). One
MCODE module (score = 4:5) including 5 nodes was identi-
fied from the PPI network (Figure 4(b)). The GO and KEGG
enrichment analyses of CISD1 and its interacting genes were
performed by the clusterProfiler package. The results are
shown in Figure 4(c) and Supplementary Table S1. The
significant KEGG pathways were the Prion disease, Hun-
tington disease, pathways of neurodegeneration in multiple
diseases, cholesterol metabolism, and Parkinson’s disease.
The significant GO terms enriched in BP were cellular respi-
ration, response to nutrients, energy derivation by oxidation
of organic compounds, ATP metabolic process, and purine
ribonucleoside triphosphate metabolic process. The signifi-
cant GO terms enriched in CC were mitochondrial outer

membrane, organelle outer membrane, outer membrane,
an integral component of synaptic vesicle membrane, and
mitochondrial membrane part. The significant GO terms
enriched in MF were 2 iron-2 sulfur cluster binding, iron-
sulfur cluster binding, metal cluster binding, benzodiazepine
receptor activity, and voltage-gated anion channel activity.

3.5. Gene Epigenetic Regulation Leads to High Expression of
CISD1 in HCC. In general, hypermethylation of the gene’s
promoter regions results in low expression of the gene, while
hypomethylation of the gene’s promoter regions results in
high expression of the gene [34]. To explore the methylation
status of the promoter region of the CISD1 gene, an analysis
of the DNA methylation level of CISD1 promoter in HCC
from TCGA was conducted by the UALCAN tool. The
results showed that methylation of the promoter of CISD1
is lower in HCC than that in normal tissue and the mRNA
expression of CISD1 was high in HCC (Figure 5(b)). We also
verified the differentially methylated CpG sites (DMCs)
between HCC and liver tissue in GEO datasets GSE54503.
As shown in Figure 5(a), methylation of the promoter of
CISD1 is significantly lower in HCC than that in liver tissue.
DNA methylation is catalyzed by the DNA methyltransfer-
ase family. Therefore, we analyzed the correlation between

Table 1: Correlation of CISD1 mRNA expression and clinical prognosis in liver cancer with different clinicopathological factors by the
Kaplan-Meier plotter.

Clinicopathological characteristics
Overall survival (n = 364) Progression-free survival (n = 370)

N Hazard ratio p value N Hazard ratio p value

Sex

Female 121 0.66 (0.37-1.17) 0.15 121 0.86 (0.49-1.49) 0.58

Male 250 1.85 (1.19-2.88) 0.0059 250 1.49 (1.03-2.15) 0.032

Stage

I+II 257 1.64 (1.02-2.67) 0.047 257 1.24 (0.84-1.83) 0.28

III+IV 90 1.85 (0.86-3.99) 0.11 90 2.02 (1.01-4.01) 0.041

Stage T

1 180 1.57 (0.87-2.85) 0.13 180 0.73 (0.44-1.23) 0.24

2 94 0.55 (0.25-1.88) 0.12 94 0.6 (0.32-1.18) 0.11

3 78 2.51 (0.98-6.43) 0.047 78 2.68 (1.2-6.43) 0.013

Grade

1 55 0.56 (0.2-1.58) 0.27 55 1.81 (0.72-4.54) 0.2

2 177 0.16 (0.86-2.42) 0.16 177 1.57 (1.01-2.44) 0.043

3 122 1.64 (0.9-2.98) 0.11 122 1.33 (0.75-2.34) 0.32

Race

White 184 0.75 (0.47-1.2) 0.23 184 1.33 (0.89-1.98) 0.16

Asian 158 1.87 (1.03-3.38) 0.035 158 1.55 (0.86-2.8) 0.14

Sorafenib treatment

Treated 30 5.37 (1.37-21.12) 0.0081 6.42 (2.37-17.4) 5:60E − 05
Hepatitis virus

Yes 153 2.12 (1.11-4.05) 0.019 153 1.19 (0.71-2) 0.5

None 169 0.82 (0.52-1.3) 0.4 169 1.5 (0.97-2.31) 0.067

Alcohol consumption

Yes 117 1.64 (0.85-3.12) 0.13 117 1.52 (0.91-2.56) 0.11

None 205 1.7 (1.05-2.07) 0.028 205 1.34 (0.87-2.08) 0.18
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CISD1 expression and the expression of four methyltransfer-
ases (DNMT1, DNMT2, DNMT3A, and DNMT3B). mRNA
expression of CISD1 is significantly positively correlated
with DNMT1, DNMT2, and DNMT3A mRNA expressions
(Figures 5(c)–5(f)).

3.6. CISD1 Expression Is Correlated with Immune Cell
Infiltration Level in Hepatocellular Carcinoma. We analyzed
the correlation of CISD1 expression with the abundance of
immune infiltrates, including B cells, CD4+ T cells, CD8+
T cells, neutrophils, macrophages, and dendritic cells, via

gene modules in the TIMER database. The results showed
that CISD1 expression was significantly correlated with infil-
trating levels of CD8+ T cells (r = 0:139, p = 0:00724), neu-
trophils (r = 0:114, p = 0:0276), macrophages (r = 0:226,
p = 1:06E − 05), and dendritic cells (r = 0:165, p = 0:00136)
in liver cancer (Figure 6).

4. Discussion

HCC is a leading cause of cancer-related death in many
regions of the world [35]. In the last few decades,
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Figure 4: PPI and function enrichment analysis of CISD1. (a) PPI network of CISD1 (PPI enrichment p value = 0:0175). (b) MCODE
modules (score = 4:5) of the PPI network. (c) Significant enriched GO term and KEGG pathways of CISD1 and its interacting proteins.
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considerable research progress has been made in the epide-
miology, risk factors, and molecular characteristics of
HCC. However, the specific molecular mechanism of HCC
remains unclear and needs to be further explored. Recent
studies revealed that the CISD1 plays a critical role in pro-
moting the proliferation of cancer cells, supporting tumor
growth and metastasis [36]. But the role of CISD1 in HCC
remains unclear. In this study, we mined public databases
and used bioinformatics analysis to reveal that CISD1

mRNA is overexpressed in HCC than that in the liver cell
and that high expression of the CISD1 is correlated with
poor prognosis. Interestingly, high mRNA expression of
CISD1 can impact the prognosis of hepatocellular carcinoma
patients who were treated with sorafenib indicating that the
CISD1 antagonist may enhance the anti-HCC effect of soraf-
enib. Furthermore, our analysis showed that in HCC, CD8+
T cell, neutrophil, macrophage, and dendritic cell infiltration
levels were correlated with levels of the CISD1 expression.
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Figure 5: Gene epigenetic regulation leads to high expression of CISD1 in HCC. (a) Decreased CISD1 promoter methylation in datasets of
hepatocarcinomas compared with normal tissues in the Oncomine database. (b) Methylation of the CISD1 promoter is lower in HCC than
that in normal tissue in TCGA LICH dataset collected by UALCAN. (c) mRNA expression of CISD1 is positively correlated with DNMT1
mRNA expression in TCGA LIHC cohort. (d) mRNA expression of CISD1 is positively correlated with DNMT2 mRNA expression in
TCGA LIHC cohort. (e) mRNA expression of CISD1 is positively correlated with DNMT3A mRNA expression in TCGA LIHC cohort.
(f) mRNA expression of CISD1 is not related to DNMT3B mRNA expression in TCGA LIHC cohort.
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Thus, our study provides insights into understanding the
potential role of CISD1 in tumor immunology and its use
as potential anticancer targets.

Differential expression is a prerequisite for genes to play
a role in tumorigenesis and tumor development. Hence, this
study first examined the differential expression of CISD1 in
various tumors and corresponding normal tissues using
independent datasets in TCGA and GEO. The differential
expression of CISD1 between cancer and normal tissues
was observed in many types of cancers. Because the sample
size of normal tissue from TCGA database was small, we
integrated the RNA-seq data of GTEx [36] and TCGA to
improve the reliability of the results. This study revealed that
the CISD1 expression was higher in breast cancer, cholan-
giocarcinoma, colon cancer, esophageal cancer, head and
neck squamous cell carcinoma, hepatocellular carcinoma,
lung cancer, gastric cancer, and endometrial adenocarci-
noma compared to the normal tissues. Lower expression
was observed in bladder cancer, brain cancer, kidney cancer,
and thyroid cancer. To further investigate the expression of
CISD1 in liver cancer, we verified the expression of CISD1
at mRNA and protein levels using the GEO dataset
(GSE14520, GSE25097) and HPA database, respectively.
Hypomethylation in the promoter may cause increased gene
expression. The results of methylation status showed that
methylation of the promoter of CISD1 was lower in HCC
than that in normal tissue and the mRNA expression of
CISD1 was high in HCC. We also verified the differentially
methylated CpG sites (DMCs) between HCC and liver tissue
in GEO datasets (GSE54503). These results indicated that
epigenetic regulation may cause high expression of CISD1
in HCC. The impact of CISD1 expression on survival rates
was analyzed, and results showed that high CISD1 mRNA
expression was associated with a poorer prognosis of OS,
DFS, DSS, and PFS in LIHC patients but with better OS,
DFS, DSS, and PFS in LGG patients. In addition, overexpres-
sion of the CISD1 was correlated with poor survival in
males, T3 stage (TNM classification), stage I and II HCC
patients, and hepatitis virus-positive patients. High expres-
sion of CISD1 negatively impacts the OS of nonalcoholic
patients compared with alcoholic HCC patients. These

changes may be related due to some ferroptosis-related
genes expressions as previous studies in different cancer
types have shown 19 ferroptosis-related genes as a potential
biomarker of OS in glioma patients [37] and 10-ferroptosis-
related gene signature for a prognosis for patients with hepa-
tocellular carcinoma [38].

These findings strongly suggest that CISD1 is a prognos-
tic biomarker in hepatocellular carcinoma. Interestingly,
stratified analysis by clinical characteristics of liver cancer
patients showed that patients with low CISD1 expression
had a better prognosis after treatment with sorafenib. It is
probably because that CISD1 can inhibit ferroptosis by pro-
tecting against mitochondrial lipid peroxidation. Recently, Li
et al. have reported that MTX1 upregulation in HCC con-
tributed to sorafenib resistance possibly involving CISD1-
mediated autophagy mechanisms [17].

To explore the function of CISD1 in cells, PPI and the
GO/KEGG pathway analysis were performed with the help
of bioinformatics. One MCODE module (score = 4:5)
including 5 nodes was identified from the PPI network.
These gene nodes include CISD1, ATP5H, NDUFA2,
COX4I1, and VDAC3, and all of them are associated with
the mitochondrial respiratory chain. The GO analysis also
showed significant terms enriched in BP which were cellular
respiration and energy metabolism, significant terms
enriched in CC were mitochondrial outer membrane, and
significant GO terms enriched in MF were 2 iron-2 sulfur
cluster binding and iron-sulfur cluster binding. Over the past
decade, researchers have identified “iron dependence” as a
key phenotype in cancer cells with unknown mechanisms
[39, 40]. It has been suggested that cancer cells need excess
iron to support their high metabolic rates because iron is a
cofactor in many different proteins that participate in DNA
and protein synthesis, glycolysis, and cell respiration [41].
Cancer cells exhibit iron- and ROS-dependent phenotypes.
Combined with the regulation of CISD1 protein on iron
and ROS metabolism in mitochondria and the high expres-
sion level of CISD1 protein in different tumors, CISD1 pro-
tein may play a key role in cancer cell proliferation [42].

In recent years, immunotherapy has gradually emerged
as the most promising method for the treatment of cancer.
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in HCC.
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Immune cells infiltrated in the tumor microenvironment
have a quite crucial influence on the occurrence and devel-
opment of tumors [43]. We analyzed the correlation of
CISD1 expression with the abundance of immune infil-
trates, including B cells, CD4+ T cells, CD8+ T cells, neu-
trophils, macrophages, and dendritic cells, via gene
modules in the TIMER database. The results showed that
CISD1 expression has positive correlations with infiltrating
levels of CD8+ T cells, neutrophils, macrophages, and
dendritic cells in liver cancer. The cellular components of
the tumor microenvironment (TME) are rather complex
and very different from the microenvironment of normal
tissue. The tumor microenvironment influences neoplastic
progression and growth [44]. The myeloid cells and lym-
phocytes, as the major cellular components in the tumor
microenvironment, play important roles in inflammation,
cancer immune evasion, and responses to immunotherapy
treatment [45]. The majority of studies suggest that liver
macrophages can promote inflammation and tumor cell
development and inhibit antitumor immunity [46]. Den-
dritic cells (DC) are professional antigen-presenting cells,
while T cells are efficient antitumor effector cells. Insuffi-
cient cross talk between DCs and T cells is one of the
main mechanisms of HCC tumor tolerance [47]. There-
fore, CISD1 expression may impact the prognosis via
increasing immune infiltration levels in CD8+ T cells,
macrophages, neutrophils, and DCs in HCC.

In summary, CISD1 is overexpressed in multiple human
tumors including HCC. CISD1 expression was significantly
higher in hepatocellular carcinoma than in normal tissue
and hepatocytes. Overexpression of the CISD1 in HCC
may be caused by hypomethylation in the gene promoter.
Increased CISD1 expression is associated with poor progno-
sis and increased immune infiltration levels in CD8+ T cells,
macrophages, neutrophils, and DCs of hepatocarcinoma.
Therefore, CISD1 may serve as a potential prognostic bio-
marker in patients with HCC.
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