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Diverse commensal populations are now regarded as key to physiological homeostasis

and protection against disease. Although bacteria are the most abundant component

of microbiomes, and the most intensively studied, the microbiome also consists of viral,

fungal, archael, and protozoan communities, about which comparatively little is known.

Host-defense peptides (HDPs), originally described as antimicrobial, now have renewed

significance as curators of the pervasivemicrobial loads required tomaintain homeostasis

and manage microbiome diversity. Harnessing HDP biology to transition away from non-

selective, antibiotic-mediated treatments for clearance of microbes is a new paradigm,

particularly in veterinary medicine. One family of evolutionarily conserved HDPs, β-

defensins which are produced in diverse combinations by epithelial and immune cell

populations, are multifunctional cationic peptides which manage the cross-talk between

host and microbes and maintain a healthy yet dynamic equilibrium across mucosal

systems. They are therefore key gatekeepers to the oral, respiratory, reproductive

and enteric tissues, preventing pathogen-associated inflammation and disease and

maintaining physiological normality. Expansions in the number of genes encoding these

natural antibiotics have been described in the genomes of some species, the functional

significance of which has only recently being appreciated. β-defensin expression has

been documented pre-birth and disruptions in their regulation may play a role in

maladaptive neonatal immune programming, thereby contributing to subsequent disease

susceptibility. Here we review recent evidence supporting a critical role for β-defensins

as farmers of the pervasive and complex prokaryotic ecosystems that occupy all body

surfaces and cavities. We also share some new perspectives on the role of β-defensins as

sensors of homeostasis and the immune vanguard particularly at sites of immunological

privilege where inflammation is attenuated.
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INTRODUCTION

Defensins are small cationic peptides, present in a wide range of species across the animal and
plant kingdoms. Characterized by a conserved six cysteine signature, three sub-classes of defensins
have been identified as α, β, and θ (1). α-defensins arose from β-defensins in some mammals
(2) and the bridging pattern between the three pairs of intramolecular disulphide bonds made
by the six cysteines structurally separates both classes (3, 4). A high number of functional α-
defensins have been described in the equine genome (3, 5) which, surprisingly given the short
evolutionary distance were not retained in most artiodactyls (6), including cattle (7). Similarly,

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2018.03072
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2018.03072&domain=pdf&date_stamp=2019-01-25
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles
https://creativecommons.org/licenses/by/4.0/
mailto:kieran.meade@teagasc.ie
https://doi.org/10.3389/fimmu.2018.03072
https://www.frontiersin.org/articles/10.3389/fimmu.2018.03072/full
http://loop.frontiersin.org/people/36539/overview
http://loop.frontiersin.org/people/179464/overview


Meade and O’Farrelly Defensins as Farmers

only β-defensin genes have been found in birds (8), and β-
defensin genes have been identified in all the vertebrate genomes
so far sequenced indicating the origin of this gene family very
early in mammalian evolution (9). θ-defensins are a recently
acquired, primate-specific class of peptide, which are formed
by the merging of α and β classes of defensins (10). However,
β-defensins have been most extensively studied to date. In
the mammalian lineage, multiple gene duplication events and
subsequent sequence diversification has resulted in a large family
of β-defensin peptides with diverse amino acid sequence and
virtually identical tertiary structures based on these characteristic
intramolecular disulphide bonds (11). These peptides are the
most numerous among vertebrates and are the subject of this
review.

β-defensins are usually translated from characteristic two
exon gene structures, the first of which encodes a pre-pro-
peptide while the mature peptide is encoded by the second exon,
containing the six cysteinemotif (12). Recent sequencing ofmany
more vertebrate genomes has facilitated a comparative genomics
approach to characterizing the β-defensin gene repertoire, and
species-specific clades have been identified. Current estimates
of the number of β-defensin genes vary from 14 in chicken
to 29 in pigs, 38 in dog, 33 in chimp, and 48 in mice and
humans (8, 13–15), although final numbers will be subject to
change as more genomes are correctly annotated and copy
number variation (CNV) is accurately recorded. Comparative
immunological analyses have also identified specific amino acid
sites under positive selection which is likely to drive additional
functional divergence between species. The absence of the classic
α-helical region from all bovine β-defensins suggests a divergence
in the mechanisms of action which may have contributed to the
expansion identified in the ruminant clade (16). The implications
of the apparent loss of α-defensins from the genomes of some
livestock species and the expansion of the β-defensin family in
a species-specific manner are only now becoming apparent, and
could potentially be harnessed to improve animal health (17).

From a functional perspective, characterization of β-defensin
genes and peptides has been essentially limited to model
organisms including mice, rats, and humans. The specific
genomic expansions detected in non-model organism species,
identified through advances in technology combined with
recently improved genome assemblies, have been described but
not well characterized to date. Functional characterization in
non-model species may shed significant light on the selection
pressures that drove the dynamic changes in gene content
between species and highlight the multifunctional promise that
β-defensins may hold for the development of novel methods to
control infection. Here, we build a case here for an intimate
relationship between the β-defensin repertoire and microfloral
diversity across the mucosal surfaces of the body. Given
the constant requirement for appropriate cultivation of the
microbiome, and the prevention of inflammation-associated
pathology, it is likely that the host defense peptide arsenal in
general, and the repertoire of β-defensin peptides in particular
represent useful tools with which to maintain health and reduce
infectious disease burden in livestock species.

ANTIMICROBIAL MEETS
IMMUNOMODULATION IN HOST DEFENSE

β-defensins were traditionally viewed as exclusively antimicrobial
molecules, as their induction in response to diverse bacterial,
viral, parasitic and fungal infections was widely reported (18–
20). As small cationic peptides, β-defensins are preferentially
attracted to the negatively charged outer membranes of bacteria,
with reported efficacy against Gram positive and Gram negative
bacteria, fungi and enveloped viruses (21). Antimicrobial action
is mediated via several mechanisms, including aggregation, pore
formation, interference with cell wall synthesis, and prokaryotic
membrane depolarization (22). The amphipathic nature of
defensins enables them to insert into the phospholipidmembrane
of pathogens thereby destroying the integrity of the cell wall (10).
Whereas, many in vitro studies have confirmed an antimicrobial
role of several defensins, only a limited number of studies have
verified their role in defense in vivo. Murine defensin 1 (DEFb1)
Defb1-knock out mice showed delayed bacterial clearance from
the lung (23) and increased Staphylococcal infection in the
bladder (24). Expression of porcine β-defensin 1 (pBD1), an
ortholog of human β-defensin 2, given at the time of challenge
conferred protection against Bordetella pertussis in newborn
piglets (25).

An interesting insight, resulting from the study of germ-
free mice was the production of β-defensin precursors in the
absence of infection (26). The concept of a germ-free animal was
recognized more than a century ago by Louis Pasteur, although
he also had the foresight to predict that bacteria-free existence is
impossible (27). Generation of truly axenic mice requires that the
pups remain sterile in the uterus and given what we now know
about microbiotic priming in utero (28), these animals are not
likely to be sterile.

As additional functions for β-defensins emerged (29), a
broader interpretation of these molecules was adopted, leading
to the term host defense peptide (HDP) (30, 31). In studies
using embryonic kidney cells engineered to express various
TLRs, human β-defensin-3 (hBD3) mediated activation of the
transcription factor NFκB, depended on the expression of both
TLR1 and TLR2 (32) demonstrating that TLR signaling is
not restricted to recognition of microbial molecular patterns
but also can be initiated by endogenous defensin peptides
(33). β-defensins also serve to link the innate and adaptive
immune responses—hBD3 can rapidly enter TLR4-stimulated
macrophages and dampen the expression of pro-inflammatory
genes (34). They also induce expression of the costimulatory
molecules on monocytes and myeloid dendritic cells in a
TLR-dependent manner by acting as chemoattractants for T-
lymphocytes and immature dendritic cells (35). It seems that over
the course of evolution, most β-defensins studied have acquired
additional roles (a process known as neofunctionalisation) while
retaining their original defense role (14). It is now becoming
clear that antimicrobial and immunomodulatory functions of β-
defensin peptides are not mutually exclusive and it is therefore
logical not to compartmentalize their functions in either or, but to
view their multifunctionality as an evolutionary work in progress,
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as critical elements with several roles in the complex function of
defense against disease. Importantly, it is their multimodal action
(Table 1) which has enabled β-defensins to retain their potency
against infectious agents throughout the course of evolution (66).
It is also their ubiquity of expression across mucosal surfaces
that implicate them as fundamental players and sentinels of
homeostasis and health.

FARMERS OF THE MICROBIOME

The numbers of microorganisms across the entire exposed
mammalian mucosal surface outnumbers the eukaryotic cell
number of the host by orders of magnitude, indicating that
constant monitoring, and management of the microfloral
diversity and flux is required to prevent systemic colonization
and pathology. However, microbial infections are actually the
exception in the generally harmonious coexistence of animals
with immense numbers of non-pathogenic microorganisms (67).
This harmony exists due to many mechanisms including:

1. Secretion of mucus from cells lining the mucosa which reduce
direct contact between exogenous antigens, particularly from
potential pathogens;

2. Secretion of glycosylated antibodies known as
Immunoglobulin A (IgA) found in colostrum and absorbed
across the neonatal gut in a brief time after birth and

3. Production of HDPs (68), including β-defensins,
predominantly at epithelial surfaces. Commensal bacteria that
make it across the epithelium are usually phagocytosed by
macrophages within hours but some studies have shown that
they can reside within dendritic cells (DCs) for several days
(69).

Analysis of the microbiome complexities across tissues and
between divergent species is beyond the scope of this review.
Instead, we focus on evidence underpinning a role for β-
defensins in modulating the host’s cross-talk with commensals
and how changes in their expression contribute to disease. All
mammalian neonates share a common trajectory of immediate
exposure to an abundance of microbes in the nutrient
rich environment after birth, resulting in colonization across
all mucosal surfaces. Although, age-related changes in the
development of the microbiome have not been well defined in
livestock species, data from humans and mice shows that the
early neonatal stages are characterized by high compositional
changes which ultimately settles to a core characteristic
microbiome (70). Extensive inter-individual variation is also
reported, which we contend would likely contribute to significant
variation in phenotypic performance across traits in livestock.
Whereas, the principal focus to date has been on the intestinal
microbiome, commensal populations of microbes are found at
all mucosal sites, as well as on the skin. It is now becoming clear
that the microbiome precludes pathogens by both inter-species
microbial competition and host immune stimulation (71). It is
our contention that evolutionarily conserved, multifunctional β-
defensins hold the balance of power in farming the microbiome,
thereby regulating the host cross-talk with prokaryotes and

determining the success with which their eukaryotic subjects
can defend themselves against opportunistic disease-causing
pathogens.

The Embryome and Immunoeducation
For a neonatal eukaryote to emerge immunologically naive into
the world would be a risky evolutionary strategy, particularly
for livestock where animal densities, and bacterial loads can be
high (72). Whereas, the sterile-at-birth hypothesis was accepted
for years without refute, emerging evidence from humans and
murine studies now indicate that microbial education of the
neonatal immune system begins pre-birth via establishment of
commensal microbial populations in utero (28). Their source,
the complexities of their transmission to the uterus, and the
mechanisms that regulate their proliferation within the nutrient
rich environment of the neonate have yet to be established. In
humans, bacteria derived from the maternal intestine have been
detected in umbilical cord blood, amniotic fluid, meconium, and
fetal membranes with no evidence of infection or inflammation
(73). Additionally, a recent study in cattle has even postulated
that these commensals could be derived from blood (74). It is
proposed that this pre-natal introduction to microbial ligands
(referred to as immuno-education) is critical for adaptive priming
of the immune system and now forms the cornerstone of the
Developmental Programming and Fetal Onset of Adult Disease
(FOAD) hypothesis (75). This hypothesis holds that a lack of
appropriate immuno-education early in childhood may result
in dysregulated immune responses and the development of
disease in later life. The critical implications of these findings for
livestock rearing have yet to be seriously considered.

The environment during pregnancy is considered to be one of
immunological privilege, where the introduction of some foreign
antigens of paternal origin are tolerated without eliciting an
inflammatory immune response (76). Immune privilege is not
simply the absence of professional immune cells, but involves
immune and non-immune cells acting synergistically to create
a unique tolerogenic environment. During normal pregnancy,
the fetus grows, and develops in such an environment, while,
importantly, the uterus and maternal-fetal interface still retain
the intrinsic capacity to respond promptly and efficiently to
immunological challenge. Thought to represent an evolutionary
strategy to prevent a hyper-inflammatory response immediately
after birth, the immune system of the neonate exists in a
state of inflammatory anergy. A pre-partum environment of
immunological privilege coupled with inflammatory anergy and
an immature adaptive immune system immediately post-partum
requires a potent innate immune system for protection against
inflammation and disease. We advocate that this need is met
by the expression of multifunctional suite of HDPs, including
β-defensins.

Umbilical vein endothelial cells produce DEFB1, DEFB4,
and TAP (77) and additional β-defensin gene expression has
been reported in bovine embryos themselves - with expression
of DEFB103B at the 8-cell stage and DEFB123 at the 16-cell
stage (78). Originally, it was hypothesized that expression of β-
defensins in the “sterile” environment of the embryo indicated
that these genesmay play a role in development. However, in light
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TABLE 1 | Catalog of distinct effector mechanisms documented for β-defensin host defense peptides.

No Mode of action Details Net effect Relevance References*

1 Cell growth and tight junction

formation

Cell cycle arrest and angiogenesis Homeostatic but promotion of

tumor growth also documented

Wound healing

Cancer treatments

(36–41)

Sequester lipids to prevent bacterial

cell wall biosynthesis and

interference with electron transport

Reduced pathogen proliferation

and carriage.

Antibacterial applications (42, 43)

Binding to viral glycoproteins Prevents cellular entry

Reduced viral replication

Antiviral applications (44, 45)

Binding to fungi - Candida albicans Yeast surface proteins required

for anti-fungal activity

Antifungal applications (46)

2 Direct binding DNA uptake by host cells hBD3 increases the cellular

uptake of E. coli and self-DNA

Immunoeducation

Vaccine applications

(47, 48)

Binding sperm in epididymis Reduced sperm aggregation and

facilitates movement.

Prevents immunorecognition in

female tract by preventing

binding of anti-sperm antibodies

Increased sperm binding to

oviductal epithelium

Treatments for fertility

Potential utility as

contraceptives

(49–52)

3 Pore formation, calcium and

potassium channels and cell

depolarization

Relevant to multiple classes of

pathogens including parasites -

Trypanosoma cruzi and Plasmodia

Increased permeability of

mycobacterial cell envelope.

HBD2 opens calcium activated

potassium channels

Antimicrobial applications

Calcium signaling relevant

to sperm function

(53–57)

4 Induces release of cytotoxic

granules, histamine and

prostaglandin from host cells

Degranulation of Mast cells and

enhancement of apoptosis

Pathogen destruction Allergy

Homeostasis

(58, 59)

5 Complement activation Prevents fibrinolysis HBD2 inhibits classical

complement pathway

Anti-inflammatory

applications

(60)

6 Lipopolysaccharide (LPS) binding mBD1 blocks binding of LPS to

LPS binding protein

Sequesters LPS to control action

of inflammation

Anti-inflammatory

applications

(61, 62)

7 Pathogen recognition receptor

ligation

TLRs and NOD2/CARD15 Immune activation Vaccine design (32, 33, 63)

8 Regulation of gene expression Prokaryotic cells Inhibition of nucleic acid

synthesis

Reduced expression of genes

involved in biofilm production

Antimicrobial including

anti-biofilm for medical

devices

(55)

Eukaryotic cells Enters macrophages to reduce -

gene expression of cytokines

including IL-1B and IL-17

Anti-inflammatory generally

but pro-inflammatory effects

have also been documented

(34, 61, 64)

9 Chemotaxis Immature memory T cells,

monocytes, DCs, Neutrophils

Immunoprofiling – particularly at

mucosal surfaces

Homeostasis (61, 65)

10 Cell maturation and TH1

polarization

T cells and DC cells Maturation of cells,

Immunoeducation

Vaccine design (33, 35)

*Reference list is not exhaustive - where multiple studies have documented the same effector mechanism, sample references have been included.

of the evidence supporting the FOAD hypothesis, it is plausible
that embryonic expression of β-defensins may play an important
role in the regulation of the maternally-derived microbiome
during development. β-defensin expression has also been
documented during embryo development in sheep (79), where
curiously expression reached a maximum immediately before

birth and did not continue to rise into the immediate post-natal
period when immune challenge is likely to be highest. Although
a restricted number of β-defensin genes have been discovered in
the chicken lineage, in ovo developmental changes in expression
of these genes has also been reported (80). In poultry, it is
already known that some bacteria can traverse the shell (81), so
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there is no reason to think that some commensals cannot do
the same. It is also possible that the repertoire of β-defensins
induced by the maternally derived prenatal commensals
differ from the suite induced postnatally by environmental
microbes, adding another intriguing layer to the protective
functions and potential functional complementarity of these
molecules.

Whereas, low level constitutive expression is associated
with the regulation of commensal bacterial growth, elevated
expression may signify the presence of pathogens. The human
ortholog of the bovine gene shown earlier to be expressed in the
embryo (DEFB103), was increased in inflamed fetal membranes
(82), indicating a protective role during embryonic development.
Similarly, elevated hBD2 at the time of amniocentesis was
positively associated with increased likelihood of preterm birth
(83). Human papillomavirus has also been shown to upregulate
β-defensin expression by amniotic epithelial cells (84), hinting
at an integral ubiquitous protective role for these molecules
during pregnancy. In addition to the prenatal microbiome, a
prokaryotic “top up” occurs via inoculation from the birth
canal during the birth process. Interestingly, where this does
not occur, as in cesarean sections, detrimental changes to
health can result (85). Although not common in livestock,
cesarean section rates are increasing in cattle, some of which are
associated with poorer clinical outcomes, especially under field
conditions (86).

Immediately after birth, the neonate is coated with vernix
caseosa, a creamy biofilm which develops on the skin of the
fetus toward the end of pregnancy (87). Although not studied
in livestock species, the vernix in humans includes multiple
HDPs including defensins (88), which facilitates extra-uterine
adaptation of skin. Unlike with humans, most mammals not only
eat the fetal membranes but also extensively lick their offspring
after birth which possibly spreads the protective effect of the
vervix across the newly exposed neonate. Relevantly, artificially
reared calves are often removed from their dam early post-
partum and thereby forego these potentially protective actions
but the consequences for their developing immunity has not been
previously considered.

Additional microbes are obtained from the udder or from
food, predominantly milk in the early post-natal period (see
mammary microbiome later). β-defensin-2 (HBD2) is expressed
in human breast milk and was found to be significantly higher
in colostrum samples (89). The same study showed that the
recombinant BD2 peptide was effective against both Salmonella
and E. coli bacterial species. A core microbiome has also been
defined in bovine colostrum, and differences in populations
documented in milk between primiparous and multiparous cows
(90). This finding suggests that calves born to multiparous cows
may derive a different starter colonization culture which could
differentially affect both the development of their intestinal
microbiome, their β-defensin expression profile and potentially
their subsequent disease susceptibility (91).

Oral Microbiome
The neonatal oral cavity is the first point of contact with
dietary-derived antigens and the initial colonization cultures are

milk derived. In contrast to livestock species, the human oral
microbiome has been defined (92). One proteomic analysis has
identified over 3,700 human and 2,000 microbial proteins in
human saliva samples (93). With now over 1,000 bacterial species
identified thus far, the composition and activity of this ecosystem
is thought to have enormous relevance to oral health and disease
(94). β-defensins have been shown to be extensively expressed
in the oral cavity across multiple species. In humans, HDPs are
extensively produced by epithelial cells lining the oral cavity, and
are referred to as guardians of the oral cavity (95). Expression of
β-defensin 1 and 2 has also been documented in biopsies taken
from the salivary gland in humans (96). In rats, orthologous
genes (RBD-1 and −2) were localized to the acinar and striated
duct cells of the major salivary glands, and expression was also
shown to be responsive to bacterial endotoxin, LPS (97).

Saliva is key to the maintenance of homeostasis within the
oral cavity, and cattle produce over 100 L per day (98). The fact
that the majority of livestock do not develop digestive illness
routinely in such a high antigen environment, especially in the
context of intensive farming, shows how robust oral defense
mechanisms must be. Given the studies in humans referred to
above, it is likely that the salivary proteins have an enormous role
to play in oral and intestinal homeostasis. A recent analysis using
three different approaches identified 402 salivary proteins and
45 N-linked glycoproteins in bovine saliva, including multiple
HDPs (99). In addition, as a direct result of the licking and
suckling processes betweenmother and calf under natural rearing
conditions, this extensive salivary proteome will have important
implications for neonatal health as well.

A significant proportion of young calves are artificially reared
on milk substitutes or on waste milk, often from mastitic
cows whose milk is not suitable for human consumption. Such
waste milk is known to contain high levels of pathogenic
bacteria, including antibiotic-resistant E. coli, although studies
have claimed that its use as a feed for calves do not affect health
(diarrhea) or production parameters (100). However, the impact
on the microbiome and on immunity in the GI tract was not
examined.

Respiratory Tract
Inhalation is a major route of disease transmission in human
and livestock populations and the lung microbiome is now
well-characterized both in health and disease (101, 102). The
respiratory microbiome is of critical importance in livestock
species as respiratory disease caused by infection is a major
cause of losses, compromised animal welfare and morbidity.
Pneumonia is a major respiratory disease caused by bacteria,
and as a result, a particular focus has been applied to
characterizing the upper respiratory tract in respiratory disease
across multiple livestock species (103–105). Stress induced
changes (e.g., transport) in the nasopharyngeal microbiota
has also been implicated as a contributory factor to disease
susceptibility (106, 107).

Tracheal antimicrobial peptide (TAP) was one of the first
β-defensin HDPs characterized in bovine lung epithelial cells
(108). TAP is now extensively researched for its potential role in
resistance toMycoplasma bovis (109), another major contributor
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to bovine respiratory disease. Studies using homozygous mBD-
1-deficient mice showed that a loss of mBD-1 results in
significantly delayed clearance of Haemophilus influenzae from
lung, providing a direct link between β-defensin expression and
pulmonary immunity (23). Investigations into human airway
inflammatory disease have shown that β-defensins participate
in antimicrobial defense in the respiratory tract during disease
(110), and that the bronchoalveolar lavage fluid concentration
of HBD-2 may be a useful marker of airway inflammation
(111). One the most recalcitrant respiratory diseases affecting
humans and animals is tuberculosis, caused by mycobacterial
species of bacteria. Interestingly, artificial induction of β-
defensin 2 (mBD2) in bronchial epithelium contributes to
improved control Mycobacterium tuberculosis infection in
mice (112).

Furthermore, the efficacy of these peptides is not limited to
bacterial pathogens. In cattle, expression of multiple β-defensins
has been documented in bronchoalveolar lavage from calves
infected with bovine respiratory syncytial virus (113). Murine
β-defensin 3 has also shown to have anti-viral effects against
influenza virus, both in vitro and in vivo (44).

Digestive Tract
The digestive tract has been the site of the most detailed
microbiome analyses across all species studied to date, and a
diverse repertoire of microeukaryotes have now been identified
(114). However, the term “digestive tract” belies the functional
complexity that constitutes a number of physiologically distinct
regions—esophagus, stomach, duodenum, small, and large
intestine and colon, and this is reflected in a very diverse regional-
specific microbiome (70). In ruminants, additional complexity
exists in the form of a multi-chambered stomach, known as
the rumen. Major cellular differentiation exists in the epithelial
structures across the intestinal regions between the foregut
(rumen-reticulum and omasum) and hindgut (abomasum and
small and large intestine). The ruminal epithelium is 4-layer
stratified squamous structure, whereas the intestinal epithelium
is a single layer of columnar epithelial cells protected by a
double layer of mucous. Furthermore, whereas the ruminal
epithelial layer lacks an underlying organized lymphoid tissue
in the lamina propria, the intestinal lamina propria consists of
defined Peyers patches and specialized “M” cells diffused by
lymphatic follicles rich in immune cells [for review see Garcia
et al. (115)].

In the newborn calf, the rumen is still inactive and rudimental.
Instead, the esophageal groove routes the easily digested milk
directly to the fourth stomach, the abomasum, which accounts
for 70% of the total volume. Development of the rumen occurs
during the first 12 weeks of life, during which time the calf
transitions from a monogastric to a ruminant, essential for
efficient utilization of forage based diets. It entails growth and
cellular differentiation of the rumen, and results in a major shift
in the pattern of nutrients being delivered to intestines, liver,
and peripheral tissues of the animal (116). The physiological
transition is stimulated by a defined and progressive sequence
of microbial colonization and is essential to enable absorption
and utilization of digestion end products from forage. As

would be expected, it should be of no surprise given the
functional divergence between these tissues that a region-specific
microbiome has been identified in the bovine rumen (117).
Mucosa-associated bacterial populations are distinct from those
inhabiting ingesta, and these divergent microbial populations
are associated with signature immune gene expression profiles
(118). Epimural bacteria in pre-weaned calves differs significantly
from content-associated community (119), and the different
bacterial populations have been associated with divergent mRNA
and miRNA expression profiles linked with epimural bacterial
populations in the neonatal calf (120). In addition to the
resident microbiome, environmentally-induced (transport and
diet) perturbations in the rumen microbiome have recently been
characterized (121).

Within the heterogenous environment of the intestine, β-
defensins are known to keep the peace (122) by adjusting the
balance among bacterial populations and to control homeostasis
(123), although this has predominately been studied in humans.
An important role for α-defensins has been documented in the
equine intestinal tract (3), and given the intriguing differences in
structure and presumably, microbial load between monogastric
(horse and pig) and ruminant livestock species, may have
contributed to a divergence in function of the defensin sub-
classes. The absence of this class may be compensated for by the
expansion of β-defensins in the rumen, although expression of β-
defensins has been shown in the pig stomach, and in intestinal
epithelium (124, 125). How these defensins might perform in
the environment of the functional rumen remains an open
question.

Short chain fatty acid (SCFAs) are a major source of energy
in cattle, initially produced by the beneficial microbiota in
the colon of pre-ruminant calves between 2 and 4 weeks of
age, when high concentrations of lactate and butyrate are
observed. These SCFAs stimulate epithelial cell proliferation
leading to longer villi, tight junction, and immune system
development. Interestingly, acetate, propionate and butyrate
have recently been documented to upregulate BD1 and BD2 in
human epithelial cells (126). Amongst the analyses of immune
changes induced in response to SCFAs in cattle, a recent
study showed decreases in LAP, TAP, and DEFB4A expression
in rumen epithelium after infusion with butyrate (127). In
sheep, maximal expression of β-defensins (oBD1 and oBD2)
was detected in the rumen during the first weeks of life and
also in the digestive tract prenatally (128). This evidence would
support a role for defensins in managing the microbial interface,
especially during initial post-natal colonization of the intestine
and rumen.

Comparing the epithelial transcriptome of germ-free vs.
conventionally reared mice during intestinal colonization,
significantly increased expression of defensins (DEFB37 and
DEFB39) in the tip of the colon in the latter group was
reported. However, a significant reduction in expression was
detected in the ileum, indicating a regional specific β-
Defensin response to colonization (129). Interestingly, transgenic
mice expressing human defensins protected against intestinal
salmonella, again reinforcing a protective role for thesemolecules
(130). Similarly, in chickens, dietary supplementation with
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butyrate led to a increased defensin gene expression in the
caecum and a simultaneous reduction in S. enteritidis carriage
(131).

The colon represents the most distal portion of the digestive
tract, and the expression of HDPs has been reported in human
colon tissue (132). Similarly, bovine enteric β-defensin was
named after it was originally found expressed in the small
intestine and the colon (133). As a result, it is proposed that their
antimicrobial activity can be harnessed as a potential therapy for
infectious and non-infectious diseases of the colon.

Mammary Gland
Human breast milk has recently been shown to have a resident
microbiome (134) concurrently with β-defensin expression. β-
defensin 2 in human breast milk has been shown to have broad
antimicrobial activity (89), which is thought to contribute to
controlling the proliferation of microbes in this ideal growth
medium. It is not surprising that microbial analysis of bovine
milk has shown similar commensal bacterial populations and
interestingly, changes in diversity have been associated with
disease (135). Healthy mammary gland in cows has also been
shown to produce β-defensins including TAP (136) and Lingual
Antimicrobial Peptide (LAP) (137), and expression is widespread
throughout the mammary gland (138). Induction of these genes
have also been postulated as markers of the early response to
inflammation (20) and mastitis (135).

It is likely that protection of the mammary gland is a
primary function of β-defensin expression in milk. While the
analysis of HDP action usually focuses on known pathogens,
these peptides have not been tested for efficacy against newly
characterized commensal species, so their role in regulating
mammary gland microbial homeostasis remains unclear. Is has
also been suggested that β-defensins in milk may help regulate
the intestinal development in the neonate but this remains
speculative until further functional characterization has been
performed (91).

Reproductive Tract
The female reproductive tract (FRT) is well endowed with HDPs
including β-defensins (139, 140) and during each window of
physiological transitions (pregnancy to non-gravid), the cross-
talk between the immune and reproductive systems provided
by endogenous HDPs may play important roles in dampening
the immune response to foreign antigen such as sperm but also
in regulating immune tolerance of an allogenic fetus during
pregnancy (141). In mice, β-defensins are more highly expressed
in the vagina than the uterus, with uterine levels peaking
during the estrogen-dominant phase of the cycle (142, 143). The
role for hormonal regulation has been supported with findings
that estrogen increases DEFB4A expression by primary human
uterine epithelial cells in vitro (144). In the ovine oviductal
epithelium, SBD1 expression is also increased by estrogen
(145). However, estrogen appears to have an opposing effect
on DEFB4A regulation in the human vagina, with expression
in epithelial cultures decreasing when estrogen is used alone
(146). A separate study indicates estrogen increases LPS-driven

DEFB4A expression in the same model, with progesterone
decreasing it (147).

Comparisons of virgin and pregnant bovine uteri showed
divergent dominant bacterial phyla between groups (148),
suggesting that pregnancies are established and maintained in
the presence of a uterine microbiome in cattle too. For the
majority of the year, livestock species are pregnant, and it is
around reproduction when follicles are growing and estrogen
is secreted but examination of their influence on β-defensin
expression has not been examined to date. It is well established
that after pregnancy the female (and specifically the cow) must
shift from an immunosuppressive (or immunotolerant) state
during pregnancy to a state of heightened immune activation
with concurrent inflammation to expel fetal membranes, clear
infection and restore homeostasis (149). Pro-inflammatory
signals also regulate β-defensin expression in the FRT. Sperm
and seminal plasma can activate inflammatory cytokines, and
physiological inflammation in the female tract can promote
beneficial pregnancy outcomes. IL-1β and TNFα drive expression
of DEFB4A by primary human trophoblast cells (150) and
DEFB4A and DEFB103 in endometrial epithelial cells (151, 152).
These cytokines may mediate the observed innate immune
response to pathogens detected in the FRT. Bacterial vaginosis
drives an increase in secretion of hBD-2, the peptide encoded by
DEFB4A (153).

In humans, unprotected sex is also known to change the
microbiome of the vagina and sexual transmission of commensal
and potentially pathogenic bacteria (154). Expression of human
and mouse BD1 has been documented in the lower urinary tract
(155) and increased β-defensin (HBD2 and HBD3) expression
has also been documented with inflammation of the cervix
(156), supporting an important role for peptides in mucus for
defense of the FRT. It is probable that β-defensins evolved
to regulate this microfloral influx during natural reproduction.
Interestingly, a range of HDPs, including hBD-1 are found in
the cervical mucus plug and this pregnancy-generated structure
exerts antimicrobial activity against a number of relevant
pathogens (157).

Bovine endometrial cells produce β-defensins (158) and these
are significantly elevated during uterine disease (159). Viral
infections are also thought to play a role in endometritis (160)
and therefore it is of interest that β-defensins may also mediate
the anti-viral response in the FRT, as hBD-2 levels in the cervico-
vaginal lavage fluid of HIV-positive women correlate with anti-
HIV activity (161). In contrast, gammaherpesvirus infection of
the murine cervix attenuates β-defensin expression, which may
explain the predisposition toward bacterial infection of the cervix
observed in virally-infected animals (162).

Some additional intriguing insights have emerged regarding
the role of commensal microbe populations in the human
reproductive tract which have important implications for fertility
in livestock species (163). For example, a commensal bacteria,
Staphylococcus epidermidis was found in the oviductal fluid of
parous mice and abolition of these populations by intraperitoneal
antibiotic injection led to disturbed uterus- embryo interaction
and derangement of embryo spacing (164). This new paradigm
in our understanding also extends to the role of β-defensins
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within the male reproductive tract. Extensive expression of
these molecules has been documented across the male tract
of multiple mammalian species, particularly in the epididymis
of male rats, mice, rams, horses and cattle (51, 165, 166)
[for review see: (167)]. The epididymis is a single, convoluted
duct, through which sperm progressively acquire functional
competency for fertilization. Highly regionalised expression
expression profiles of proteins including β-defensins give rise
to a dynamic intraluminal environment (168). One particular
β-defensin, (BD126) has been documented to play a number
of roles critical to sperm survival, motility, and interaction
with the female reproductive tract (49, 50, 169). In agreement
with their broad role in reproductive physiology, a recent
study has also shown that β-defensin gene knock-out male
mice are infertile (170). Interference with DEFB1 function
also decreases both sperm function but also with bactericidal
activity (171), and interestingly adding back DEFB1 restored
both functions. Investigations in livestock species are again
preliminary but recently a β-defensin haplotype has been
associated with sperm function and fertility in bulls (51,
172).

A remarkable recent discovery has been the identification of
a seminal fluid microbiome in mice (166) and humans. Seminal
fluid bacterial diversity has been linked to semen quality and
HIV viral load in humans (173, 174). It is logical, given the
abundance of amino acids and other nutritional substrates in
basic seminal fluid, that it would promote bacterial growth
and this microbiome is likely to influence the colonization
of the FRT (175). In fact, researchers now propose that this
microbiome impacts directly on the etiology of infertility (174).
In this context, it now seems plausible to propose that β-
defensins evolved to regulate the microbiome in seminal fluid
and prevent the growth of bacterial populations that may be
detrimental to either sperm quality or uterine health. However,
detailed follow-on studies are required to further investigate this
hypothesis.

FUTURE PERSPECTIVES—β-DEFENSINS
AND REPRODUCTION—SPERM WASTAGE
OR A HIDDEN IMMUNE AGENDA?

The male reproductive tract is home to the germ cells
and reproductive fluids are ideal environments for microbial
growth and particularly viral transmission (176). Of the
millions of sperm ejaculated, very few make it successfully
to the upper female reproductive tract, where fertilization
occurs. Logically therefore, the majority of sperm are non-
fertilizing sperm and are presumed wasted. We propose that
on the contrary, it may be the case that these β-defensin-
coated sperm may play a secondary role in the prevention
of ascending infection through neutrophil recruitment and
neutrophil mediated killing of microbes in the female tract.
Recently a direct link between the microbiome and neutrophil
recruitment has been established (177) and a role for β-defensins
in neutrophil chemoattraction has been previously documented,
albeit in a disease context (178). Further studies are urgently
required.

β-DEFENSINS—DIVERSITY, DYSBIOSIS,
AND DISEASE

The healthy microbiome can be characterized in terms of
diversity, stability, resistance and resilience (179). Compositional
and functional alterations that compromise any of these
parameters is referred to as dysbiosis reflected by a bloom
of pathology-associated microbiota (referred to as pathobionts)
and/or a loss of commensals and consequential reduction
in microfloral diversity (180). Whereas, diversity is beneficial
against disease (105), dysbiosis is associated with a range of
pathological conditions in mice (181), humans (182), and cattle
(183). The resulting dysbiosis would provide opportunities for
opportunistic pathogens to invade mucosal sites, cause excessive
inflammation accompanied by an associated loss of metabolites
leading to dysregulated immune cell responses, pathology and
disease (see Figure 1).

The current dogma suggests that colonization of mucosal
surfaces begins with a period of cell-mediated immunity
which is followed by the development of regulatory cell
populations (e.g., regulatory T cells), which prevent excessive
inflammation-associated pathology. A direct relationship has
now been established between the commensal microbiome
and the regulation of inflammation as the proinflammatory
cytokine Interleukin 1-alpha (IL-1α) is a key regulatory target of
commensal bacteria (184). Although, the mechanisms involved
in immune tolerance to first colonizers of mucosal tissues are
currently unknown (116), commensal (and probiotics) bacteria
are now thought to contribute directly to the regulation of
inflammation by the secretion of metabolites, via the prevention
of LPS binding to host cells, and through the attenuation of NFKB
mediated IL-1β production (185, 186). In fact, whereas a recent
studies have shown commensal-induced IL-1β via the NLRP3
inflammasome (187), activation via another inflammasome
complex (NLRC4) has been proposed to discriminate between
pathogenic and commensal bacteria (188). Macrophage-derived
IL-1α has been shown to significantly increase the expression
levels of the DEFB4 in intestinal epithelium (64). This and related
work in the human intestine also suggests that defensins are key
regulators of bacterial diversity and thereby tissue homeostasis
(122). Intestinal phagocytes are anergic to TLR ligands or
commensals but constitutively express pro-IL1β, and it is now
thought that HDPs initiate IL-1β posttranslational processing
(189). The close association between a dysregulated microbiome
and altered β-defensin expression has been most intensively
studied in the context of the chronic inflammatory diseases of the
human intestine known as Inflammatory Bowel Disease (IBD)
(190). Clinical studies have linked the defective expression of β-
defensins to the reduced killing of certain microorganisms by
the intestinal mucosa of patients and directly couple dysbiosis to
primary β-defensin immunodeficiency (182, 191).

The epithelium in inflamed intestinal segments of patients
with Crohn’s disease is characterized by a change in tight
junction protein content and composition (192), resulting in
barrier defects leading to luminal antigen uptake which causes
mucosal inflammation. The tight junction is dynamic, multi-
protein complex that forms a selective permeable seal between
adjacent epithelial cells and demarcates the boundary between
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FIGURE 1 | β-defensins manage the microbial interface. (A) Under homeostatic conditions, β-defensin-mediated preferential trafficing of microbes to dendritic cells

promotes the induction of tolerance and the control of inflammation. Similarly, prenatal expression of β-defensins induces inflammatory anergy while education of the

immune system occurs. (B) Stessor-induced dysbiosis results in dysregulation of inflammation and the loss of metabolites due to cell damage leads to a bloom of

pathobionts. In an effort to restore homeostasis, elevated β-defensin expression occurs resulting in a changed expression signature. The genes encoding these host

defense peptides vary in number between individuals resulting in a personal β-defensin signature which may be more or less effective at preventing a switch to

pathological inflammation.

apical and basolateral membrane domains. Apical tight junction
proteins are critical in the maintenance of epithelial barrier
function and control of paracellular permeability to prevent
disease (193) and an established virulence mechanism for
pathogens is to limit pathogens by stabilizing tight junctions
(194). HDPs, and specifically defensins are now thought
to promote the resolution of inflammation and endotoxin
resolution via the formation and maintenance of tight junctions
(195). Defensins have also been proposed as potential markers of
mucosal permeability (196). HBD-3 increased the expression of
several claudins, elevated the transepithelial electrical resistance,
and reduced the paracellular permeability of keratinocyte
layers (36).

Although it seems the consensus from most studies is that
these peptides are immunosuppressive (197) and attentuate
inflammation (198), there are reports that some β-defensins
amplify the immune response [as reviewed by Semple and
Dorin (199)]. Some studies report a positive correlation between
HBD2 expression levels and that of the potent chemokine
IL-8, leading to additional inflammatory cell recruitment and
acceleration of the pathogenesis of IBD (200). HBD2 has also
been shown to activate pro-inflammatory cytokine expression
(201) in peripheral blood cells, with similar reports forHBD3 (32)
in macrophages. However, it is difficult to effectively compare
between studies with various disease models, as the induction of
β-defensins may be a protective attempt by the host to reduce
exacerbation of the inflammatory cascade and will likely be
affected by the stage of disease, the epigenetic landscape and
microbial load. Furthermore, studies have also demonstrated

that the structure of the β-defensin peptide will determine the
biological effects detected—for example, the canonical structure
of hBD3 is required for its to enter macrophages and exert its
immunosuppressive effects (34).

β-DEFENSIN IMMUNOGENETICS

Host genetic variation has a significant effect on the microbiome
across multiple body sites (202, 203), and we contend that the
extensive variation uncovered in β-defensin genes contributes to
phenotypic diversity in several livestock-relevant traits. Recent
studies have associated individual SNPs in β-defensin genes
with health and production phenotypes including somatic cell
count (204) and milk constituents (205). More recently, in cattle,
haplotypes have been uncovered which regulate important traits
like bull fertility (172). The widespread expression profile for
these genes in cattle is shown in Figure 2.

β-defensins evolved through a complex mechanism of
duplication which has led to highly polymorphic gene CNV
(206). β-defensin gene CNV can affect disease resistance
(207, 208)–it is hypothesized that increased gene-copy number
contributes to susceptibility to inflammatory or autoimmune
diseases but is protective against infectious disease (209).
Although data in cattle are limited, β-defensin loci account for
7 of the top 25 most CNV regions across the bovine genome
(210, 211). Upwards of 20 gene copies are seen for some immune
genes in various cattle breeds sequenced, including for LAP, TAP,
and DEFB5, genes which have been previously shown to be
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FIGURE 2 | β-defensins as regulators of the microbiome and biosensors of immune homeostasis: Expression of β-defensin genes in bovine tissues—four genomic

clusters of these genes exist in cattle on chromosome 8 (4 genes); chromosome 13 (19 genes); chromosome 23 (5 genes); and chromosome 27 (30 genes). The

β-defensin genes on chromosome 27 are the least well conserved between species, are known to be CNV and show an expansion in number in cattle. Tissues with

immunological privilege (reproductive tract) show particularly extensive β-defensin expression patterns.

upregulated in response to infection, particularly in mammary,
lung and uterine tissues [for review see Meade et al. (17)].

Several multigene families are subject to birth-and-death
evolution and rates of gene gain and gene loss vary considerably
between closely related species or even between individuals of the
same species (212–215). These genes represent a major source
of new (or additional) biological functions through a process
known as neofunctionalisation (216). Selection for noncoding
regulatory regions in hBD103 in human populations from Asia
has also recently been described (217), which is thought to be
a response to selection pressure from influenza viruses in the
region. In cattle, the selection pressure thought to contribute
to the β-defensin expansion was originally the evolution of the
rumen (218). Rumen specific defense mechanisms are important
to ensure the balance between immune surveillance of the
diverse gut microbiota (219) and the maintenance of the integrity
of the gastrointestinal epithelial barrier (123). However, the
presence of these genes in monogastrics including horses (220)
and pigs (221) supports an alternative rationale. Furthermore,
biological systems most affected by changes in the number and
organization of genes in the cattle lineage during evolution
include reproduction and immunity as well as lactation and
digestion (218). The intensive artificial selection that cattle have
been selected to over the last 60 years, is likely to have further
shaped the β-defensin genetic variation remaining in extant
breeds.

The extensive expression of the expanded repertoire of β-
defensins across the reproductive tract of mammalian species
highlights the importance of protecting the gametes over the
course of evolution. The herd breeding structure of most

mammalian species has been postulated as a potential selection
pressure where an expanded β-defensin peptide family would
provide enhanced protection against ascending infections of
the reproductive tract. Intriguingly, the genomes of avian
species have not undergone expansion of these genes, but
the loss of the penis in males of most avian species (222)
may preclude the requirement for an expanded β-defensins
family. Male ducks and Ostrich members of this clade
have retained their penis and although annotation is far
from complete, the duck genome is currently estimated to
contain 16 defensins distributed over 3 scaffolds, a number
that was slightly higher than that of the 14 defensins
found in chicken (223). A preliminary search of available
Ostrich genome sequence identified a number of conserved
6 cysteine sequences in addition to the currently identified
β-defensin family members (unpublished data) potentially
representing a β-defensin expansion. However, conclusive
evidence is not yet available and it is likely that other selective
pressures account for the expansion detected in the mammalian
lineage.

β-DEFENSINS—DECOUPLING
INFLAMMATION FROM DEFENSE

A more convincing selection pressure contributing to the
expansion of the β-defensin repertoire in mammals is their
requirement to maintain homeostasis in environments with a
high microbe diversity as well as immunoprotection at sites of
immune privilege. Inflammation in specific body sites (e.g., brain,
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eyes, testes) would be detrimental to the survival of the species
causing pathology and possibly death. In immunopriviledged
sites, immune molecules (including IL-1) can be present at
high concentrations without causing inflammation indicating
important immunoregulatory mechanisms. Immune cell
phenotype, including regulatory T cells and macrophages, as
well as the expression of anti-inflammatory cytokines is known
to be critical to maintaining a functional state of hypoactivity
(224). Therefore, defense against pathogens is orchestrated by
alternative means, and β-defensins are likely to have a principal
role.

The testes are one such site (225), where haploid gametes
require protection and isolation from inflammatory immune
cells and in this environment, regular inflammatory mechanisms
are attenuated. The blood-testis barrier is maintained by several
types of cell junctions, which limit the access of systemic
immune contents to the inner reproductive compartments
(225). Cytokines and chemokines are expressed in healthy
tissue and function during normal testicular development
(226), and increased concentrations of inflammatory cytokines
have been associated with increased reactive oxygen species
and histone abnormalities in sperm (227). Whereas, levels of
the anti-inflammatory cytokine IL-10 in bull seminal fluid is
positively associated with sperm motility, inverse correlations
was detected with proinflammatory cytokines (228). High levels
of the chemokine IL8 has also been positively associated with
human sperm defects (229). It is our contention that the
requirement for protection of the gametes and reproductive
tract over the course of evolution led to the expansion of
β-defensins in this regulated environment, and this thesis is
supported by the extensive expression of these molecules in
the epididymis across all species in which they have been
studied to date (230). The requirement for β-defensins in
immunopriviledged sites is not limited to the male reproductive
tract andmay also explain their documented expression in female
reproductive tissues during pregnancy and also in the brain and
eye (231).

Interestingly, studies on LPS stimulated macrophages shows
that TLR-induced genes fall into two distinct categories on
the basis of their functions and regulatory requirements.
Referred to as “proinflammatory” and “antimicrobial genes,” a
tailored innate immune response is controlled via epigenetic
modifications to individual promoters (232). Methylation and
chromatin modifications thereby permit the decoupling of
proinflammatory from antimicrobial effector mechanisms of
the innate immune system which maintains protection of
the host whilst simultaneously minimizing inflammation-
associated pathological damage. Such mechanisms are now
known to form the cornerstone of the developing paradigm
of innate memory, and have enormous relevance for the
understanding of LPS tolerance, immune cell anergy and
immunosuppression.

Evidence for epigenetic regulation of β-defensin genes
supports this concept. The epigenetic enzyme, HDAC1 has
been shown to controls BD in lung epithelial cells (233).
Further work identified that DEFB1 expression was associated
with specific histone marks (234). Interestingly, ablation of the

microbiota has genome-wide epigenetic effects (235), and can
affect transcription factor binding (236) thereby providing a
direct mechanism by which commensal bacteria can regulate
the immune response in a gene-specific manner. However,
epigenetic changes at HDP gene promoters have not been
hitherto examined.

β-DEFENSINS AND THE RESPONSE TO
VACCINATION

β-defensins may also prove useful directly as broad-spectrum
adjuvants which are required for improved vaccine design in
cattle (237). As an endogenous ligand for Toll-like receptor
4 (TLR-4), inducing up-regulation of costimulatory molecules
(33), β-defensin expression is thought to contribute to the
establishment of a beneficial Th1 response via dendritic
cell activation and increased expression of cytokines such
as IFNy, IL-12 and IL-6 (238). It has been suggested that
β-defensins form antigen complexes (in a manner similar
to how they bind to sperm) which may be an important
mechanisms of microbe trafficking to antigen presenting
cells [as reviewed by (239)] which would enable appropriate
education of the neonatal immune system as well as their
priming during the formation of innate and adaptive immune
memory. In vivo murine models have shown that β-defensin
2 promotes anti-tumor NK and beneficial T cell responses
(240).

β-defensins are known to share significant structural similarity
with chemokines and a major known mechanism by which
defensins work is as chemoattractants for immune cells.
Mediated via both CCR2 and CCR6 receptors (35, 241), β-
defensins thereby attract myeloid and lymphoid cells to mucosal
sites where they are expressed, and thereby linking innate, and
adaptive immunity. They also function to increase the uptake
of DNA, and promote Interferon α expression (242) which
further suggests their utility in enhancing vaccine responses.
DCs are usually found in mucosal tissues where they monitor
the local environment for signs of pathogenic (or commensal)
invasion and are integral to ensuring that pathological immune
responses to harmless antigens do not develop (243). It was
commonly considered that these commensal containing DCs
were confined to the respective mucosal immune systems,
where they prime tolerant responses of B and T cells (244).
However, more recent studies have shown that homing of
these DCs to the lymph nodes can lead to the development of
regulatory cell populations which promote systemic tolerance
(245).

Defensins are also found in B cells (246, 247), confirming
that these peptides are capable of contributing to a
prolonged cellular and humoral response to a pathogen
(248), and this has potentially important consequences
for vaccine development across all species. Therefore β-
defensins are the recruitment portal through which systemic
immunoregulatory DCs are recruited and thereby directs
the priming of the adaptive immune response (249). This
implies that neonatal β-defensin expression profiles, in
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regulating microbiome development, can regulate vaccine
adjuvancy and thereby the efficacy and duration of protection
provided (245). These studies have critical relevance for the
design of next generation vaccines and adjuvants in livestock
species.

COMMENSAL MECHANISMS TO RESIST
HDP ANTIMICROBIAL ACTION

A key focus of future research will identify the multiple
mechanisms by which commensals can tolerate or resist
the antimicrobial effects β-defensin HDPs. Large structural
variations in LPS antigens have been documented across
bacterial phyla, leading to different host efficacy of LPS sensing
and resulting immunogenicity (250). Predominant commensal
members of the human gut microbiota show temporal stability
despite exposure to the host inflammatory response, but the
mechanisms involved are poorly understood. A recent study
identified that the dominant gut phyla in the human intestine
are resistant to HDPs, and that the resistance mechanism of
the common gut commensal Bacteroides thetaiotaomicron, is
via an LPS modification (251). The authors found that the
bacterial phosphatase LpxF catalyzes the removal of a phosphate
group from LPS, thereby reducing AMP-dependent membrane
disruption. As LpxF orthologs are widespread, this strategy may
be common across gut commensals to resist host inflammation.

Furthermore, the absence of virulence factors in commensal
bacteria within the bovine rumen has been suggested as key to
adaptive processes that result in their exploitation of epithelial
tissue for nutritional benefit as well as subversion of a detrimental
immune response (252). However, full characterization of the
diverse bacterial strains which exist within the microbiome will
take some time.

CONCLUDING REMARKS

Re-evaluation of the interrelationships between the microbial
world and their eukaryotic subjects is well underway. It is
now clear that physiological sterility is essentially impossible
and microbiomes are being documented across sites from
the developing fetus to healthy breast milk, tears and semen.
Although these findings could have major implications for
the design of new therapeutics, care is warranted and careful
validation is required (253) before translation of these findings
from a limited number of studies to other species can be
advocated. However, untargeted, black box approaches to disease
prevention or treatment are no longer seen as likely to provide
long term protection. In contrast, a new appreciation for our
resident prokaryotic kingdom is emerging and it is increasingly
seen as key to homeostasis and health. Although bacteria are
the most abundant component of the microbiome, and the most
intensively studied, the microbiome actually also consists of
viral, fungal, archael and protozoan communities (184, 254–256),
about which comparatively little is known (184, 257–259), even in
model species.

β-defensins may even have a neurological role (260). The
ability of the microbiome to regulate serotonin production
identifies mechanisms by which they might also regulate neural
chemistry (254). Through their inhibition of glucocorticoid
elevation in response to stress, defensins are even thought to
prevent stress-induced immunosuppression (255). Although at
first glance, the psychological effects of the microbiome in
livestock species may not seem relevant, stress is of increasing
concern in ethical animal production systems. Stress is a critical
causal factor that not only contributes to lost production and
risks to human welfare, it can also affect disease susceptibility.
One study in cattle found that dexamethasone-treated calves
had significantly lower expression of TAP and LAP β-defensin
expression in the lungs, which was claimed as a critical
contributing factor to disease susceptibility (256). β-defensin
expression has been documented in human cerumen of the ear
(261) and the recent discovery of β-defensin expression in the
pituitary gland of fish (262) and in the murine brain (263, 264),
suggests that defining the full range of β-defensin activities have
yet to be defined.

Consequentially, in the absence of sterility, basal (or
constitutive) expression in vivo may not exist. Perhaps, basal
expression, of β-defensins for example, tells us a lot more
than we realized previously and may provide insights into the
status of the microbiome which will inevitably affect every
phenotype of interest and ultimately disease outcomes. High
basal expression may actually represent an induced response
indicative of colonization (immunoeducation), infection or
indeed identify eukaryotes with a more robust prokaryotic
management system, and therefore an immune advantage.
Furthermore, the occurrence of mysterious “natural antibodies”
at birth may reflect priming that occurs during in utero immune
programming.

The use of antibiotics has been shown to enhance intestinal
colonization of enteric pathogens (71), and have enormous
significance for animal production systems. New green
antimicrobial drugs are urgently required in medicine and in
veterinary medicine in particular (265). Although significant
limitations, both technological and economic hamper the current
therapeutic use of β-defensins, these are not insurmountable and
still offer hope for the rationale design of new effective drugs
(266). HDPs have been proposed as potentially useful alternatives
to antibiotics in feed (267), and they exhibit significant potential
to improve intestinal barrier function, animal health and
productivity (268). A recent study showed that feeding them
to juvenile ruminants led to increased body weight, average
daily weight gain, enzymatic activity and positively influenced
on ruminal fermentation (269). In addition, goats treated with
AMPs had higher rumen microorganism diversity indices
than the control groups. For new treatments to be successful,
selectivity is required—and all available evidence to date suggests
that HDPs are ideally suited to this role.

β-defensins have important roles not just for the prevention
of infectious disease, metabolic diseases are a major limiting
factor to livestock production systems (270), and are set to
grow in importance as agricultural production intensifies, and
are regarded as perturbations associated with production. An
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exquisite symbiotic relationship therefore exists between the
microbiome and the metabolome where metabolites secreted by
both commensal bacteria and their host are key to maintaining
homeostasis (271). As regulators of the microbiome and thereby
the cellular metabolomic milieu, β-defensins have a key role
in this regard (272). Nutrients (like SCFAs) directly regulate
systemic energy homeostasis is key to productive and healthy
livestock for human food production (273). They also directly
influence immune cell development, as butyrate was previously
shown to induce a murine Th1 response (274).

The relevance to agriculture is not limited to improving
livestock health, but are also critically important to reproduction.
Interference with DEFB1 function has been shown to decrease
human sperm function and bactericidal activity (171), and
interestingly adding back DEFB1 restored both functions.
Deletion of a number of murine β-defensin genes resulted in
abnormal sperm structure, function and sterility in male mice
(275). Similar work in cattle identified a β-defensin haplotype
has been associated with sperm function and fertility in bulls
(51, 172) making themmolecules of major interest to agriculture.

In conclusion, any definition of a commensal or pathogen
is problematic given what we now know about microbiomes
(276, 277). To view the ecosystem of a microbiome as a
‘battle of good vs. bad bugs’ is simplistic in the extreme.
We contend that regulating the composition and diversity of
commensal populations is just as important a feature of HDP
function as preventing invasion by pathogens. We therefore
view β-defensins as sensors of the microbial equilibrium and
guardians of homeostasis. It is possible that the neonatal
β-defensin gene or protein signatures may be diagnostic
for homeostasis across mucosal sites and prognostic for

dysregulated immunity and disease later in life. What is clear
is that colonization by a diverse microbiome occurs across
eukaryotic surfaces, both internal and external, begins pre-
birth, and incessant quantitative and qualitative pruning of the
microbiome is critical to health and homeostasis (278). The
cumulative evidence presented here provides strong support
that without active cultivation of the microbiome by β-defensin
HDPs, pathology and disease would be inevitable. We predict
that stimulating β-defensin expression will emerge as a key
therapeutic mechanism to enhance natural immunity, restore
homeostasis and reduce the burden of infectious disease in
livestock.
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