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Simple Summary: Identifying cows with a higher risk of health disorders such as clinical mastitis,
subclinical ketosis, lameness, and metritis could be advantageous for farms to prevent and ameliorate
the negative effects of these disorders in a timely manner. In this study, we adopt eight machine
learning algorithms using an R software for analyzing a dataset of 14-dimensions of dairy cows
with health disorders across the whole lactation period in intensive Chinese dairy farms, applying
automatic monitoring systems and milking systems. The variables analyzed by the machine learning
algorithms include milk yield, physical activity, changes in rumination time, and the electrical
conductivity of milk. Six parameters were presented to evaluate the performance metrics of the
models, with the Rpart algorithm outperforming others and indicating a strong generalization ability
of this algorithm. A total of 10 variables of greater importance in three models of Rpart, eXtreme
Gradient, and Adaboost demonstrated the consistency of those variables as predictors for disorders
of dairy cows monitored by automatic systems. The results obtained in this study highlighted the
importance of using big data on the farm to develop predictive and prescriptive decision support
tools to boost the development of precision livestock farming.

Abstract: We use multidimensional data from automated monitoring systems and milking systems to
predict disorders of dairy cows by employing eight machine learning algorithms. The data included
the season, days in milking, parity, age at the time of disorders, milk yield (kg/day), activity (unitless),
six variables related to rumination time, and two variables related to the electrical conductivity of
milk. We analyze 131 sick cows and 149 healthy cows with identical lactation days and parity; all
data are collected on the same day, which corresponds to the diagnosis day for disordered cows.
For disordered cows, each variable, except the ratio of rumination time from daytime to nighttime,
displays a decreasing/increasing trend from d-7 or d-3 to d0 and/or d-1, with the d0, d-1, or d-2
values reaching the minimum or maximum. The test data sensitivity for three algorithms exceeded
80%, and the accuracies of the eight algorithms ranged from 65.08% to 84.21%. The area under the
curve (AUC) of the three algorithms was >80%. Overall, Rpart best predicts the disorders with
an accuracy, precision, and AUC of 81.58%, 92.86%, and 0.908, respectively. The machine learning
algorithms may be an appropriate and powerful decision support and monitoring tool to detect herds
with common health disorders.
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1. Introduction

Automatic monitoring encompasses substantial data on rumination time, physical
activity, and feeding behavior and has been applied across many intensive farm systems
worldwide. These data are often coupled with milk yield-related variables monitored by
automated milking systems. Metritis, mastitis, metabolic, and digestive and hoof disorders
are common in intensive dairy farms, and the majority of cases may considerably affect the
welfare of dairy cows [1] and reduce farm profitability. They can cause a decline in the milk
yield [2,3], increased rate of culling and death [4–6], high treatment costs [7], and impaired
reproductive performance [8–10].

The incidence of some health problems in early lactation has been linked to an altered
curve with a lower peak of milk yield (PMY), delayed PMY, and reduced milk production
during the entire lactation. Moreover, this negative effect may persist in the subsequent
lactations [11,12]. Owing to the poor awareness of the early prevention of health disorders
and detection techniques among farmers, most subclinical diseases remain undiagnosed
until the onset of evident clinical symptoms, thus making treatment difficult and expensive
while prolonging the negative effects on the health and performance of dairy cows. Thus,
data preceding diagnoses that can predict the risk or detect disease more efficiently than
clinical signs would be inherently more useful for earlier detection and intervention.

Machine learning is a subfield of AI (artificial intelligence) and adopts statistical tech-
niques to detect or predict cow performance or disease events using large datasets and can
deal with complicated correlations caused by an ever-increasing number of variables [13].
Researchers have used machine learning algorithms to detect or predict several health
disorders, such as clinical mastitis using random forest, naïve Bayes, and eXtreme Gradient
boosting [14], neural networks [15,16], decision-tree induction [17], and logistic generalized
linear mixed models [18]. For claw lesions and lameness, researchers have applied random
forest [19,20], K nearest neighbors [21], decision tree [22], and naïve Bayes [19]. Moreover,
metritis cure [23] and metabolic status [24] of dairy cows in early lactation have been
simultaneously implemented by seven or eight machine learning algorithms. Morteza et al.
explored different metabotypes of dairy cows in the transition period using the decision
tree, random forest, and naïve Bayes [25]. In addition, the K nearest neighbor, decision
tree, and multilayer perceptron were used by Warner et al. [22] to discriminate abnormal
behavior in dairy cows with subacute ruminal acidosis.

In northeast China, with the intensive development of dairy farms, fewer workers
and increased workload have created great difficulties in early monitoring, detection, and
diagnosis of dairy bovine diseases; particularly, an early warning using the data generated
by automatic systems is lacking. The research problem is the ability to accurately and
timely predict and/or detect disorders in dairy cows with live data on intensive farms. In
machine learning, it is a common practice to evaluate several algorithms on integrated data
(e.g., management, health, milking) since the performance of each algorithm may depend
on features, sample size, structure, and other characteristics of the data set [24]. In this
study, we aimed to construct prediction models for naturally occurring health disorders in
dairy cows monitored by automated systems (neck collar, milking system) based on eight
machine learning algorithms. We intended to evaluate each prediction model with datasets
collected from two commercial farms in northeast China.

2. Materials and Methods

This research was a part of a large study aimed at the continuous monitoring, predic-
tion, and early detection of health disorders in cows in commercial herds in the northeast
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of China using automated monitoring systems and milking systems. Holstein cows with
DIM (days in milk) in their entire lactation were enrolled for the experiment.

2.1. Animals, Housing and Feeding

We collected the original data from two commercial farms with a straight-line distance
of 104.9 km in northeast China from January 2020 to October 2021. The farms were
located at a longitude of 121.11 E and 135.05 E and a latitude of 43.26 N and 53.33 N,
with a cold temperate zone and temperate continental monsoon climate. The annual
average temperature ranged from −5 ◦C to 5 ◦C. These farms are the practice base of the
Heilongjiang Bayi Agricultural University. Each evaluated group was housed in uniform
pens with identical characteristics as follows: (i) enclosed barns on concrete solid floors
and sawdust with space for 50–136 cows by providing similar cubicles; (ii) feeding and
water area in each pen; (iii) feed bunk and access to an exercise yard for 1 h/day, except in
winter. The barns were ventilated naturally and with sprayers in summer at an interval
of 20 m. In winter, they were equipped with pipes filled with hot water to alleviate the
cold. The farm staff clean the barn when necessary, protect against mosquitoes and flies
in summer, and broadcast different types of music to the cows at the specified time, e.g.,
eating, exercising in the yard, milking in the milking parlor, etc.

The farms applied a total mixed ration (TMR) to feed the cows twice daily (0500 h
and 1300 h) with the feed pushed whenever necessary and freely available freshwater.
They were milked thrice daily (0300 h, 1100 h, and 1900 h) via a milking system (FreeFlow,
SCR Engineers Ltd., Netanya, Israel). Before calving, the cows had ad libitum access to
prepartum and postpartum TMR composed of a diet forage-to-concentrate ratio between
78:22 and 60:40, on a dry matter basis. Overall, the management modes and feeding
patterns were similar among the involved herds.

We collected sensor monitoring information about the behavioral patterns of all dairy
cows, including physical activity coupled with rumination. Moreover, we recorded their
performance parameters by the milking system. We selected 900 cows with 308,100 days of
observations via the neck collar and milking system between farms 1 and 2 to construct
the predicting models. From January 2020 to October 2021, we continuously monitored
the records of 298 healthy (without any disease during the experiment) and 244 sick cows
with 286 sickness events, and data were collected once a week. We excluded the cows with
missing values of the variables monitored by the automatic systems and those transferred
to another group more than thrice. Eventually, the final data set included 149 healthy cows
and 131 with diseases and 14 variables, including parity, season during the disorder, days
in milk (DIM), age at the time of disorder, milk yield, activity, and six variables related to
the rumination time, and two variables related to the electrical conductivity of milk.

2.2. Data Collection and Study Design

Data of the physical activity and rumination time recorded with the HR-Tag mon-
itoring system (SCR Engineers Ltd., Netanya, Israel) were averaged and stored at 2-h
intervals up to 24 h. Activity was determined by a 3-axis accelerometer that was recorded
as a unitless measure of upward vertical head and neck movements, such as walking
and mounting, while excluding downward vertical and horizontal movements, such as
feeding [3]. The performance data was generated and automatically saved during each
milking in the herd management software (DataFlow, SCR Engineers Ltd.). Moreover,
we calculated the daily milk production as the sum of all milk collected per cow per day,
similar to the activity and rumination time variables. Table 1 summarizes the variables
used for the statistical analysis.
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Table 1. Sources of information (automated monitoring system and milking system) and traits
measured with variables at different measurement intervals, summed up to the daily values.

Sensor Trait Variable Measurements
Interval Unit

Automatic
monitoring system

Activity Activity min/2 h min/day

Rumination

Daily Rumination time min/2 h min/day
Rumination deviation per 2-h min/2 h min/day

The sum of absolute values of the
weighted rumination variation No./2 h min/day

Rumination at daytime min/2 h min/day
Rumination at nighttime min/2 h min/day

The ratio of rumination time at
daytime to that at nighttime No./2 h Non

Milking system
Milk yield Daily milk yield kg/day kg/day

Electrical conductivity
of milk

Daily percentage of change of the
electrical conductivity of milk No./milking shift Non

peak electrical conductivity of milk mS/cm/milking shift mS/cm

During the entire lactation, primiparous and multiparous cows were fed a similar
TMR. They were regularly checked for signs of disease or injury by the farm staff as well
as for reproductive events and survival. Warning events predicted by the automated
monitoring system were determined and health assessments were routinely performed
during the transition period, e.g., hoof trimming and body condition score assessment.
The herd veterinarians and the farm technicians recorded all cases of health problems,
diagnoses, and treatments according to standard operating procedures of the farm.

During data editing, the following criteria were used to remove records from the
following final data set: parameters monitored by the milking systems and automatic
monitoring systems without data; cows with missing data 14 days before the diagnosis in a
group; cows that were moved between herds more than twice within a lactation period. We
analyzed the milk yield, physical activity, rumination time, and the electrical conductivity
of milk of healthy and sick cows. We hypothesized that the aforementioned variables
would begin to deviate from normal from 3 to 7 days or more before the diagnosis; thus,
they would facilitate detection. Data of healthy cows were collected with the same parity
and similar DIM as those with disorders. The date denoted as d0, i.e., the day from which
the milk yield, activity, and rumination time of 8 days were collected, corresponded to the
diagnosis day of those with disorders.

2.3. Defining Health Disorders

We identified metritis cases by a foul-smelling vulvar discharge and a rectal tem-
perature ≥39.5 ◦C in cows at 3 days and 21 days following calving or during the entire
lactation. Clinical signs of mastitis were regularly examined by observing the udder and
milk (i.e., hard quarters, heat or swelling, clots in milk, flakes, or lumps, or clear/yellow
milk) following calving until day 28 and were subsequently determined every 3 days
throughout the lactation. Veterinarians diagnosed cases of hoof disorders, including digital
dermatitis, interdigital dermatitis, sole ulcers, and abscesses upon detecting mechanical or
infectious lesions or during routine hoof trimmings. They were treated with corrective hoof
trims. Poor appetite, scant manure, and ruminal and intestinal stasis, including ruminal
indigestion, forestomach retardation, and ruminal flatulence, indicate digestive disorders.
Our research team defined the health-monitoring program before the start of this study,
and the farm staff (for each farm, 1 manager, 3 technicians, and 1 veterinarian with more
than 15 years of experience monitoring cow health) were responsible for conducting the
daily health monitoring of the dairy cows. The time from detection to diagnosis should not
exceed 6 h, and the information (which comprises the cow identification number, the date
of diagnosis, the type of disorder, and the staff who detected and diagnosed the disorders)
of the animals were inputted into the management system software within 5 min after
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diagnosis. We did not consider a cow suffering from two disorders at the same time or sick
more than once during one lactation.

2.4. Statistical Analyses and Machine Learning Algorithms

The cows were initially grouped into the following two categories: disordered and
healthy, with the day of diagnosis and treatment of each disorder considered as d0. We
collected data for the following variables from 7 days (d-7) to 3 days (d-3) before diagnosis
to d0: daily milk yield (kg/day), daily activity (unitless), daily rumination time (min/day),
rumination time at daytime (min/day), rumination time at nighttime (min/day), the ratio
of rumination at daytime to nighttime (unitless), rumination deviation per 2 h (difference
between recorded and expected rumination time, for which recorded every 2 h and trans-
ferred to the automated health-monitoring system software), the sum of the absolute values
of weighted rumination time variation (unitless, described the stability of rumination
time and was calculated by private algorithms developed by the company providing the
sensors), the daily percentage of the electrical conductivity of milk change (unitless), and
the peak electrical conductivity of milk (mS/cm). The aforementioned variables were
statistically analyzed unless otherwise stated. Cows with disorders were classified into
subgroups according to their lactation stage (DIM1-100, 101-200, and 201-dry off denoted as
lactation stage 1, lactation stage 2, and lactation stage 3, respectively), season (cold season
from January to April, November and December, and hot season from May to October,
according to the climate of the selected farms), and parity (one, two, and ≥three).

Before data categorization into the training set and testing set, we performed descrip-
tive statistics to characterize the measures of location and variability by means of frequency
distribution tables and histograms. Thereafter, we performed the x2 tests and t-test for cate-
gorical outcomes and continuous variables, respectively. p-values < 0.05 denote statistical
significance (trends declared at 0.05 < p ≤ 0.10).

We performed machine learning algorithms using the R software version 4.1.2 (R
Core Team, 2021, https://www.r-project.org/, accessed on 3 April 2021) as well as data
processing. Moreover, we adopted the “t.test ()” function for Pearson analysis. For logistic
regression, “glm” was adopted with the parameter “family” selected as the “binomial”. For
the decision tree, we used “rpart,” and for “parms”, considering split principle, “gini” was
chosen, and the parameter of complexity “cp” was set as 0.001 to receive relatively stronger
punish power and simpler “tree” following repeated parameter adjustment. For eXtreme
Gradient, we adopted the “xgboost” package and set “fullRank” in the model as “TURE” to
exclude complete collinearity and “adabag” for adaboost. The “mfinal” parameter was set
as 1000, considering the data sample, “e1071” for support vector machine with “sigmoid”
selected as the “kernel,” and gama set as 0.1 following multiple rounds of debugging.
Moreover, we used the “randomforest,” “klaR,” and “kknn” functions for random forest,
Naive Bayes, and k-nearest neighbor algorithm (KNN), respectively.

To ensure the repeatability of our results, “set seed ()” was set for the above-mentioned
algorithms. For each model, we randomly divided the data according to the dependent
variable “Species” (binary variable, “0” represented “healthy cows” vs. “1” “disordered
cows”) using the “createDataPartition” function. We selected a data subset consisting of
75% of the observations as the training data to construct the predicting models. By contrast,
the remaining 25% was used as the test data to assess the performance of the models, which
were trained using 10-fold cross-validation. For the “confusionMatrix” function, “positive”
and “mode” were set as “disordered” and “everything” to output the maximum metrics
for evaluating model performance.

We assessed the performance of each machine learning algorithm by their sensitivity,
specificity, accuracy, precision, F1-score, and area under the receiver operating characteristic
(ROC) curve (AUC) value. The AUC (95% confidence interval) was defined as follows:

https://www.r-project.org/
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Sensitivity =
TP

TP + FN
, Specificity =

TN
TN + FP

, Accuracy =
TP + TN

TP + TN + FP + FN
, (1)

Precision =
TP

TP + FP
, F1 − score =

2 ∗ Precision ∗ Sensitivity
Precision + Sensitivity

(2)

where, true positives (the number of cows with actual health disorder, predicted as with
disorder), false negatives (the number of cows with actual health disorder, predicted as
healthy), true negatives (the number of healthy cows, predicted as healthy), and false
positives (the number of healthy cows, predicted as with health disorder) were denoted as
TP, FN, TN, and FP, respectively.

Table 2 summarizes the values of the eight algorithms.

Table 2. Performance of eight machine learning algorithms with six measuring criteria.

Model
Performance Sensitivity Specificity Accuracy Precision F1-Score AUC (Confidence Interval)

Logistic 0.6071 0.7143 0.6667 0.6296 0.6182 0.685 ([0.576, 0.794])
SVM 0.7857 0.8750 0.8421 0.7857 0.7857 0.744 ([0.598, 0.890])
Rpart 0.6842 0.9474 0.8158 0.9286 0.7879 0.908 ([0.723, 0.930])

Random forest 0.8333 0.8462 0.8421 0.7143 0.7692 0.854 ([0.695, 0.951])
eXtreme Gradient 0.5882 0.8056 0.7358 0.5882 0.5882 0.828 ([0.714, 0.942])

Adaboost 0.8000 0.7857 0.7895 0.5714 0.6667 0.744 ([0.598, 0.890])
Naïve Bayes 0.8462 0.6800 0.7143 0.4074 0.5500 0.676 ([0.574, 0.778])

kknn 0.4815 0.7778 0.6508 0.6190 0.5417 0.630 ([0.511, 0.748])

AUC, area under the receiver operating characteristic curve.

3. Results

We analyzed 131 sick cows (10, 29, 59, and 33 cows with a digestive disorder, lame-
ness, mastitis, and metritis, respectively), with an average DIM of 104.45 ± 95.147, parity
of 3.01 ± 1.571, and age at suffering disorder of 48.81 ± 13.986. We collected data for
149 cows in the control group with almost similar lactation days (108.35 ± 101.290), parity
(3.02 ± 1.631), and age (45.29 ± 12.374).

3.1. Variation Analysis of Each Variable for Dairy Cows with Health Disorders

For cows with health disorders, each variable, except the ratio of the rumination time
at daytime to nighttime, displayed a decreasing/increasing trend from 7 days or 3 days
before diagnosis (d-7 or d-3) to the diagnosis day (d0). Moreover, the value of d0 or d-1
or d-2 reached the minimum or maximum. Milk yield displayed a decreasing trend from
d-7 to d0. The yield was 2.07 kg and 5.85 kg lower on d-1 (p < 0.001) and d0 (p < 0.001),
respectively, than the average milk yield from d-7 to d-2. The total daily rumination time
on d-1 and d0 was 39.42 min (p = 0.001) and 45.53 min (p = 0.001) less, respectively, than
the average rumination time from d-7 to d-2. Moreover, it displayed a decreasing trend
from d-7 to d0. The rumination time at nighttime reached the minimum on d-1 (282.62 min)
and was 30.65 min less than the average time from d-7 to d-2 (p < 0.001). The ratio of
the rumination time from daytime to nighttime was 12.48 (p < 0.001) and 9.51 (p < 0.001)
higher on d0 and d-1, respectively, than the average ratio from d-7 to d-2. The deviation of
the rumination time per 2 h was higher on d0 than that from d-7 to d-1, and this variable
displayed an increasing trend from d-7 to d0. We identified a rapid increase in the sum
of absolute values of the weighted variation of the rumination time from d-3 to d0 for
cows with disorders. The peak electrical conductivity of milk displayed an increasing
trend from d-3 to d0 (p < 0.001) and reached its highest on d0 (5.87 ± 0.80). Moreover, the
daily percentage of the electrical conductivity of milk changed had the highest value of
108.94 ± 12.00 on d0. While there was no significant difference among the cows classified
according to the DIM, season, parity, and age of those with disorders.



Animals 2022, 12, 1251 7 of 14

3.2. Difference Analysis of Each Variable for Those with Disorders and Healthy Ones

Except for the ratio of the rumination time at daytime to nighttime, other variables
were significantly different between the disordered and healthy groups on d-1 and/or
d0. The average daily milk yield of the disordered group was 1.76 kg (p < 0.001) and
5.41 kg (p < 0.001) less than that of the healthy group on d-1 and d0, respectively. The
daily rumination time for the disordered group was significantly less than that for the
healthy group from d-3 to d0 (p < 0.001). Moreover, the rumination time for the disordered
group was 62.64 min and 57.02 min less than that for the healthy group on d0 and d-1,
respectively. The rumination time at daytime and nighttime displayed a similar difference
between the groups. The ratio of the rumination time from daytime to nighttime was
higher for the disordered group than for the healthy group from d-7 to d0. Moreover, the
groups displayed significantly different values on d-7 and d-3 (p < 0.001). Particularly, the
sum of absolute values of weighted rumination time variations was different between the
groups from d-7 to d0 (p < 0.001). The largest difference was observed on d0 (68.15 ± 55.02),
followed by d-1 (60.84 ± 35.37). The average value of the peak electrical conductivity of
milk in healthy cows was 5.36 ± 0.10 from d-3 to d0, which was significantly lower than
that in those with the disorder (p < 0.001). The average difference was 0.39 ± 0.05, with
the largest difference of 0.50 ± 0.07 on d0. We observed a similar difference in the daily
percentage of the electrical conductivity of milk change, thus confirming the electrical
conductivity of milk as an indicator for the early detection of health disorders in dairy
cows. There was no evident increasing/decreasing trend in the total daily activity for the
disordered group, whereas their average was significantly lower than that for healthy ones
from d-7 to d-1. We obtained opposite data on d0 supposedly owing to the involvement of
the estrus. Overall, the aforementioned variables could be used for predictive models for
the early detection of health disorders in dairy cattle. Figure 1 depicts box plots with the
error bar and significance of each variable.

3.3. Performance of Machine Learning Algorithms

We evaluated the performance of each machine learning algorithm according to its
sensitivity, specificity, accuracy, F1−score, and AUC value (Table 2). The specificity of the
SVM, Rpart, random forest, and eXtreme Gradient models exceeded 80%. By contrast, the
sensitivity (recall) of these models did not meet the expected value. The sensitivity of only
the random forest reached 83.33%. The accuracy of the three models was >80%, namely,
SVM, Rpart, and random forest. The precision of Rpart reached 92.86%, and no algorithm
exhibited overfitting.

The overall AUC values for the aforementioned three models were >0.80, with Rpart
displaying the highest AUC (0.908). The performance metric of Rpart classification was
better than that of the remaining models, which indicated its powerful and credible gen-
eralization ability. Figures 2–4 depict its rank of variable importance and that of eXtreme
Gradient and Adaboost. Figure 5 represents the ROC curves of the train data and test data
of Rpart, and the threshold was obtained by the Youden index (sensitivity + specificity-1).
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Figure 1. Box plots with the error bar and significance of each variable for cows with health disorders
and healthy ones. Subgraphs (A) depicts the difference of daily milk yield of the cows with disorders
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and the healthy ones, (B) the difference of daily activity of the two groups, (C) the difference of
daily rumination time of the two groups, (D) the difference of rumination time at daytime of the
two groups, (E) the difference of rumination time at nighttime of the two groups, (F) the difference
of the ratio of the rumination time at daytime to nighttime of the two groups, (G) the difference of
the absolute value of rumination deviation every 2 h of the two groups, (H) the sum of the absolute
value of the weighted rumination variation of the two groups, (I) the daily percentage of the change
in the electrical conductivity of milk of the two groups, and (J) the peak electrical conductivity of
milk of the two groups, respectively, at a significant level of 0.001. The x-axis is defined as the time
from d-7 to d0, i.e., 7 days before the diagnosis is denoted as d-7, 6 days before diagnosis denoted
as d-6, 5 days before the diagnosis is denoted as d-5, 4 days before the diagnosis is denoted as d-4,
3 days before the diagnosis is denoted as d-3, 2 days before the diagnosis is denoted as d-2, 1 day
before the diagnosis is denoted as d-1, and the diagnosis day is denoted as d0. The y-axis presents
the values of these variables. Violet-red and blue represent the “disordered” and “healthy” groups,
respectively. The error bars represented standard deviations of the value of each variable on d-7 or
d-3 to d0. “***” represented the difference of the two groups was at the 0.001 level of significance.
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The ten variables, namely, aweid1, aweid3, nr1, rd1, rd2, rdn1, md1, ecv2, aweid2, and
ecp2, represent the sum of the absolute values of weighted rumination variation on d-1,
the sum of the absolute value of weighted rumination variation on d-3, rumination time at
nighttime on d-1, the daily rumination time on d-1, the daily rumination time on d-2, the
ratio of the rumination time at daytime to nighttime on d-1, the daily milk yield on d-1, the
daily percentage of the variation of electrical conductivity of milk on d-2, the absolute value
of weighted rumination variation on d-2, and the peak electrical conductivity of milk on
d-2, respectively. The x-axis represents the score of the importance of the features evaluated
by the measure “Gini” (Figure 2).

The ten variables, namely, rd1, ecv1, ecp2, aweid1, nr4, ecp1, md1, rdn2, rd2h3, and
ecv3, represent the daily rumination time on d-1, the daily percentage of variation of the
electrical conductivity of milk on d-1, peak electrical conductivity on d-2, the sum of the
absolute value of weighted rumination variation on d-1, rumination time at nighttime on
d-4, the peak electrical conductivity on d-1, the daily milk yield on d-1, the absolute value
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of rumination deviation every 2 h on d-3, and the daily percentage of variation of electrical
conductivity of milk on d-3, respectively. The x-axis represents the score of the importance
of features evaluated by the measure “Gini” (Figure 3).

The ten variables, namely, aweid1, aweid3, aweid2, ecv1, rd2h3, nr1, ecv3, rd2, rd2h1,
and nr2, represent the sum of the absolute value of weighted rumination variation on d-1,
the sum of the absolute value of weighted rumination variation on d-3, the sum of the
absolute value of weighted rumination variation on d-2, the daily percentage of change of
the electrical conductivity of milk on d-3, the daily percentage of variation of the electrical
conductivity of milk on d-1, the absolute value of rumination deviation every 2 h on d-3,
daily rumination time on d-2, the absolute value of rumination deviation every 2 h on d-1,
and rumination time at nighttime on d-2, respectively. The x-axis represents the score of
the importance of features evaluated by the measure “Gini” (Figure 4).

The black line depicts the ROC curve for train data, with the area under the ROC
curve, whereas the red line depicts the curve for test data.

The logistic regression model was based on the variables comprising daily milk
yield (md3, md2, and md1), daily rumination time (rd3, rd2, and rd1), the ratio of day-
time to nighttime (rdn3, rdn2, and rdn1), the sum of absolute values of weighted ru-
mination variations (aweid3, aweid2, and aweid1), peak electrical conductivity (ecp3,
ecp2, and ecp1), and six significant variables with the coefficient and standard error of
ecp1 (1.0694 ± 0.3068, p < 0.001), md3 (0.0811 ± 0.0479, p < 0.1), rd2 (−0.0144 ± 0.0034,
p < 0.05), rdn1 (1.8941 ± 0.9172, p < 0.05), aweid3 (0.0117 ± 0.0058, p < 0.05), and aweid1
(0.01168 ± 0.0048, p < 0.05). Moreover, the ecp1 variable (peak electrical conductivity of
milk on d-1) increased by one unit, and the risk of disorders was likely to increase by
2.91 ± 1.36 times (p < 0.001) compared with that in cows without an increasing peak electri-
cal conductivity of milk.

4. Discussion

Identifying cows at a higher risk of health disorders such as clinical mastitis, subclinical
ketosis, lameness, and metritis could be advantageous for farms. This is because timely
actions can prevent and ameliorate the negative effects of these disorders. This, in turn, will
facilitate health management for individual dairy cows and the entire herd in a precision
farming system [26].

Several researchers have explored machine learning algorithms to detect or predict
the onset of several health disorders. However, each study has focused on only one or two
disorders, and the majority of them involved blood samples. Support vector machines have
been employed to detect clinical mastitis in Holstein cows milked with automated milking
systems. An accurate classification rate reached >90% [27], which outperformed the one
obtained in the current study. In their study, Fadul-Pacheco et al. reported a random
forest algorithm with the best performance for predicting clinical mastitis, with a sensitivity
and specificity of 85% and 62%, compared with 68.42% and 98.74%, respectively, in our
study [14].

The somatic cell counts (SCC) and LogSCC have been considered predictors of clinical
mastitis [28]. The participating farms measured the SCC of the entire herd only once a
month, and they likely did not facilitate the detection or prediction of disorders. Thus,
we did not consider the aforementioned variable. Using the five biochemical indicators
of insulin, free fatty acids, plasma beta-hydroxybutyrate, plasma glucose, and insulin-like
growth factor 1, Xu et al., predicted the metabolic status of dairy cows from lactation
week 1 to 7 postpartum via eight machine learning algorithms with random forest and
support vector machine outperforming other algorithms [24]. The invasive nature of blood
sampling limits its applicability in large commercial farms and is generally impractical
for the detection of several disorders in the entire herd. In the current study, we did not
consider any biochemical indicators in the herd monitored by the automatic system or
year-round data.
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Steensels et al., proposed a decision tree algorithm to identify 35 post-calving cows
with disorders (ketosis and/or metritis) with sensor data, including the performance data,
rumination time, cow activity, and body weight [29]. In the current study, 33 cows had
metritis during the entire lactation and not just the 28 days following calving, despite the
higher proportion of detection in early postpartum cows. The first four variables identified
by Steensels et al., were similar to those in this study. Moreover, we introduced three and
two variables related to the rumination time and the electrical conductivity of milk, which
resulted in Rpart outperforming other algorithms.

Morteza et al., clustered different metabotypes of cows in the transition period by
applying four machine learning algorithms after combining their body condition score,
backfat thickness, and 11 blood samples collected weekly to assess the serum concentrations
of metabolites, with the accuracy exceeding 70% for all algorithms [25].

To evaluate metritis treatment, de Oliveira et al., proposed seven machine learning
models with the best performance by a random forest classifier [23]. The milk difference,
temperature, treatment, week postpartum, and vulvovaginal laceration were included in
the model, which were unavailable in the current experiment. Nevertheless, the random
forest classifier was the better model, with a generalization ability and sensitivity, specificity,
accuracy, and precision of 83.33%, 84.62%, 84.21%, and 71.43%, respectively. Warner
et al. [22] adopted the KNN, decision tree, and multilayer perceptron to detect abnormal
behavior in dairy cows (28 cows) with subacute ruminal acidosis. The KNN performed the
best among the three algorithms; in contrast, it displayed the lowest metrics in our study,
probably because of the involved sample and the variables selected in the prediction model.

Shahinfar et al., used naïve Bayes, random forest, and multilayer perceptron to predict
lameness in dairy cows by analyzing four types of production and phenotypic data with
20 subcategories of indicators [19]. They compared three algorithms with linear regression,
and random forest displayed the best performance. In contrast, Rpart overperformed
random forest and naïve Bayes in our study. Our results of logistic regression models were
consistent with those reported by van Hertem et al., for detecting lameness based on the
multivariate continuous sensing of neck activity and rumination, coupled with the yield of
Holstein milking cows on one Israeli farm [30]. Important variables in both studies included
the daily milk yield, the ratio of nighttime to daytime neck activity, and ruminating time
during the nighttime from d-7 to d0. In contrast, we specified four types of disorders, not a
single disorder, which may have affected the performance and generalization ability of the
adopted machine learning algorithms. Similar results were obtained by Cavero et al. [16];
however, we did not achieve the expected results using an artificial neural network for the
detection of health disorders with the analyzed variables as input data.

The early detection of cows at risk of disorders could allow for timely intervention,
thus decreasing their negative effects. Health disorders in dairy cattle can be identified and
predicted using machine learning algorithms by integrating and analyzing data related
to the milk yield, physical activity, and changes in rumination time monitored by several
sensors. However, there is a severe paucity of data on the use of behavior, rumination time,
and productivity for the early prediction or detection of disorders in Chinese intensive
dairy farms. These farms have widely adopted automated systems, which underscores the
potential benefit of using the data as a predictive tool.

Fine-tuning the prediction model by adjusting the contribution of the variables could
improve the predictive performance and maximize the use of data collected on/off the farm
to generate farm-based algorithms based on the farmer’s needs, management mode, and
conditions. This study pioneered the aforementioned idea by exploring machine learning
algorithms to analyze data from cows with disorders monitored by an automatic monitor
system and milking system across their entire lactation in intensive Chinese dairy farms.

The sensitivity of each model was not exceeded by 85%, with 48.15%, the lowest of
the kknn algorithm. Although the specificity reached 77.78%, we considered this metric
as poor. The performance of Rpart still needs improvement, especially for the sensitivity,
which the farm staff are more interested in when the predicting model is applied to practice.



Animals 2022, 12, 1251 13 of 14

In fact, we also conducted artificial neural networks and Bayesian networks to construct a
predictive model, while none of the six measuring criteria exceeded 0.4. With the sample
increased and the algorithm optimized, the model would perform better when considering
the specific period (e.g., the transition period, the first from 1 to 3 weeks after calving, etc.)
and blood or urine samples of subgroups of cows involved. In future work, we will intend to
expand the data dimension to include e.g., biochemical, physiological, environmental, and
farm management, and the algorithms will improve over time using artificial intelligence.
Furthermore, we will attempt to apply the validated technology to a number of farms with
different geographical and environmental settings. An improvement in predicting health
disorders in dairy cows would benefit both humans and animals.

5. Conclusions

We used eight machine learning algorithms for analyzing a dataset of 14 dimensions
regularly produced by the automatic monitoring system and milking system, and milking
systems in intensive Chinese dairy farms. We presented six parameters to assess the
performance metrics of the models, with the Rpart algorithm outperforming others and
indicating its strong generalization ability. Future research should focus on applying
artificial intelligence to transfer the algorithms to management software for accurately and
precisely predicting and detecting disorders in lactating cows and calves. This could be
achieved through the mining of greater reliable features in animals with diseases.
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