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Background: Cancer is a non-communicable disease that occurs following a mutation in the

genes which control cell growth. Breast cancer is the most diagnosed cancer among South

African women and a major cause of cancer-related deaths worldwide. Photodynamic

therapy (PDT) is an alternative cancer therapy that uses photochemotherapeutic agents,

known as photosensitizers. Drug-delivery nanoparticles are commonly used in nano-

medicine to enhance drug-therapeutic efficiency. This study evaluated the photodynamic

effects following treatment with 0.3 mM multiple particles delivery complex (MPDC) and

irradiated with a laser fluence of 10 J/cm2 using a 680 nm diode laser in a breast cancer cell

line (MCF-7).

Methods: Cell damage was assessed by inverted light microscopy for cell morphology; the

Apoptox-Glo triple assay was used for cell viability, caspase activity and identification of

cytodamage markers; flow cytometric analysis for cell death pathways and mitochondrial

membrane potential; the enzyme linked immunosorbent assay (ELISA) for cytochrome C

release; and real-time reverse transcriptase polymerase chain reaction (RT-PCR) array for

gene expression.

Results: Laser activated-MPDC induced a significant change in morphology of PDT-treated

cells, with the appearance of apoptotic like morphological features. An increase in cyto-

toxicity, caspase activity, cell depolarization and cytochrome C release were identified in

PDT-treated cells. Finally, the upregulation of BAX, BCL-2, CASP-2 and ULK-1 genes was

observed.

Conclusion: The MPDC yielded a successful and stable hybrid agent with potent photody-

namic abilities.
Cancer is a non-communicable disease that is characterized million projected deaths in 2030 [1,2]. In Africa, few resources
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age. Cancer has become a major life threatening disease in
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Fig. 1 Schematic representation of the MPDC, consisting of a

gold-encapsulated dendrimer and 38 Sulfonated Zinc-

Phthalocyanine mix.

Table 1 Laser parameters for irradiation.

Parameters Diode laser

Manufacturer Oriel Corporation

Wavelength 680 nm

Wave emission Continuous

Spot size 9.1 cm2

Output power 52 mW

Power density 5.73 mW/cm2

Fluence 10 J/cm2

Irradiation time 33 min 40 s

At a glance commentary

Scientific background on the subject

Cancer is a major life threatening disease that requires

vigorous treatment. Photodynamic therapy is an alter-

native therapy that uses photochemotherapeutic agents

and low intensity laser irradiation to stimulate cell

damage in the presence of molecular oxygen. This study

investigated the effect of a multiple particle delivery

complex in MCF7 cells.

What this study adds to the field

The novel multiple particle delivery complex (MPDC),

consisting of sulfonated Zinc-Phthalocyanine and gold

nanoparticle encapsulated dendrimers, yielded a suc-

cessful and stable hybrid agent with potent photody-

namic abilities. Conjugation could improve therapeutic

outcomes to achieve better targeted therapy or better

delivery to cancer cells, and increased cancer cell

sensitivity to treatment.
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deficiency syndrome (AIDS) and malaria combined [3,4].

Abnormal cell proliferation within the breast glands is known

as breast cancer. This form of cancer is the most diagnosed

cancer among South African women and a major cause of

cancer-related deaths worldwide. Treatments for cancer have

evolved from palliative to conventional therapies [3,5,6].

Photodynamic therapy (PDT) is an alternative cancer ther-

apy that uses a photosensitizer (PS) and low intensity laser

irradiation to stimulate cell damage in the presence of

molecular oxygen [7]. The anticancer effects of PDT and the

generation of reactive oxygen species (ROS) depends on the

photophysical and photobiological abilities of the PS.

Generated ROS can induce cell damage by various cell death

mechanisms [8,9].

Research and development of new PSs is ongoing and crucial

for the efficiency of PDT [10]. Nanotechnology is the engineering

of small particles and is an interdisciplinary field set to revolu-

tionize the fight against cancer by providing exceptional inter-

action of cancer cells with nanomaterials at both superficial and

intracellular levels [11,12]. Nanoparticles (NPs) have been used in

medical applications as imaging agents, therapeutic agents,

diagnostic agents, active implants and drug-delivery agents [13].

NPs have attracted the attention of many researchers because of

their high surface to mass ratio, quantum properties, and ca-

pacity to absorb and carry other compounds [14]. Drug-delivery

NPs are commonly used in nanomedicine and offer additional

benefits including the enhancement of drug-therapeutic effi-

ciency and pharmacological properties by altering pharmacoki-

netics, improving drug hydro-solubility, drug half-life,

bioavailability and target cell specificity [15]. This study looked at

the mechanisms of breast cancer cell (MCF-7) damage mediated

by aMPDC,which consisted of a sulfonated Zinc-Phthalocyanine

mix (ZnPcSmix) and gold nanoparticle encapsulated dendrimers

(AuDENPs) [Fig. 1].
Materials and methods

Cell culture and treatment

MCF-7 breast cancer cells (ATCC: HTB-22™, Lot Number:

60731981) were cultivated in Dulbecco's Modified Eagle Me-

dium (DMEM, Gibco, 41966). The culture media was enriched

with 10% fetal bovine serum (FBS, Gibco, 10106-169), 1%

Amphotericin-B (Sigma, A2942) and 1% Penicillin-

streptomycin (Sigma, P4333). Cells were incubated at 37 �C in

5% CO2 and 85% humidity. Upon reaching confluency, cells

were washed twice with Hank's Balance Salt Solution (HBSS,

Gibco, 14065-056) before TryplEtm Express (Gibco, 12604) was

used to detach the cells from the culture flasks using 1 ml/

25 cm2. For experimental purposes, 5� 105 MCF-7 cells (in 2ml

culture medium) were seeded in 3.4 cm diameter culture

dishes and incubated for 4 h to allow the cells to attach. Fourth

generation AuDENPs were mixed with ZnPcSmix at a ratio of

1:37.86 (v/v). The resultant particles is referred to as amultiple

particles delivery complex (MPDC). Cells were treated with

0.3 mM MPDC and irradiated at a fluency of 10 J/cm2 using a

https://doi.org/10.1016/j.bj.2018.05.002
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680 nm diode laser [Table 1]. Post-irradiation, the incubation

periods of 3 and 24 h were considered for gene expression and

biological assays, respectively.

Cell morphology

Morphological changes were examined in all control (no

MPDC and no irradiation) and experimental groups 24 h post-

irradiation. A CKX41 inverted light microscope (Olympus,

Wirsam) connected to a camera was used to observe and

capture qualitative changes with the analysis get IT software.

Once digital images were captured, cells were detached and

re-suspended for further biological analysis.

Biological assays

The ApoTox-Glo™ Triplex Assay (Promega, G6320) was per-

formed to assess cell viability, cytotoxicity and caspase 3/7

activation and cleavage. A density of 2 � 105 cells per well was

seeded and 20 ml of viability/cytotoxicity reagent was added,

containing both glycyphenylalanyl-aminofluorocoumarin (GF-

AFC) and bis-alanylalanyl-phenylalnyl-rhodamine 100 (AAF-

R110) substrates for cell viability and cytotoxicity measure-

ments respectively. Plates were placed on an orbital shaker

(Heidolph Polymax Orbital, Labotec, 1040) set at 250 rpm for

1 min. Viable cells show a decrease in AFC fluorescence, while

dead cells show an increase in R110 fluorescence. The mixture

in a 96-well plate was incubated for 1 h at 37 �C before the

fluorescence signals were recorded with 400Ex/550Em filters for

viability and 485Ex/535Em filters for cytotoxicity. Thereafter,

caspase 3/7 activity was measured by adding 100 ml of the

Caspase-Glo 3/7 reagent to all wells and the luminescence

signal was measured after 30 min of incubation at room tem-

perature. All signal measurements were performed using the

Victor3 microplate reader (PerkineElmer).

Changes in mitochondrial membrane potential or depo-

larization of the mitochondrial transmembrane potential

(DJm) is associated with apoptosis, and the percentages of

normal (polarized mitochondria) and damaged (depolarized

mitochondria) cell populations were evaluated following

treatment. Depolarized cells are unable to take up JC-1 stain

and do not fluoresce in the red channel. Cells were detached

as previously described, re-suspended in 1 ml HBSS and

centrifuged at a speed of 400 � g for 5 min at a temperature of

4 �C. The supernatant was discarded and cells were re-

suspended in 0.5 ml of a fresh JC-1 working solution (551302

Mitochondrial Membrane Potential Detection JC-1 kit, BD

Biosciences) and thoroughly mixed. Then the mixture was

incubated at 37 �C in a CO2 incubator for 10 min, followed by

the addition of 1 ml of 1 � assay buffer. The combination was

mixed and centrifuged for 5 min at 400 � g. Again, the su-

pernatant was discarded, 0.5ml of 1� assay buffer was added,

the solution was vortexed and centrifuged in the same

manner. Cells were re-suspended in 0.5 ml 1 � buffer and the

cells in the pellet suspended by vortexing. Analysis was done

using the FACSCAria flow cytometer (BD Biosciences).

Cytochrome C is an apoptogenic component required for

further apoptotic events such as caspase-3 activation and

DNA fragmentation. Mitochondrial damage and leakage were
assessed with an enzyme linked immunoassay (eBioscience,

BMS 263 human cytochrome C Platinum ELISA kit) to detect

the level of cytosolic cytochrome C in various treated samples.

Cells were detached from the plate, re-suspended in HBSS,

centrifuged for 15 min at a speed of 217 � g and the super-

natant was discarded. Thereafter, cells were re-suspended in

1 ml of cold phosphate buffer solution and centrifuged for

5 min at 398 � g. Cells were lysed by incubating with 0.5 ml of

lysis buffer for 1 h at room temperature. Then, cells were

centrifuged for 15 min at 217 � g and a 50-fold dilution of the

supernatant was done by removing 5 ml of the supernatant

and adding it into to a 1.5 ml tube with 245 ml of 1 � assay

buffer. Samples (lysate supernatants) were further diluted by

making a 1:2 dilution in assay buffer; 150 ml of sample was

added to an equal volume of 1 � assay buffer, and a volume of

100 ml was added to the wells in a 96-well plate. Blank wells

contained 100 ml of 1 � assay buffer added in duplicate, and all

standards and samples were also added in duplicate. A vol-

ume of 50 ml biotin-conjugated anti-human cytochrome C

antibody was added to all the wells and the microplate was

covered with an adhesive film and incubated for 2 h at room

temperature. Thereafter, the microplate was rinsed three

timeswith 400 ml of wash buffer and 100 ml of Streptavidin-HRP

secondary antibodywas added to all the wells. Themicroplate

was covered with an adhesive film and incubated for 1 h at

room temperature. Then, the wells were washed three times

with 400 ml of wash buffer, 100 ml of tetramethyl-benzidine

(TMB) substrate was added and the plate was incubated at

room temperature for 10min. Lastly, the reactionwas stopped

by adding 100 ml of stop solution and the absorbance of each

well was read at 450 nm using the Victor3 microplate reader

(PerkineElmer).

Cells were stained with Annexin V-fluorescein isothiocy-

anate (FITC) and Propidium iodide (PI) (BD Bioscience, 556547)

to determine the mode of cell death. After treatment, cells

were re-suspended, rinsed twice with PBS and then re-

suspended in a 1 � assay binding buffer. A volume of

100 ml was transferred into a 15 ml Falcon™ tube and cells

were concurrently incubated with 5 ml of Annexin V-FITC and

PI. The mixtures were incubated in the dark for 5 min on ice.

Then 400 ml of 1 � binding buffer was added to all the sam-

ples which were analyzed on the FACSCAria flow cytometer

(BD Biosciences) by reading 10 000 events. Several control

samples were included and prepared for the assay as follows:

cells only without any stain; cells stained with Annexin V-

FITC only; cells stained with PI only; and positive control cells

which included those stained with both Annexin V-FITC and

PI (late apoptotic). An apoptosis positive control was pre-

pared by inducing apoptosis with 1 mg/ml actinomycin D, and

a necrosis positive control with 10% (v/v) hydrogen peroxide

for 24 h.

The real-time reverse transcriptase polymerase chain re-

action (RT-PCR) was used to evaluate the expression of 84

genes following treatment (3 h incubation). Cells were de-

tached and rinsed with PBS to remove all traces of culture

media. Total RNA from untreated, MPDC-treated and PDT-

treated cells was isolated using the RNeasy kit (Qiagen,

74104) with QIA shredder homogenizers (Qiagen, 79654). Cells

were re-suspended in 600 ml RLT buffer and loaded on the QIA

https://doi.org/10.1016/j.bj.2018.05.002
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cube (Invitrogen). At the end of the run, 30 ml of eluted RNA

was collected and quantified using the Quant-iT™ RNA Assay

kit (Invitrogen, Q32852) on the Qubit™ fluorometer (Invi-

trogen) according to the manufacturer's protocol. Two stan-

dards were used to calibrate the Qubit™ fluorometer and

sample RNA concentration (mg/ml) was determined.

One microliter of sample RNA was mixed with 99 ml buffer

AE (SABiosciences, 19077) in a quartz cuvette to determine

RNA purity. The buffer consists of 10 mM Tris-Cl and 0.5 mM

EDTA; pH 9.0. The absorbance of each sample was read using

the Biomate 3 spectrophotometer (Thermospectronic,

335904P), and the ratio of the absorbance value at 206 nm over

the value at 208 nm was calculated. All ratio values were be-

tween 1.82 and 2.01. Complementary DNA (cDNA) was reverse

transcribed from 30 ng RNA using the QuantiTect Reverse

Transcription kit, which included genomic DNA (gDNA)

wipeout buffer. gDNA elimination was carried out for 8 min at

42 �C and the reaction stopped by placing the tubes on ice.

Thereafter, a reverse transcription reaction with a final vol-

ume of 20 ml was prepared on ice by mixing Quantiscript

Reverse Transcriptase, Quantiscript RT Buffer, RT Primer Mix

and the gDNA elimination reaction (14 ml). The reverse tran-

scription reaction tubes were vortexed and incubated for

15 min at 42 �C and then transferred and incubated for

3 min at 95 �C to deactivate Quantiscript Reverse Transcrip-

tase. The purity of the cDNA samples was determined after

obtaining the absorbance values and ratios (A260/280 nm)

which were between 1.84 and 1.97. The real-time PCR array

was performed and the synthesized cDNA used as a template.

The expression of 84 genes involved in death cell and

senescence [Table 2] was analyzed using the Human Cell

Death Pathway Finder™ PCR Array (SABiosciences, PAHS-

212A) on the Stratagene Mx3000p. An additional 12 genes

were integrated and consisted of 5 housekeeping genes (B2M,

HPRT1, RPL13A, GAPDH, ACTB) to standardize the genes of

interest, a gDNA control, positive PCR control genes (in trip-

licate) and a reverse transcriptase control gene (in triplicate).

The cDNA samples were diluted to a final volume of 102 ml

with RNase-DNase free water and used to prepare an experi-

mental cocktail by adding the SABiosciences RT2 qPCRmaster

mix according to the manufacturer's protocol. The SABio-

sciences RT2 qPCR Master mix used is designed for the Stra-

tageneMx3000p® and contains RT2 SYBR Green (detected dye)

and ROX (reference dye).
Table 2 Functional gene grouping of the human cell death path
212A).

Cell death

Pro-Apoptotic ABL1,

CASP9

(TNFS

Anti-Apoptotic BCL2A

Apoptosis and Autophagy AKT1

Apoptosis and Necrosis ATP6V

Autophagy APP, A

GAA,

(VPS3

Necrosis BMF,

FOXI1

(ADPR
Twenty five microliters of the experimental cocktail was

added to each well and the 96 well PCR Array plate was sealed

with optical thin walled 8-cap strips and centrifuged for

1 min at room temperature at 1000 � g using a Heraeus

Labofuge 400 centrifuge (Thermo Scientific) to remove all air

bubbles. The run on the Stratagene Mx3000p® was pro-

grammed as follows: 1 cycle, 10 min at 95 �C to activate the

HotStart DNA polymerase, and 40 cycles of 15 s and 1 min at

95 �C and 60 �C respectively (the annealing step).

The instrument software gave the threshold cycle (Ct)

value for eachwell and all Ct values equal to or greater than 35

were considered as negative amplification (absence of

amplicon). A gDNA control well (well H6) with a Ct value

greater than 35 designated absence of gDNA contamination.

Ct values of 20 ± 2 for positive PCR control wells should be

obtained, which indicated successful amplification. The

average Ct values of all 5 housekeeping genes was used by the

software to normalize the 84 genes studied and was sub-

tracted from the gene of interest Ct value. All Ct values were

exported to a blank Excel spread sheet and used with the

SABioscience PCR array Data Analysis Template available

from the SABioscience website with the suitable pathway-

focused genes (PAHS-212A). Fold-change (2(DDCt)) was calcu-

lated by the software by dividing the normalized gene

expression (2(DCt)) of the test sample by the normalized gene

expression (2(DCt)) of the control sample. Fold-change values

greater than one indicate a positive or an up-regulation, and

the fold-regulation is equal to the fold-change, while fold-

change values less than one indicate a negative or down-

regulation. The fold-regulation is the negative inverse of the

fold-change.

Statistics

MCF-7 cells were taken from passage numbers 10e15. Results

were averages of biochemical assays done in duplicate and

repeated 4 times for cell damage analyses (n¼ 4). The oneway

ANOVA (one-tailed test) was done to compare treated cells to

untreated cells, and statistical analysis was done using Sig-

maPlot Version 11.0 (Systat Software Incorporation). Graphs

and tables depicted the obtained means and standard errors

(±SEM) [16]. Statistical values were obtained at the 95th

percentile and indicated as * for all p < 0.05, ** for all p < 0.01

and *** for all p < 0.001. Gene expression experiments were
way finder profiler (updated from SABiosciences, PHAS-

Gene subunits

APAF1, BCL2L11, BIRC2 (c-IAP2), CASP1 (ICE), CASP2, CASP6, CASP7,

, CD40 (TNFRSF5), CD40LG (TNFSF5), CFLAR (CASPER), DFFA, FASLG

F6), GADD45A, NOL3, TNFRSF10A (TRAIL-R).

1 (Bfl-1/A1), BIRC3 (c-IAP1), IGF1R, MCL1, TNFRSF11B, TRAF2, XIAP.

, BAX, BCL2, BCL2L1 (BCL-X), CASP3, FAS (TNFRSF6), TNF, TP53.

1G2, CYLD, SPATA2, SYCP2, TNFRSF1A

TG12, ATG16L1, ATG3, ATG5, ATG7, BECN1, CTSB, CTSS, ESR1 (ERa),

HTT, IFNG, IGF1, INS, IRGM, MAP1LC3A, MAPK8 (JNK1), NFKB1, PIK3C3

4), RPS6KB1, SNCA, SQSTM1, ULK1.

C1orf159, CCDC103, COMMD4, DEFB1, DENND4A, DPYSL4, EIF5B,

, GALNT5, GRB2, HSPBAP1, JPH3, KCNIP1, MAG, OR10J3, PARP1

T1), PARP2, PVR, RAB25, S100A7A, TMEM57, TXNL4B.

https://doi.org/10.1016/j.bj.2018.05.002
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repeated 3 times (n ¼ 3) and the PCR Array data analysis

software was utilized to determine the normalization, fold

change (replicate 2(DCt) values) and statistics. The p-value of

fold change of individual gene in all samples was determined

using the student's t-test.
Fig. 3 ApoTox-Glo™ Triplex Assay Cell viability assay in

MCF-7 cells using 400/550 ex/em filters. When compared to

untreated control cells, the fluorescent signal of both laser

irradiated and MPDC treated cells did not indicate any major

change in cell viability. The irradiated MPDC exhibited a

significant decrease in cell viability as *** (p ¼ 0.0008).
Results

Cell morphology

Morphological features ofMCF-7 cells were assessed following

treatment with MPDC alone, laser irradiation alone and PDT

(treated with MPDC and irradiated) [Fig. 2] and compared to

untreated MCF-7 cells. Neither irradiated cells nor MPDC-

treated cells showed detectable morphological changes.

However, PDT-treated cells changed from a characteristic

epithelial-like appearance and became irregular, with some

cells rounding off and detaching from the culture flask and

appearing as free floating structures.

Biological assays

The ApoTox-Glo™ Triplex Assay was performed to determine

cellular viability, cytotoxicity, and caspase 3/7 activity, and

results of treated cells were compared to those of untreated

cells. Neither irradiation alone nor treatment with MPDC was

able to induce a change in cell viability [Fig. 3], cytotoxicity

[Fig. 4] and caspase activity [Fig. 5]. Thus, the MPDC alone as

well as irradiation alone did not induce toxic effects. In com-

bination with laser irradiation (10 J/cm2), the MPDC induced

marked changes including decreased viability (p ¼ 0.0008),

increased cytotoxicity (p ¼ 0.006) and enhanced caspase ac-

tivity (p¼ 0.0007). TheMPDC had a photodamaging ability as it

only showed a light-dependent toxicity.

Mitochondrial damage or destabilization was evaluated

post-treatment inMCF-7 cells. The percentage of both polarized

(black) and depolarized (gray) mitochondrial membrane po-

tential in each treated cell group was determined and
Fig. 2 Morphology of untreated, irradiated, MPDC-treated and PDT

irradiated or MPDC treated cells when compared to untreated ce

include an elongation of cells, decrease in cell number, detachm
compared to the respective percentage of polarized or depo-

larized populations in the untreated control cells [Fig. 6]. After

24 h of incubation with the JC-1 fluorometric stain, no signifi-

cant change in mitochondrial membrane potential (polarized

and depolarized cells) was detected when cells were treated

with irradiation alone or MPDC alone. However, a change in

both the polarized and depolarized cell population was

noticeable within PDT-treated cells. PDT-treated cells showed

both an increase in the percentage of depolarized mitochon-

drial membrane and a decrease in the percentage of polarized

membranes (p ¼ 0.008). Thus, loss of mitochondrial membrane

potential or damage was seen with light-activated MPDC.

The release of cytochrome C from the mitochondria is a

critical event in cell damage. Cytochrome C levels in untreated

and treated cells was determined by ELISA 24 h following
-treated MCF-7 cells. No morphological change was noted in

lls. The morphology of PDT-treated MCF-7 cells changed,

ent and rounding off (200� magnification).

https://doi.org/10.1016/j.bj.2018.05.002
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Fig. 6 Evaluation of mitochondrial membrane potential using

flow cytometric analysis of JC-1 fluorometric stain.

Percentage of polarized (black) and depolarized (gray)

mitochondrial membrane potential were determined and

compared to the percentage of the corresponding

mitochondrial membrane potential of untreated, control

cells. Only the PDT-treated cells showed a change in

mitochondrial membrane potential ** (p ¼ 0.008).

Fig. 4 ApoTox-Glo™ Triplex Cytotoxicity assay in MCF-7 cells

using 485/535 ex/em filters. When compared to untreated

control cells, the fluorescent signal of both laser-irradiated

and MPDC-treated cells did not present any major increased

toxicity. The irradiated MPDC exhibited an increase in

cytotoxicity, shown as ** (p ¼ 0.006).
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treatment. The results revealed that in the absence of laser

irradiation the MPDC was unable to trigger an increase in the

levels of cytochrome C [Fig. 7]. Laser irradiation alonewas also

not enough to lead to such an increase. MPDC coupled with

laser irradiationwas able to initiate cell damage and lead to an

augmented level of cytochrome C (p ¼ 0.0005).

Flow cytometric analysis using Annexin V-FITC and PI was

performed to determine the foremost mode of cell death in

MCF-7 cells following PDT with MPDC. Twenty four hours

post-treatment, MCF-7 cells were stained and prepared for

analysis. Additional controls were included in this experiment

and consisted of MCF-7 cells treated with actinomycin D and

hydrogen peroxide (H2O2) acting as apoptotic and necrotic
Fig. 5 ApoTox-Glo™ Triplex Assay Caspase luminescence

assay in MCF-7 cells. When compared to untreated control

cells, the luminescent signal of both laser-irradiated and

MPDC-treated cells did not present any major increased

caspase activity. The irradiated MPDC displayed a high

luminescent signal, thus an enhanced caspase activity and

is indicated as *** (p ¼ 0.0007).
controls, respectively. Different populations of cells were ob-

tained: normal (negative for both Annexin V-FITC and PI),

early apoptotic (positive for Annexin V-FITC and negative for

PI), late apoptotic (positive for both Annexiv V-FITC and PI)

and necrotic (positive for PI and made up of cells that were

subjected to intensive damage). When cells were treated with

actinomycin D or H2O2, significant changes (p ¼ 0.0004 and

0.0007 for normal, p ¼ 0.0005 and 0.03 for early apoptotic,

p ¼ 0.0006 for late apoptotic, and 0.02 and 0.0004 for necrotic

cells) were seen with all cell populations when compared to

their respective population type of the untreated control cells.
Fig. 7 Estimation of cytochrome C levels in untreated and

treated MCF-7 cells. Cells treated with laser alone or MPDC

alone did not lead to an increased colorometric signal when

compared to the untreated cells. PDT-treated cells showed a

significant increase shown as *** (p ¼ 0.0005) and evidence of

undergoing cell damage.

https://doi.org/10.1016/j.bj.2018.05.002
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Table 3 Percentage of various cell populations following
flow cytometric analysis. The lowest percentage of cell
death (apoptotic and necrotic) and highest percentage of
normal population were obtained with untreated cells.
These apoptotic populations significantly increased
(around 63%, accumulated percentage) in Actinomycin D-
treated cells, and the highest percentage of necrotic
population (42%) was seen with hydrogen peroxide
(H2O2)-treated cells. Experiments were repeated four
times (n ¼ 4) and significant differences are indicated as
*(p ¼ 0.03 and 0.02) and *** (p ¼ 0.0007, 0.0006, 0.0006,
0.0005, 0.0004 and 0.0003) when compared to the
respective population type of the untreated control cells.

Cell populations Untreated
cells

Actinomycin
D-treated cells

H2O2-treated
cells

Normal 89 ± 2.05 26 ± 1.34*** 9 ± 2.52***

Early apoptotic 7 ± 1.69 34 ± 0.49*** 16 ± 2.62*

Late apoptotic 3 ± 2.65 29 ± 0.12*** 33 ± 1.55***

Necrotic 1 ± 1.23 11 ± 1.63* 42 ± 1.02***

± represents standard error.

Fig. 8 Gene expression profiles of PDT-treated MCF-7 cells

with 0.3 mM MPDC and 10 J/cm2 was analyzed using the

SABiosciences Human Cell Death Pathway Finder Profiler™

PCR Array System. PDT-induced changes in gene expression

and BAX, BCL-2, CASP-2 and ULK-1 genes were significantly

up-regulated as represented in the volcano plot. In the

volcano plot, the horizontal line designates the target

threshold (p ¼ 0.05) and vertical lines, the fold change

(central) and target fold change threshold (peripheral) in

gene expression.
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These treatments were able to induce cell death with

apoptosis being more pronounced with treatment with acti-

nomycin D as expected [Table 3]. Cells treated with laser

irradiation alone or MPDC alone did not result in a significant

change when compared to their respective population of un-

treated cells [Table 3]. However, PDT-treated cells showed

significant changes with all populations (p ¼ 0.0006 for

normal, p ¼ 0.003 for late and early apoptotic, and p ¼ 0.02

for necrotic cells), with the apoptotic population being the

most prominent (59% accumulated percentage) [Table 4].

Real-time RT-PCR was used to determine the regulation of

84 genes involved in cell death 3 h following treatment with

0.3 mM MPDC alone or with PDT. MCF-7 cells treated with

0.3 mM MPDC alone showed no significant up- or down-

regulation of any genes as compared to the untreated con-

trol cells. The gene expression analysis of PDT-treated MCF-

7 cells showed that BAX (p ¼ 0.035), BCL2 (p ¼ 0.044), CASP2

(p ¼ 0.006) and ULK-1 (p ¼ 0.038) were significantly up-

regulated when compared to the untreated control cells

[Fig. 8].
Discussion

Not only does various types of cancer cells react differently to

different PSs, but cells also respond differently to diverse
Table 4 Percentage of various cell populations following flow c
(apoptotic and necrotic) were obtained with untreated and irra
increased (around 65%) in MPDC- and PDT-treated cells. Exper
differences are shown as *(p ¼ 0.02), ** (p ¼ 0.003) and *** (p ¼ 0
the untreated control cells.

Cell populations Untreated cells Irradiated c

Normal 89 ± 2.05 91 ± 1.11

Early apoptotic 7 ± 1.69 6 ± 0.29

Late apoptotic 3 ± 2.65 2 ± 2.45

Necrotic 1 ± 1.23 1 ± 2.15

± represents standard error.
concentrations of PSs, wavelengths, power density and flu-

ence of irradiation, and uptake of PSs. Previous work on the

effects of PDT using ZnPcSmix on different cell lines has been

conducted, and all results obtained were cell specific

[7,17e27]. Hence, for each different type of cancer that is

investigated, both PS concentration and laser irradiation flu-

ence is determined in a dose response manner prior to con-

ducting further investigation with respect to biological

responsiveness of cells. The inverted light microscopic anal-

ysis was performed following treatment with both MPDC and

laser irradiation in MCF-7 cells. Only laser-activated MPDC in

the PDT-treated cells showed a significant change in cell

morphology as compared to the untreated control cells. Some

cells detached from the culture surface and appeared as free-

floating structures, an indication of cell damage and con-

firming the ability of the MPDC to yield cytodamaging effects

in MCF-7 cancer cells. Lee and co-workers (2009) confirmed

cell morphological changes when conjugated AuNPs were

used in lung cancer targeted therapy [28]. Another similar

analysis was conducted and indicated that using AuNPs-
ytometric analysis. The lowest percentage of cell death
diated controls. These apoptotic populations significantly
iments were repeated four times (n ¼ 4) and significant
.0006) when compared to the respective population type of

ells MPDC-treated cells PDT-treated cells

86 ± 0.32 32 ± 1.06***

9 ± 2.12 29 ± 1.56**

4 ± 3.05 30 ± 1.74**

1 ± 1.84 9 ± 2.33*
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targeted therapy in liver and lung cancer led to morphological

changes and the appearance of apoptotic-like characteristic

morphological features [29].

The ApoTox-Glo™ Triplex Assay was performed to deter-

mine cell viability, cytotoxicity and caspase 3/7 activity after

treatment. It was revealed that light-activated MPDC promp-

ted decreased cell viability and increased cytotoxicity and

caspase 3/7 activity inMCF-7 cells. This showed that theMPDC

in its active form following irradiation was able to induce

significant damaging effects. Other studies have reported

similar findings using various complexes containing AuNPs in

different cancer cell lines. Decreased cell viability of breast,

bladder and prostate cancer cells was seen following irradia-

tion of drug-coated AuNPs for fibroblast growth factor 1 tar-

geted cancer therapy [30]. Both 5 and 10 nm AuNPs containing

compounds were endocytosed by A549 lung cancer cells

leading to the inhibition of cell growth and increased cyto-

toxicity. These effects seemed to disappear when 20 and

40 nm sized compounds were utilized [31]. In another targeted

therapy study, decreased viability, increased anti-proliferative

and pro-apoptotic activity (such as increased caspase activity)

were identified as the induced tumor suppressor response in

breast cancer cells [32].

Results from this present study showed thatmitochondrial

integrity was not maintained after MPDC-mediated PDT in

MCF-7 cells, as a change in the percentage of polarized and

depolarized mitochondrial membrane potential was detected

and indicated mitochondrial damage. A number of studies

have reported that treatments using drugs, which localize in

mitochondria, damage these cellular organelles triggering cell

death through apoptotic pathways. Wen and co-workers

(2013) reported that cancer treatment that targeted mito-

chondria led to dysfunctioning mitochondria with a shift in

energy generation from oxidative phosphorylation to glycol-

ysis, and noted high levels of ROS in various cell lines [33].

Treatment provoked a change in mitochondrial membrane

potential, ROS levels and intracellular levels of ATP [34]. Pan-

cratistin, an anti-cancer agent, triggered a decrease in mito-

chondrial membrane potential and led to the initiation of

apoptosis in colorectal carcinoma cell lines [35].

NPs combined with therapeutic agents induced depolari-

zation of the mitochondrial membrane potential, trans-

location of apoptosis inducing factor (AIF) and activation of

caspase activity [36]. Rhodamine-123 accumulated in mito-

chondria and this accumulation lead to the disruption of

mitochondrial membrane potential in kidney and breast

cancer cells [37,38]. A similar disruption in mitochondrial

membrane potential was seen with treatments using com-

pounds such as RH1, edelfosine, doxobicin and curcumin as

anti-cancer agents [39e42].

Mitochondrial damage has been linked to the release of

cytochrome C. In this study, we used ELISA to determine the

level of cytochrome C. It was found that the release of cy-

tochrome C significantly increased after treatment with

MPDC and laser irradiation in the PDT-treated cells. This

concurs with work done by Heiligtag and associates (2002)

when cerulenin, an anti-cancer agent, was able to damage

mitochondria which led to the release of cytochrome C and

the induction of apoptosis [43]. The induced release of cyto-

chrome C is an important event for the activation of
apoptotic cascades and caspase-dependent cell death [44,45].

The release of cytochrome C from the mitochondria was

detected early and seemed to be critical for the initiation of

cell death [46].

Annexin V-FITC and PI flow cytometric analysis estab-

lished that apoptosis was the major induced cell death

response after MPDC-mediated PDT in MCF-7 cells. The in-

duction of apoptosis following mitochondrial damage was of

no surprise as many previous studies confirmed the induction

of apoptosis after treating cells with various mitochondrial

damaging and anti-cancer agents in PDT [9]. PDT treatment

that causes mitochondrial damage promotes apoptosis

through the release of cytochrome C, AIF and other apopto-

genic proteins such as caspases [47]. Hypericin-mediated PDT

led to the initiation of apoptosis in a human hepatocellular

liver carcinoma cell line (HepG2) after analyzing Annexin V-

FITC/PI-stained cells using flow cytometry [48]. A large num-

ber of morphological changes including cell shrinkage, chro-

matin condensation, and nuclear fragmentation were

detected and identified as typical apoptotic features in three

cell lines (HeLa, HaCaT and MCF-7) when using cationic con-

jugated compounds containing ZnPC in PDT. And it was

concluded that those cells had undergone apoptosis, which

was detected 3 h after PDT [49].

Investigation into the expression of genes involved in cell

death pathways was done 3 h following PDT to finally assess

the efficacy of the conjugate in PDT and to determine which

genes were primarily affected. It transpired that out of the 84

genes examined, 4 genes (BAX, BCL-2, CASP-2 andULK-1)were

significantly up-regulated in the PDT treated cells. Bax is an

apoptosis regulator protein andmember of the Bcl-2 family. It

was among the first genes to be associated with pro-apoptotic

activity. Its activation has been linked to the loss in mito-

chondrial membrane potential and the release of cytochrome

C. Down-regulation or mutation of this protein leads to the

suppression of apoptosis [50,51]. It exits as a cytosolic protein

in normal cells, but upon induction of apoptotic signals it

undergoes a conformational change and becomes associated

with organelle membranes, in particular mitochondrial

membranes [52]. Curcumin-induced up-regulation of BAX and

cancer cell death through the mitochondrial-mediated

apoptotic pathway [33].

BCL-2 encodes for another Bcl-2 family member protein

that determines the commitment of cells to apoptosis [53].

Bcl-2 (B-cell lymphoma 2) regulates apoptosis by inducing or

inhibiting apoptosis but it is principally considered as an anti-

apoptotic effector and classified as an oncogene. In response

to mitochondrial damage, release of cytochrome C, caspase

activation and additional apoptotic events, BCL-2 is overex-

pressed to control those events [54].

Caspase 2 (CASP-2) is an apoptosis-related cysteine pepti-

dase and involved in the initiation of apoptosis by partici-

pating in the formation of the CARD domain, RIP-associated

Ich-1/Ced-3-homologue protein with a death domain (RAIDD),

apoptosis repressor with caspase recruitment domain (ARC),

and death effector filament-forming Ced-4-like apoptosis

protein (DEFCAP). Nuclear damage is critically important for

the expression of caspase-2 [55]. Additionally, caspase-2 can

interact with the p53-induced protein with a death domain to

form the PIPPosome, which is an activation platform for other

https://doi.org/10.1016/j.bj.2018.05.002
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Fig. 9 The primary response of MPDC-mediated PDT on the expression of genes involved in cell death pathways was the up-

regulation of Ulk-1, Bax, Casp-2 and Bcl-2 genes. The Ulk-1 protein protonates and activates the FIP200. ULK is part of a protein

complex containing Atg13, Atg17 and FIP200 (autophagosome), which drives the subsequent cellular damage and death. The

Bax protein directly affects the mitochondria while the Cas-2 protein is activated by reactive oxygen species (ROS) and then

Casp-2 transforms a mitochondrial damaging protein into its truncated and activated form (tBid). The p53-induced death

domain associated protein (PIDD) can also convert pro-Casp-2 into the active Casp-2. Apoptogenic proteins (such as

Cytochrome C) released from mitochondria participate in the assemblage of the apoptosome, activation of other effectors

(Casp-3/6/7) and cell death. Mitochondrial damage and depolarization induce change in cellular ATP levels, activation of the 50

adenosine monophosphate activated protein kinase (AMPK) and AMPK-induced cell death. This cell death response stimulates

Bcl-2 protein to prevent further cell damage.
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proteases [56,57]. Robertson and colleagues (2002) found that

caspase-2 additionally induces genetic damage and the in-

duction of mitochondrial apoptotic pathway [46].

The fourth gene that was up-regulated, ULK-1 is associated

with autophagy, which is both a survival and cell death

mechanism. The ULK-1 gene is also known as the autophagy

initiation kinase Unc-51-like kinase (ULK1)/ATG1. Ulk-1 is an

autophagy initiator protein, which is indispensable for auto-

phagic complex formation [58]. This complex consists of ulk-1,

atg-13 and atg-17 and the complex leads to the formation of

autophagosomes in the absence of mammalian target of

rapamycin (mTOR) signal [59,60]. Autophagy has a cell death

role and it was demonstrated that Ulk-1 also plays a role in

ATP depletion and death in the presence of both PARP1 ac-

tivity and H2O2 (vigorous damage). And the same study

showed autophagy pro-death activity of Ulk-1 in response to

ROS generation [61]. The schematic representation of the

induced gene expression and cell death events of this present

study is presented in Fig. 9.
Summary

The search for better and ideal PSs is indisputably encouraged.

Combining AuDENPs and ZnPcSmix yielded a successful and

stable hybrid agent with potent photodynamic abilities. The

MPDC was able to induce subsequent cytodamaging effects.

MCF-7 cells became sensitive to the treatment after PDT and

the subsequent cellular damage included increased
cytotoxicity, increased caspase activity, promotion of

apoptotic-like events and upregulation of genes involved in

apoptotic pathways. Conjugation could be considered as a

way to improve the therapeutic outcomes of individual and

less effective therapeutic agents to achieve better targeted

therapy or better delivery to cancer cells, and increased cancer

cell sensitivity to treatment.

The work presented in this paper is an in vitro study to

determine the cellular response and mechanism of this new

MPDC. Results presented here clearly indicate the therapeutic

potential that this compound hold. However, to realize the

clinical potential, in vivo and clinical trials will be performed in

future.
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