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Abstract: Genetic algorithms are a robust method for a solution of wide variety optimization prob-
lems. It explores a big space of design variables in order to find the best solution. From the point
of view of a user, the algorithm requires the encoding of design variables into the form of strings
and the procedure of optimization uses them for optimization. Here, for the structural engineer,
it is crucial to find the form of objective function including the constraints of the task and also to
avoid critical states during the solution of structural responses. This paper presents the use of genetic
algorithm for solving truss structures. The use of genetic algorithm approach is shown on three cases
of truss structures.

Keywords: genetic algorithm; truss structure; bar; FEM; optimization

1. Introduction

The essence of structural optimization is to find the lowest possible “cost” of objective
function in general meaning while meeting the prescribed conditions.

The goal of structural optimization problems is usually to minimize its structural
weight, which is subjected to certain design constraints relating to dimensions, stresses,
point displacements and so on. Contemporary research has been conducted either to
improve the optimization method or to speed up the structural analysis process. With the
advent of computer technology, there has been a development in the field of numerical
structural analysis methods based on the finite element method (FEM) [1–3], but also on
other numerical methods [4,5]. There are many types of optimization problems in structural
engineering, and here we will focus our attention on sizing and topology optimization of
truss structures using genetic algorithm.

Goldberg and Samtani [6] and Rajeev and Krishnamoorthy [7] have applied sizing
optimization to truss structures. Krishnamoorthy et al. [8] used genetic algorithms (GAs)
to optimize the space truss structure within an object-oriented framework. Sivakumar
et al. [9] presented optimization technique using GAs for truss towers. Gero et al. [10] used
GAs for design optimization of 3D steel structures [11–15].

Some studies for the optimization of truss structures consider discrete cross-sectional
areas [16–20]. Tiachacht et al. [21] have used a methodology for identifying and quantifying
damage in two-dimensional and three-dimensional structures based on a combination of a
modified Cornwell indicator and a genetic algorithm. Nobahari et al. [22] have defined an
approach based on the beam element damage index using the concept of a residual force
vector that helps in the quick and reliable prediction of damaged elements. Sadollah [11]

Materials 2021, 14, 715. https://doi.org/10.3390/ma14040715 https://www.mdpi.com/journal/materials

https://www.mdpi.com/journal/materials
https://www.mdpi.com
https://orcid.org/0000-0002-8506-5270
https://orcid.org/0000-0001-9273-6696
https://doi.org/10.3390/ma14040715
https://doi.org/10.3390/ma14040715
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/ma14040715
https://www.mdpi.com/journal/materials
https://www.mdpi.com/1996-1944/14/4/715?type=check_update&version=1


Materials 2021, 14, 715 2 of 14

has introduced a new optimization method, the so-called mine blast algorithm (MBA). The
efficiency of the proposed optimizer was tested by optimizing several beam structures with
discrete variables and comparing its performance to several well-known metaheuristic
algorithms. Garg [23] has described a new hybrid gravitational search algorithm– genetic
algorithm (GSA–GA) process for solving non-linear optimization problems with mixed vari-
ables. The metaheuristic optimization method, or search group algorithm (SGA) applied
in the optimization of beam structures, is able to provide the lightest structures [24–27].
Wang and Ohmori [28] have used an incremental elasto-plastic analysis method to predict
the collapse load factor of lattice structures. The obtained collapse load factor is then
integrated into the beam optimization using a genetic algorithm. Tejani et al. [29] have
introduced a multi-objective adaptive search for symbiotic organisms (MOASOS) and
its two-archives technique for lattice optimization problems. The symbiotic organisms
search (SOS) algorithm considers the symbiotic relationship among various species, such
as mutualism, commensalism, and parasitism, to live in nature.

Kelesoglu [30] has proposed a fuzzy multi-objective method of truss optimization by
means of GA. This method is suitable for designing an optimal system with fuzzy goals
and constraints. The particle swarm optimization with an aging leader and challengers
(ALC-PSO) algorithm, which applies the aging mechanism to particle swarm optimization
(PSO) method and HALC-PSO that transplants harmony search mechanism to ALC-PSO
as a variable constraint handling, has been published by Kaveh and Ghazaan [31]. Meta-
heuristic algorithms are suitable for discrete optimization problems because they do not
require gradients. Jaya algorithms (JAs) [32,33] have been designed to measure and op-
timize truss structures. Jaya algorithms have been proven to be very effective for real
technical problems.

Assimi and Jamali [34] describe a hybrid algorithm coupling genetic programming
and Nelder–Mead for topology and size optimization of trusses with static and dynamic
constraints.

Besides optimization of cross-sectional area of truss structures, topological optimiza-
tion [35–37] can be used. When using it, we can change the size of the cross-section area
of the bars as well as their mutual relationships. In practice, we can design the shape
of the structure with considerable savings in volume and therefore weight. To start the
topological optimization calculation, it is necessary to have a rough body shape design that
will be optimized. It is also necessary to know the boundary conditions such as removing
the necessary degrees of freedom in space, the magnitude and direction of the forces and
moments, and the assignment of material properties. Introducing a change in topology
makes the solution of the task more difficult and raises the issues that are being explored
in graph theory. The objective function of the optimization task is generally multimodal
in nature; therefore, a genetic algorithm can be used to search for an optimum whose
advantage is no need to calculate the gradients of the objective function. A topological bit is
introduced to determine the presence of a bar in the structure. The introduction of the topo-
logical bit during encoding allows for a faster variation of the topology compared to when
only a bar with a zero-cross-section size serves to change the topology. In the optimization,
the constraints for the stresses in the bars as well as the constraints for displacements of
the nodal points of the structure can be used. The program has a built-in pseudo-random
number generator in the genetic algorithm that determines the unequivocal dependence
of the outputs on the input parameters of the task. By analogy with natural selection and
genetics in reproduction, genetic algorithms have been successfully adopted to solve many
scientific and technical problems and have been proven as an effective means of finding
optimal solutions in a large area of problems [38].

2. Genetic Algorithm and the Formulation of Objective Function

Because the principles of GA are well-known, only the necessary basics will be men-
tioned here. The genetic algorithm is a search algorithm based on the principle of natural
selection. It was established by observing the principles governing the development of
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living matter in nature. The first monograph on the genetic algorithm was Holland’s
1975 work [39]. Since then, a great deal of work has been done to develop the method
of the genetic algorithm itself, as well as its application in various fields [40]. Goldberg’s
monograph from 1989 [40] is considered to be the best known of those.

The aim of the genetic algorithm is to create increasingly strong individuals in a
population of individuals. This feature predetermines the algorithm to use problems in
solving optimization, i.e., when we are looking for the best of possible solutions to a given
problem [41,42].

In the genetic algorithm, design variables are encoded using a bit chain, which is an
analogue of chromosomes in biological systems. The genetic algorithm operates in an
iterative mode. Each iterative step consists of one generation of individuals, and within it
the selection of candidates for the solution is made. The set of these candidates is called
the population. In order to find the optimal truss structure, the combination of genetic
algorithm and FEM is used. In the FEM, the behavior of a structure is expressed by a
system of linear equations:

K(a) · uj(a) = Pj(a); (j = 1, 2, . . . , n), (1)

where K is the stiffness matrix of the structure, uj is the vector of nodal displacements, Pj is
the load vector, n is the number of load cases, j is the load state number, and a is the vector
of bar cross-section areas.

From the node displacement vector, the stress in the bar i can be calculated using the
relationship:

σji = diuj; (i = 1, 2, . . . , m; j = 1, 2, . . . , n), (2)

where m is the number of bars in the structure, di is the vector relating to the dependence
of stress on the displacements in the bars, and ujk is the kth component of vector uj.

Let us consider that the stress in the bar i cannot exceed in its absolute value σi and
the kth displacement component magnitude uk. Then, the following relationships apply:

− σi ≤ σji ≤ σi; (i = 1, 2, . . . , m; j = 1, 2, . . . , n), (3)

− uk ≤ ujk ≤ uk; (k = 1, 2, . . . , f ; j = 1, 2, . . . , n). (4)

Considering the limits of absolute value of resulting displacement vector ût in node t,
the following relationship can be written:

ũt ≤ ût; t = 1, 2, . . . , g. (5)

The goal of optimization is to minimize the function:

C(a) = c ∑m
i=1(ai`i) + ∑h

k=1 bk(a), (6)

where c is the cost coefficient per unit volume of structure, bk is the cost per node k, h is the
number of nodes, and `i is the length of the bar i.

The number of nodes h and the number of structural elements m vary during the
optimization process. If we consider by the user-defined lower limit value of the cross-
section of element a, then all elements with a cross-section smaller than a will be excluded
from the structure and similarly, nodes to which no element is connected will be removed.

3. Program Description

The program was created on the basis of genetic algorithm and the FEM [1]. The
program does not have a user-friendly graphical environment; it works in batch mode with
a system of input and output files in ASCII format.

The task of minimizing function C in Equation (6), when the Equations (3)–(5) are
satisfied, is transformed into the task to maximize the objective function V.
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The transformed objective function is:

V = N0 − C −
n
∑

j=1

{
f

∑
k=1

du
jk +

g
∑

t=1
dv

jt +
m
∑

i=1
ds

ji

}
=

N0 −
m
∑

i=1
c(ai`i)−

h
∑

k=1
bk −

n
∑

j=1

{
f

∑
k=1

du
jk +

g
∑

t=1
dv

jt +
m
∑

i=1
ds

ji

}
,

(7)

where N0 is a large positive number to prevent the objective function from obtaining
negative values. The penalty functions for constraint equations are:

du
jk = e

1 −

∣∣∣ujk

∣∣∣
uj

2

,
∣∣∣ujk

∣∣∣ ≤ uj, (8)

dv
jt = e

(
1 −

∣∣ũjt
∣∣

ût

)2

,
∣∣∣ũjk

∣∣∣ ≤ ût, (9)

ds
ji = e

(
1 −

∣∣σji
∣∣

σi

)2

,
∣∣σji
∣∣ ≤ σi (10)

where e is a chosen constant. If Equations (4)–(6) are violated, i.e., if at least one of the
following inequalities applies: ∣∣∣ujk

∣∣∣ > uj, (11)∣∣ũjt
∣∣ > ût, (12)∣∣σji
∣∣ > σi. (13)

Then, the penalty is done directly by substituting the value V = 0 and terminating the
evaluation part of the program. This achieves under considering the appropriate N0 that
the function V reaches a minimum value.

The correct choice of coefficients occurring in the objective function is very important.
As a rule, for example, the value of the penalty functions should be lower than the smallest
possible change in value associated with the change in volume.

The flow chart of the optimization process is shown in Figure 1. The input data of the
task contain a complete description of the optimized truss structure and the control param-
eters of the optimization program (GA) itself. Subsequently, the optimization variables are
encoded in binary form, and the entire population of first-generation structures is created
based on this. This first population is formed by modifying the encoded variables of a
given structure using a random number generator. The next step is the transformation of
the data to enter the analysis using FEM and the solution of all structures in the generation
using FEM. All future generations are created by a genetic algorithm. The subsequent
decision block decides on the continuation of the optimization process, or the completion
of the solution of the problem. The optimization process itself using GA also includes the
evaluation of the objective function of the subtask. If during the finite element analysis,
the stiffness matrix of the structure is singular, the finite element analysis is completed. In
this case, the structure is considered problematic, and it is assigned an objective function
value that makes it less suitable for further “reproduction” in the GA process. The genetic
algorithm contains known steps: selection of members of a given generation for further re-
production (selection), crossover, and random mutations of certain bits in the chromosome
representing the description of a certain structure (mutation).
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Figure 1. The flow chart of the optimization process (GA—genetic algorithm, FEA—finite element 
analysis). 

  

Figure 1. The flow chart of the optimization process (GA—genetic algorithm, FEA—finite ele-
ment analysis).

Forms of implementation of these procedures can be various and are sufficiently
described in the literature. In the coding process, a bit is assigned to each bar in the chro-
mosome, allowing its inclusion or exclusion from the structure. In the end, in addition to
size optimization, optimization also involves optimizing the topology of the bar structure.

The input data are stored in three files. One contains a complete description of the
initial optimized structure in the form normally occurring in the FEM. The second file
contains objective function coefficients and constraints for individual bars. The last of the
input files contains control parameters for the subroutine of the genetic algorithm itself.
The output files consist of data output from the FEM program for the most successful
individual of the last generation, the course of the objective function values, and the size of
the structure volumes in each generation.

Each design variable is described by a string of bits that represents the cross-sectional
size of the bars. In addition, a topological bit is used for each variable in the program to
speed up the search for the optimum by changing the topology. A bar is excluded from the
structure if the size of its cross-section is zero, or if it is lower than the specified limit size,
or if the topological bit is zero.

The program allows us to restart the task by means of rebooting and then to use the
best solution attained so far. In addition to the three already mentioned classical steps of the



Materials 2021, 14, 715 6 of 14

genetic algorithm, the program also incorporates a strategy to preserve the best individuals
of the population ensuring that the best solution is transferred to the next generation.

4. Examples of Truss Structure Optimization

In the following three examples, truss structure optimization will be shown.
Example I.
In Table 1, the coordinates of the point of the truss structure (Figure 2) are shown.

Table 1. Coordinates of the nodes.

Node Number 1 2 3 4 5 6 7 8 9 10

Coordinates
of nodes

x
(cm) −100.0 100.0 100.0 −100.0 −50.0 50.0 50.0 −50.0 −25.0 25.0

y
(cm) 0.0 0.0 0.0 0.0 100.0 100.0 100.0 100.0 200.0 200.0

z
(cm) −100.0 −100.0 100.0 100.0 −50.0 −50.0 50.0 50.0 0.0 0.0
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Figure 2. 25 bar structure—initial configuration. 

  

Figure 2. 25 bar structure—initial configuration.

In the first case, the 25 bar structure shown in Figure 2 loaded by self-weight is
optimized. No constraints relating node displacements were applied here. The maximum
allowed stress in the bar is 90 MPa. The load force (beside self-weight) is Py = −28 kN
and acts in node 9. The other parameters necessary for the solution were Young modulus
E = 2.058 × 105 MPa, N0 = 200,000, c = 1, e = 10, a = 0.11, bk = 0 for k = 1, . . . , 10.
Five bits were used to parameterize one variable and the maximum size of cross-section
was 9.1 cm2. The population sizes were 20 and 40 individuals, respectively.

In Figure 3, there is a graphical representation of volume change during optimization
for the generation size of the above-mentioned populations.
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Figure 3. Changes of volume of bars during the optimization of a 25 bar structure (for 20 individuals
and 40 individuals, respectively).

The results of the optimization are given in Table 2, as well as in Figure 4.

Table 2. Stresses and cross-sectional areas in bars of an initial 25 bar structure, state after optimization.

Bar Number 1 2 3 4 5 6 7 8 9 10 11 12 13

Cross-section area of
bar (cm2)

20 individuals 1.43 1.88 1.43 - 1.43 - 1.43 1.88 1.43 1.43 - 1.43 -

40 individuals 1.43 1.43 1.43 1.43 1.43 1.43 - - 1.43 - 1.43 1.43 -

Stress (MPa)
20 individuals 42 18 60 - −37 - −2 −23 −37 −15 - −5 -

40 individuals 11 12 31 56 −64 25 - - −58 - 10 −33 -

Bar Number 14 15 16 17 18 19 20 21 22 23 24 25

Cross-section area of
bar (cm2)

20 individuals 1.43 - 1.43 2.08 1.88 1.43 4.79 - 4.79 2.86 1.43 1.88

40 individuals 1.43 1.43 1.43 1.88 - 1.43 1.43 1.43 1.43 1.43 1.43 1.43

Stress (MPa)
20 individuals −17 - −90 −43 −54 5 −45 - 0 −12 34 −25

40 individuals −10 −28 −65 −78 −60 - −43 4 −3 −25 35 −39
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Figure 4. Optimized truss structure (a) for 20 individuals, (b) for 40 individuals. 

  

Figure 4. Optimized truss structure (a) for 20 individuals, (b) for 40 individuals.

Example II.
In the second case, the truss structure consisting of 29 bars was optimized considering

the self-weight of the structure. There were no constraints on the displacement of the
nodal points. The maximum allowable stress in the bar was 60 MPa. A load force (beside
self-weight) Py = −65 kN was applied at node 9 (Figure 5). Other parameters needed for
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solution were E = 2.058 × 105 MPa, N0 = 4,000,000, c = 1, e = 10, a = 0.01, bk = 0 for
k = 1, . . . , 11. Five bits were used to parameterize one variable and the maximum bar
cross-section was 15.3 cm2. In this case, the solution was computed in three ways:

(a) population size was 12 with 20 generations;
(b) population size was 8 with 30 generations;
(c) population size was 15 with 40 generations.
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Figure 5. 29 bar structure—initial configuration. 

  

Figure 5. 29 bar structure—initial configuration.

In Table 3, the coordinates of the point of the truss structure are shown.

Table 3. Coordinates of the nodes.

Node Number 1 2 3 4 5 6 7 8 9 10 11

Coordinates
of nodes

x
(cm) −200.0 −125.0 −50.0 50.0 125.0 200.0 150.0 75.0 0.0 −75.0 −150.0

y
(cm) 0.0 0.0 0.0 0.0 0.0 0.0 80.0 160.0 240.0 160.0 80.0

In Figure 6, there is a graphical representation of volume change during optimization
for individual cases.
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Figure 6. Changes of the volume of bars during the optimization of the 29 bar structure (a—12
individuals within 20 generations; b—8 individuals within 30 generations; c—15 individuals within
40 generations).
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The results of the optimization are given in Table 4. Graphical outputs displaying
individual cases are shown in Figures 7–9.

Table 4. Stresses and cross-sectional areas in bars of an initial 29 bar structure, state after optimization.

Bar Number 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Stress (MPa)

a 15.2 19.4 −0.01 −30.2 −30.7 −51.6 −51.1 −46 −24.6 −16.2 −6.69

b 4.2 −0.58 −1.42 −0.15 −1.56 −24.6 −32.3 −53.8 −36.8 −50.2 −24.6 −22.6 −4.43 −6.95

c 54 −24.2 −29.9 −58.6 45.4 −29.2 −29.7 −51.1 −24.6 2.01 −29.1

Cross-section area of
bar (cm2)

a 5.54 4.79 7.6 12.7 12.7 7.6 5.54 6.55 15.6 9.38 3.52

b 4.79 9.38 10.6 1.43 3.52 15.6 12.7 7.6 10.6 6.55 15.6 1.43 3.52 3.52

c 1.43 9.38 7.6 6.55 2.46 6.55 12.7 6.55 15.6 3.52 9.38

Bar Number 16 17 18 19 20 21 22 23 24 25 26 27 28 29

Stress (MPa)

a 1.27 12.2 −5.47 1.06 −3.35 11.8 0.01 16.2 0.73 −8.5 −0.02 4.19

b −13.2 4.88 −0.31 1.27 16.8 26 −4.24 4.24

c −35.6 14.6 21.1 −24.5 −25 51.6 59.6 −44.4

Cross-section area of
bar (cm2)

a 9.38 1.43 3.52 3.52 1.43 4.79 6.55 7.6 6.55 4.79 2.46 4.79

b 5.54 6.55 3.52 1.43 2.56 3.52 1.43 9.38

c 2.46 4.79 4.79 9.38 3.52 9.38 1.43 6.55
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Figure 7. Truss structure after optimization—12 individuals in population (case a).
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Figure 8. Truss structure after optimization—8 individuals in population (case b).
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Figure 9. Truss structure after optimization—15 individuals in population (case c).

Example III.
In this case, the structure on Figure 10 consisted of 15 bars, considering the load from

the weight of the bars as well as several load cases is optimized. The specific weight of the
material was γ = 7.8 × 104 Nm−3. The design was optimized sequentially for three load
cases; the third case consisted of two forces. The forces for individual cases were:

1. P3
y = −150 kN;

2. P4
y = −200 kN;

3. (a) P3
y = −150 kN; (b) P4

y = −200 kN.
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Figure 10. 15 bar structure—initial configuration. 

  

Figure 10. 15 bar structure—initial configuration.

Superscript denotes the node number where the force acts. Other parameters needed
for the solution are E = 2.1 × 105 MPa, N0 = 80,000,000, c = 1, e = 10, a = 0.51, bk = 0
for k = 1, . . . , 7. Seven bits were used for parameterization of one variable, and the
maximum bar cross-section could be 63.5 cm2. The population consisted of 30 individuals.
The maximum allowed stress was 50 MPa.

In Table 5, the coordinates of the point of the truss structure are shown.

Table 5. Coordinates of the nodes.

No. Node 1 2 3 4 5 6 7

coordinates
of nodes

x
(cm) 0.0 0.0 120.0 60.0 240.0 180.0 240.0

y
(cm) 0.0 120.0 0.0 120.0 0.0 120.0 120.0
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The cross-section areas as well as the stresses in the individual bars are shown in
Table 6. Figures 11–13 illustrate the optimized structures as they were computed for the
individual load cases. The course of the change in the volume of the structure is shown in
Figure 14.

Table 6. Stresses and cross-sectional areas in bars of an initial 15 bar structure, state after optimization.

Bar Number 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Stress (MPa)

1 - - - −49.6 - - −47 - 49.4 49.4 - 0 - - −49.6

2 - - - −49.4 - - - −48.8 - - - - - - -

3a - - - −24.8 - −10.1 −42.3 −27.5 48.7 47.2 - 10.1 - - −47.3

3b - - - −49.5 - 48.3 −22.8 −49.7 −21.3 25.4 - −48.3 - - −25.6

Cross-section
area of bar (cm2)

1 - - - 17 - - 16 - 17 17 - 1 - - 17

2 - - - 34 - - - 18.5 - - - - - - -

3 - - - 34 - 6.5 16 5 19 16 - 1 - - 16
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Figure 11. Initial 15 bar structure optimized for load case 1. 

  

Figure 11. Initial 15 bar structure optimized for load case 1.
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Figure 13. Initial 15 bar structure optimized for load case 3.
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On the basis of Table 3 and the fact that for the load case No. 1 the resulting structure
is statically determinate, it can be stated that bar number 7 should preferably have a cross-
sectional area of 15.5 cm2.The use of this cross-section would achieve the maximum possible
stress in the structure at the prescribed set of cross-sections. The program, therefore, came
close to the optimum value. The calculation could be continued by a simple restart, or
it could continue on a set of bars that have a non-zero cross-sectional size based on the
previous calculation.

5. Conclusions

Genetic algorithms are an effective tool for the optimization of nonlinear tasks. Its
advantage in topological optimization of truss structures is that it is not necessary to
calculate gradients of objective and constraint functions. This method is able to search
a large space of design variables and is not dependent on the input parameters of the
task. Of course, the generated structures also include cases where the structure has all
bars with a zero cross-section, individual bars form a mechanism, parts of the structure
are not interconnected, etc. However, even after excluding such incorrect cases, the set
of potential solutions is very large. The solution resulting from the program cannot be
considered a global optimum in a given space because, given the size of the space, it is
virtually impossible to search it entirely. However, the program can serve as one of the
means of optimizing the truss or frame structures.

The benefit of the article lies in the combination of topological and size optimization,
while for each bar an additional bit is introduced, which decides on the presence, of the bar
in structure independent of cross-section area proposed by optimization program. Thus,
the bar can be removed from the structure by making its cross-section area very small, or
by switching the above-mentioned bit. This speeds up the topological optimization process.
In the optimization process, the limiting parameters can be considered allowable stresses,
allowable displacement of the nodes in the direction of coordinate axes, resulting in node
displacements. In addition, because there are costs associated with joining bars in the truss,
these costs can potentially be included in the target function. Included can be the costs of
individual bars connected with the unit volume cost of specific material.

In the first case, a spatial bar system with 25 bars was solved, loaded by its own weight
and force specified in one node. In the next two problems, planar bar structures are solved.
In the first of these, it is a 29 member structure loaded again by its own weight and force in
one node. In the third case, it is a structure with 15 bars loaded by its own weight and three
load cases. In all three cases, the number of bars is given for the initial state of the structure
before optimization. As a result, it can be seen that, in all three cases, optimization was
performed and a more favorable state in terms of weight and stress ratios was achieved.

Another goal of the authors was to develop a user-friendly graphical environment
for input and output data. We also wanted to use the system developed by us to optimize
specific tasks from practice.

Author Contributions: Conceptualization, J.B.; Data curation, I.D.; Formal analysis, I.D., P.F., J.B., P.T.
and S.J.; Investigation, J.Ž.; Methodology, I.D., P.F., J.B. and S.J.; Project administration, P.F., P.T. and



Materials 2021, 14, 715 13 of 14

J.Ž.; Validation, J.Ž.; Visualization, B.S.; Writing—original draft, I.D., B.S. and S.J.; Writing —review &
editing, J.B. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author.

Acknowledgments: This work was supported by the grants APVV-17-0258, 027TUKE-4/2020, KEGA
041TUKE-4/2019, VEGA 1/0290/18, VEGA 1/0500/20 and Stimules for research and development č.
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