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Abstract

Hepatic stellate cells (HSCs) play an essential role in vari-
ous liver diseases, and exosomes are critical mediators of 
intercellular communication in local and distant microenvi-
ronments. Cellular crosstalk between HSCs and surround-
ing multiple tissue-resident cells promotes or inhibits the 
activation of HSCs. Substantial evidence has revealed that 
HSC-derived exosomes are involved in the occurrence and 
development of liver diseases through the regulation of 
retinoid metabolism, lipid metabolism, glucose metabolism, 
protein metabolism, and mitochondrial metabolism. HSC-
derived exosomes are underpinned by vehicle molecules, 
such as mRNAs and microRNAs, that function in, and sig-
nificantly affect, the processes of various liver diseases, 
such as acute liver injury, alcoholic liver disease, nonalco-
holic fatty liver disease, viral hepatitis, fibrosis, and cancer. 
As such, numerous exosomes derived from HSCs or HSC-
associated exosomes have attracted attention because of 
their biological roles and translational applications as poten-
tial targets for therapeutic targets. Herein, we review the 
pathophysiological and metabolic processes associated with 
HSC-derived exosomes, their roles in various liver diseases 
and their potential clinical application.
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Introduction

Hepatic stellate cells (HSCs) account for approximately 15% 
of resident cells in normal liver and 30% of nonparenchy-
mal cells.1,2 HSCs exist in the space of Disse with multiple 
lipid droplets rich in vitamin A present in the cytoplasm, 
representing the primary storage site of retinaldehyde de-
rivatives.3 In additional, HSCs are the main cells synthesiz-
ing the extracellular matrix (ECM) and collagen in the liver. 
HSCs are normally quiescent (qHSCs) and do not express 
alpha-smooth muscle actin (α-SMA), which is a marker of 
activated HSCs (aHSCs).2 Numerous studies have confirmed 
that HSCs exhibit great heterogeneity and plasticity and 
facilitate fine regulatory responses to liver injury through 
paracrine and autocrine signals according to changes in the 
extracellular microenvironment.4–6

Exosomes are membranous vesicles that fuse with the 
cell membrane by multiple vesicles and are then released 
to the extracellular space. Exosomes have a diameter of 
40–160 nm and they are released by all types of cells.7,8 Ex-
osomes can be found in almost all body fluids, such as plas-
ma,9 urine,10 cerebrospinal fluid,11 saliva,12 breast milk,13 
joint fluid,14 amniotic fluid,15 and semen.16 Of note, some 
special proteins are found on the surface of exosome vesi-
cles, such as HSP70, CD9, CD63, CD62, and CD81. The pro-
teins are involved in cell adhesion and targeting and can be 
used as biomarkers to indirectly reflect the presence of ex-
osomes.6 Exosomes, as heterogeneous intraluminal vesicles 
(ILVs), are secreted into the extracellular space by endoso-
mal sorting complex required for transport mechanisms.8 
In these complex processes, exosomes are filled with lipids, 
proteins, DNA, coding RNA and noncoding (nc)RNAs such 
as micro (mi)RNA, long noncoding (lnc)RNA, and circular 
(circ)RNA.17 Transfer of these active substances from tissue 

Keywords: Myofibroblast; Extracellular vesicle; Hepatic fibrosis; Cancer; Meta-
bolic reprogramming; Biomarker.
Abbreviations: α-SMA, alpha-smooth muscle actin; aHSCs, activated hepatic 
stellate cells; ALD, alcohol-related liver disease; ASC, adipose mesenchymal 
stem cell; ECM, extracellular matrix; EVs, extracellular vesicles; GLUT, glucose 
transporter; HSCs, Hepatic stellate cells; IL, interleukin; MFBs, myofibroblasts; 
NAFLD, nonalcoholic fatty liver disease; PDGF, platelet-derived growth factor; 
qHSCs, quiescent hepatic stellate cells; TGF-β, transforming growth factor beta; 
TNF-α, tumor necrosis factor-alpha; VEGF, vascular endothelial growth factor; 
YAP, Yes-associated protein.
#Contributed equally to this work.
*Correspondence to: Qiang Gao, Department of Liver Surgery and Transplan-
tation, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of 
Education), Liver Cancer Institute, Key Laboratory of Medical Epigenetics and 
Metabolism, Institutes of Biomedical Sciences, State Key Laboratory of Genetic 
Engineering, Fudan University, 180 Fenglin Road, Shanghai 200032, China. 
ORCID: https://orcid.org/0000-0002-6695-9906. Email: gaoqiang@fudan.edu.
cn; Rui Liao, Department of Hepatobiliary Surgery, the First Affiliated Hospital 
of Chongqing Medical University, Chongqing Medical University, 1 Youyi Road, 
Chongqing 400016, China. ORCID: https://orcid.org/0000-0002-0057-2792. E-
mail: liaorui99@163.com

http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
https://crossmark.crossref.org/dialog/?doi=10.14218/JCTH.2022.00326&domain=pdf&date_stamp=2022-10-18
https://doi.org/10.14218/JCTH.2022.00326
https://orcid.org/0000-0002-6695-9906
https://orcid.org/0000-0002-0057-2792
https://orcid.org/0000-0002-6695-9906
mailto:gaoqiang@fudan.edu.cn
mailto:gaoqiang@fudan.edu.cn
https://orcid.org/0000-0002-0057-2792
mailto:liaorui99@163.com


Journal of Clinical and Translational Hepatology 2023 vol. 11(2)  |  441–451442

Yin K.L. et al: Roles of exosomes from HSCs in liver diseases

to body fluids in intercellular cargo contributes to the trans-
mission of information via exosomes and subsequently af-
fects the occurrence and development of various diseases.18

The roles of exosomes in intercellular information ex-
change have attracted more attention to dissect the mecha-
nisms leading to the activation of HSCs.19,20 As a part of the 
liver environment, HSC-derived exosomes play an important 
role in the development of liver diseases.21–23 In this review, 
we summarize the pathophysiological and metabolic pro-
cesses associated with HSC-derived exosomes, their roles in 
various liver diseases and their potential clinical application.

Mechanism of HSC activation

When the liver is damaged by inflammation or mechanical 
stimulation, fibrogenic factors, such as transforming growth 
factor beta (TGF-β), vascular endothelial growth factor 
(VEGF), insulin-like growth factor, and interleukin (IL)-6, 
seek HSCs as the final target cells (Fig. 1). The phenotype 
of HSCs then changes from quiescent to activated, and 
these cells transform into myofibroblasts (MFBs).24–26 The 
concepts of “initiation” and “perpetuation” are widely used 
to interpret the activation process.27 Briefly, initiation is 
characterized by event that vitamin A-rich quiescent HSCs, 
stimulated by inflammatory factors, downregulate vitamin 
A, glial fibrillary acidic protein, and peroxisome proliferator-
activated receptor (PPAR)-γ.28 Perpetuation refers to lately 
event that a continual increase in inflammatory factors, 
growth factors and cytokines, and surrounding profibrotic 
cells rapidly inducing HSCs to enter the activated state.29,30 
The mechanistic link between loss of lipids in HSCs and 
cell activation is not well understood, but is thought to in-
volve remarkable influence of the molecular and cellular 
pathways in hepatic inflammatory microenvironment.30–32 
Cellular crosstalk between HSCs and surrounding multiple 
tissue-resident cells,33,34 including macrophages,35,36 neu-
trophils,37,38 platelets,33,39 dendritic cells,40 sinusoidal en-
dothelial cells,41,42 epithelial cells,43 natural killer cells,44,45 
various T lymphocytes,46,47 and B cells,48,49 promotes or 
inhibits the activation of HSCs. For example, inflammation 
induced by liver injury triggers the recruitment of mac-
rophages to the liver, where they produce cytokines and 
chemokines, such as TGF-β, platelet-derived growth factor 

(PDGF), tumor necrosis factor-alpha (TNF-α), IL-1β, on-
costatin M (OSM), chemokine ligand 3/5 (CCL3/5), directly 
inducing HSC activation, and subsequently forming a defi-
nitely complex activation network.50–53 The notch signaling 
pathway also transmits activation signals to HSCs through 
ligand receptor interaction and communication with neigh-
boring cells to increase the degree of fibrosis.54 On one 
hand, Hedgehog signaling involves in the activation of HSCs 
by inducing transdifferentiation into MFBs responsible for 
matrix deposition.55,56 On the other hand, the Hedgehog 
pathway can inhibit apoptotic signals and enhance the vi-
ability and proliferation of MFBs, which leads to endogenous 
Hedgehog ligand generation in an autocrine or paracrine 
manner, followed by a positive feedback loop of Hedgehog 
signaling.55,57 Notably, some classical signaling pathways 
and emerging pathways synergistically promote HSC acti-
vation, hepatic fibrosis and even cross,58–60 like Hedgehog-
Yes-associated protein (YAP), YAP-transcriptional coacti-
vator with PDZ-binding motif (TAZ), YAP1-p38. The ECM, 
mainly composed of laminin, collagen, and proteoglycan, is 
required for HSC activation.61,62 After HSC activation, type 
IV collagen, heparan sulfate proteoglycan, and laminin are 
converted into type I and type III fibrous collagen by integ-
rin, forming a positive feedback loop.63,64 During the trans-
formation process, integrins bridge the connection between 
qHSCs and aHSCs.65,66 Type I collagen is one of the most 
abundant structural proteins in the fibrotic liver. It is regu-
lated by RNA binding proteins at the post transcriptional 
level involved with mRNA processing, transport, stabiliza-
tion, and translation.67,68 HSC activation is established as 
the main facilitator of liver fibrosis and carcinogenesis, but 
much remains to be clarified about its contribution to he-
patic homeostasis, fibrosis resolution, and cancer initiation.

Pathophysiological role of HSC-derived exosomes

Retinoid metabolism

Of note, 50–95% of the body’s vitamin A, including retinol 
and its metabolites, is stored in HSCs and acts as an im-
portant regulator of retinoic acid homeostasis. Under physi-
ological conditions, retinoids in HSCs are associated with 

Fig. 1.  Activation of HSCs and pathophysiological role of HSC-derived exosomes. Cellular crosstalk between HSCs and surrounding multiple tissue-resident 
cells promotes or inhibits the activation of HSCs. HSC-derived exosomes are involved in the occurrence and development of liver diseases through the regulation of 
retinoid metabolism, lipid metabolism, glucose metabolism, protein metabolism, and mitochondrial metabolism. HSC, hepatic stellate cell.



Journal of Clinical and Translational Hepatology 2023 vol. 11(2)  |  441–451 443

Yin K.L. et al: Roles of exosomes from HSCs in liver diseases

several perilipins, which reduce HSC activation through in-
creased expression. The mechanism is potentially involved 
in retinoid droplet stabilization and decreased catabolism.69 
HSC activation and transdifferentiation into MFBs appears 
to require retinol release and loss of lipid droplets, which 
may be essential to fuel this metabolically required cellular 
response.70 Although the exact mechanistic relationship be-
tween exosomes and retinoid metabolism in HSCs has not 
been defined, partial answers have been revealed in several 
studies. In a mouse model of acute liver injury induced by 
CCl4, combining vitamin A with adipose mesenchymal stem 
cell (ASC)-derived exosomes promoted the liver targeting 
of exosomes, and vitamin A-loaded ASC exosomes reduced 
the rapid senescence-like response.71 We hypothesized that 
HSCs received vitamin A-loaded ASC exosomes to allevi-
ate liver injury based on the characteristics of retinoid me-
tabolism in HSCs. More relevant in-depth research needs 
to be performed. Moreover, autophagy plays a crucial role 
in the deprivation of retinyl ester-containing lipid droplets 
and adipogenic factors in HSCs by a selective autophagy 
process known as lipophagy, thus determining the activated 
phenotype of HSCs.72,73 Emerging evidence indicates recip-
rocal regulation of autophagy and exosome biogenesis by 
intertwined molecular machinery. Therefore, HSC-derived 
exosomes involved in retinoid metabolism are inhibited by 
autophagy that prevents the extracellular release of ex-
osomes. Although the exact mechanistic relationship be-
tween exosomes and retinoid metabolism in HSCs has not 
yet been precisely examined, further investigation is neces-
sary to gain insight into the complete mechanism.

Lipid metabolism

A growing number of studies have found that several LD-
related proteins present during HSC activation regulate the 
activation of HSCs by regulating lipid metabolism, such as 
decreased expression of external perilipin 5 (Plin5)74 and liv-
er fatty acid-binding protein (L-Fabp).75 Moreover, emerging 
evidence indicates that exosomes play a central role in lipid 
metabolism of HSCs through cell-to-cell communication. A 
study on lipogenic enzymes in HSCs found that cancer cell-
derived exosomes have a significant and positive association 
with lipogenesis given that the levels of lipid contents, such 
as ATP citrate lyase (ACLY), fatty acid synthase (FASN) and 
ubiquitin-specific protease 2a (USP2a), were increased in ex-
osome-challenged HSCs.76 In addition, HSPC111 was identi-
fied as a leading upregulated gene in HSCs incubated with 
colorectal cancer (CRC) cell-derived exosomes. HSPC111 al-
tered the lipid metabolism of LX-2 by phosphorylating ACLY, 
revealing its promoting role in premetastatic niche formation 
and colorectal cancer liver metastases by reprogramming li-
pid metabolism in HSCs.77 Therefore, the available evidence 
suggests that exogenous exosomes greatly affect the activa-
tion of lipid metabolism in HSCs.

Glucose metabolism

Glucose metabolism plays an important role in the activa-
tion of HSCs, and aHSCs correspondingly upregulate glyco-
lysis to meet the energy requirements for the phenotypic 
transformation of MFBs. Importantly, modulation of glucose 
metabolism is not only a marker of the MFB phenotype but 
also contributes to activation.1,78 aHSCs in primary culture 
significantly enhance glucose transportation and glycolysis 
activity.79 Intriguingly, glucose transporters, including pyru-
vate dehydrogenase kinase 3 (PDK3),79 glucose transporter 
(GLUT) 1,79 GLUT2,80 and GLUT481 are expressed in pri-
mary mouse HSCs and human LX-2 cells. High extracellu-

lar glucose or purinergic signaling conditions modulate the 
expression of these glucose transported. Hypoxia inducible 
factor-1 alpha (HIF-1α) signaling enhances exosome se-
cretion from aHSCs and further stimulates HSC activation 
under hypoxic and inflammatory conditions.82 After infor-
mation transfer via exosomes, even under the condition of 
sufficient oxygen, HSCs still preferentially perform glycoly-
sis rather than oxidative phosphorylation to produce ATP, 
and this characteristic is called the Warburg effect. On the 
other hand, the increased glycolysis of cultured HSCs is ac-
companied by the diversion of central carbon metabolites 
from the citric acid cycle.83,84 Exosomes provide a mecha-
nism for the rapid induction of glycolysis to support meta-
bolic reprogramming from qHSCs to aHSCs to synchronize 
the stromal-cell injury response.

Protein metabolism

Our previous gene microarray analysis of tumor-activated 
HSCs showed a response to the stimulation of inflamma-
tion and tumors, and the considerable changes in genetic 
regulation and protein metabolism in aHSCs were associated 
with biological processes, molecular functions, and signaling 
pathways involved in the microenvironments of fibrogenesis, 
inflammation, and cancer.85 A comparative study of meta-
bolic genes differentially expressed between qHSCs and aH-
SCs showed that only 6% of such genes were involved in 
carbohydrate metabolism, whereas 38% were involved in 
protein metabolism.59 Interestingly, the transformation of 
glutamine decomposition is particularly important in the pro-
cess of protein metabolism. Recently, proteomic analysis of 
extracellular vesicles (EVs) from mouse HSCs found that the 
dynamic changes in the function and proteome composition 
of HSC-derived EVs during cell activation likely contributed to 
the regulation of HSC function and fine-tuning of fibrogenic 
pathways in the liver.86 In fact, exosomes have an impor-
tant role in crosstalk between HSCs and hepatocytes, hepatic 
macrophages, or other types of cells, as they transfer their 
cargo, such as proteins and genes to recipient cells, and the 
exosomal miRNA profile is also altered.87 Numerous reports 
have demonstrated that HSC-derived exosomes actively par-
ticipate in the pathological changes of various liver diseases, 
all of which are achieved by changes in the protein levels of 
key signaling pathway molecules.88–91

Mitochondrial metabolism

Compared to qHSCs with limited mitochondria, aHSCs have 
abundant mitochondria. During mitochondrial metabolism 
in aHSCs, the distinctive increase in mitochondrial mem-
brane potential could sensitize the “bioenergetic signature” 
of fibrogenic HSCs for selective inhibition by mitotropic 
doxorubicin.92 To date, related research on the effects of 
exosomes from HSCs on mitochondrial metabolism is lim-
ited. However, several reports have provided evidence that 
paracrine exosomes, especially from hepatocytes, influence 
mitochondrial metabolism in HSCs through cell-to-cell com-
munication in pathological conditions. Dong et al.93 noted 
that exosomes from hepatocytes (L-02 cells) treated with 
citreoviridin, a mycotoxin and ectopic ATP synthase inhibi-
tor, induced mitochondrial calcium accumulation in aHSCs. 
In turn, pharmacological inhibition of mitochondrial calcium 
uptake alleviated the exosome-activated fibrogenic response 
in aHSCs, shedding light on a potential new mechanism un-
derlying liver fibrosis. Another finding confirmed that liver 
injury (CCl4 or acetaminophen) resulted in mitochondrial 
dysfunction and the subsequent release of mitochondrial 
DNA from injured hepatocytes to normal hepatocytes and 
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aHSCs through EVs, finally mediating fibrogenic respons-
es in aHSCs.94 Notably, mesenchymal stem cell (MSC)-
exosomes alleviated liver fibrosis by triggering HSC fer-
roptosis mechanistically by promoting ferroptosis-like cell 
death, mitochondrial dysfunction, and lipid peroxidation in 
aHSCs.95 In the future, the direct effect of HSC-derived ex-
osomes on mitochondrial metabolism in HSCs should not be 
underestimated. The pathophysiological role of HSC-derived 
exosomes is summarized in Figure 1 and Table 1.

Roles of HSC-derived exosomes in liver diseases

Nonalcoholic fatty liver disease

Pathogenetic metabolic mechanisms, including hepatic glu-
cose and lipid metabolism, macrophage dysfunction, bile acid 
toxicity, and HSC activation, are responsible for the develop-
ment of nonalcoholic fatty liver disease (NAFLD).96 The pres-
ence of exosomes in hepatocytes, adipocytes, and HSCs in the 
hepatic environment accelerates the progression of NAFLD. 
To date, there is no direct research evidence of the role of 
HSC-derived exosomes in NAFLD; however, several studies 
indirectly reveal the functional characteristics of those ex-
osomes. For example, adipocyte exosomes cause dysregula-
tion of the TGF-β pathway after integration into hepatocytes 
and HSCs, offering insight into the possible pathogenesis of 
NAFLD.97 High levels of miR-1297 in exosomes derived from 
lipotoxic hepatocytes promote HSC activation and prolifera-
tion through the PTEN/PI3K/Akt signaling pathway, acceler-
ating the progression of NAFLD and leading to fibrosis.98 In 
NAFLD patients and mouse models, exosomal miR-27a dam-
age the mitochondria in aHSCs and stimulate the activation 
and proliferation of HSC-derived fibroblasts, which could be 
further aggravated by lipotoxic fatty acids.20 Whether NAFLD 
aggravation results from excess production and direction in-
duction of exosomes in HSCs remains debated.

Chronic viral hepatitis

Exosomes contribute to the life cycle of hepatitis viruses, 
including replication, transition, and pathogenesis.99 Hepa-
titis viruses (HBV100,101 and HCV102,103) efficiently transfer 
bioactive components utilizing the exosome pathway from 
infected cells to naïve cells. Additionally, hepatitis B virus 
e antigen was demonstrated to induce the activation of 
HSCs.104,105 HSC activation is closely related to liver fibrosis 
in chronic hepatitis virus infection by some classic fibrogen-
ic signals, such as α-SMA,106 collagen I,107 TGF-β,108 and 
platelet-derived growth factor-B (PDGF-B).109 Once those 
signaling molecules in HSCs are activated, the correspond-
ing expression pattern in HSC-derived exosomes is des-
tined to change, thereby enhancing the crosstalk between 
hepatocytes and the stromal environment, facilitating viral 
transmission and aggravating hepatocyte damage.110 The 
exosome-associated tetraspanin CD63, including secretions 
from HSCs, contributes to the efficient assembly and re-
lease of HBV. Ninomiya et al.101 found that the HBV particles 
from CD63-depleted cells markedly induce the loss of large 
hepatitis B surface antigens and downregulate infectivity of 
the HBV. Extracellular factors that interfere with HSCs, es-
pecially infected hepatocyte-derived exosomes, also have 
critical roles in chronic viral hepatitis-related liver diseases. 
Related studies have demonstrated that exosomes from viral 
hepatitis-replicating hepatocytes transfer various miRNAs 
(e.g., miR-19a,102 miR-192,111 and miR-222112) into HSCs 
to upregulate fibrogenic molecules, resulting in activation, 
and transdifferentiation into MBFs. A detailed understanding 

of the mechanisms associated with HSC-derived exosomes 
at the molecular level may contribute to the development of 
a new therapy direction to prevent hepatitis virus infection.

Acute liver injury

Considerable evidence has suggested that exosomes have 
important roles not only in the pathogenic progression of 
chronic liver disease but also in the initial onset of acute 
liver injury.113–115 HSC-derived exosomes are considered to 
be one of the most prominent indicators of the degree of 
liver damage,21 which is supported by a series of experi-
mental studies. To date, most investigations of HSC-derived 
exosomes on liver damage have focused on chronic liver 
injury and persisting consequences that result in acute liver 
injury. Wan et al.116 provided clues regarding the involve-
ment of HSCs in which inhibition of HIF-1 in exosomes re-
leased from HSCs suppressed the increased expression of 
pyruvate kinase M2 (PKM2) and GLUT1, markers of glycoly-
sis, thus quickly reducing hepatocyte damage in the glyco-
lysis pathway. Conversely, HSC-derived EVs protect hepato-
cytes from toxic-induced acute damage. Of note, HSC-MVs 
dose-dependently improved the viability of hepatocytes, 
inhibited hepatocyte apoptosis, increased the expression 
levels of lactate dehydrogenase, alanine aminotransami-
nase, and aspartate aminotransferase induced by n-acetyl-
p-aminophenol n-(APAP) or H2O2, and activated caspase-3 
expression.117 Following acute liver injury, damaged hepat-
ocyte-derived exosome-treated HSCs inversely stimulated 
γδ T cells to produce IL17A by increasing the expression of 
RORγt and combining with unknown self-TLR3 ligands. The 
finding suggests a regulatory response of HSCs recruited 
from exosomes of hepatocytes containing unknown me-
diators, such as miRNAs, at early stages of liver injury.118 
Therefore, with the exception of HSCs, exosomes from a 
variety of cell types participate in the process of acute liver 
injury through intercellular information transmission.

Alcoholic liver disease

Recent studies suggest that HSCs regulates parenchymal 
cell injury and inflammation that drive fibrogenesis in alco-
hol-related liver disease (ALD), but the mechanism remains 
incompletely defined.119,120 Accordingly, the pathophysi-
ological role of exosomes associated with HSCs in ALD is 
increasingly recognized based on their properties of cell-to-
cell communication. First, in ALD liver injury, serum/plasma 
miR-122 and miR-155 levels were predominantly associated 
with the exosome-rich fraction,121 and the number of ex-
osomes was significantly increased in serum,122 indicating 
that microRNAs (miRNAs) and exosomes may be biomark-
ers of liver damage and inflammation during the process of 
ALD. Consistently, exposure to alcohol and its metabolites 
can enhance the expression of profibrotic markers in HSCs, 
concomitant with significantly increased miR19b and miR92 
in HSC-derived exosomes.123 Furthermore, as a principal 
target of hepatocyte-derived exosomes, HSCs could receive 
the delivery of exosomal RNA payload in hepatocytes at 
intrinsic levels through the release of exosomes by donor 
hepatocytes, which occurs downstream of heparin- or inte-
grin-dependent binding interactions.124 The studies provide 
insight into endogenous and exogenous exosomes in aHSCs 
as therapeutic targets for ALD liver injury.

Liver fibrosis

Liver fibrosis results from the dynamic net accumulation of 
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Table 1.  Summary of the mechanisms of HSC-derived and HSC-associated exosomes in various liver diseases

Disease
Cellular 
origin of 
exosomes

Content Mechanism Refer-
ence

NAFLD Adipocytes TGF-β pathway Adipocyte-derived exosomes could cause 
dysregulation of the TGF-β pathway after integration 
into hepatocytes and HSCs in NAFLD

97

Lipotoxic 
hepatocytes

miR-1297-PTEN/
PI3K/Akt

miR-1297 secreted from lipotoxic hepatocytes 
could promote the activation and proliferation of 
HSCs through PTEN/PI3K/Akt signaling pathway, 
accelerating the progress of MAFLD and fibrosis

98

Hepatocytes miR-27a Exosomal miR-27a overexpression could damage 
mitochondria in a-HSCs, and promote the production 
of ROS, and stimulate the activation and proliferation 
of HSC-derived fibroblasts, finally, lipotoxic fatty 
acids further aggravated this phenomenon

20

Chronic viral 
hepatitis

HSCs Classic 
fibrogenic signal

α-SMA, collagen I, TGF-β and PDGF-B in HSCs were 
activated, and then the corresponding expression pattern 
in HSCs-derived exosomes was destined to change and 
facilitate viral transmission and hepatocyte damage

106–109

HSCs Tetraspanin 
CD63

The exosome-associated tetraspanin CD63, including 
secretions from HSCs, contributes to the efficient assembly 
and release of HBV. The HBV particles from CD63-depleted 
cells markedly induce a loss of large hepatitis B surface 
antigens, then downregulate infectivity of the HBV

101

HCV-infected 
hepatocytes

miR-19a Exosomes from hepatocytes infected with HCV could 
regulate the SOCS-STAT3 axis and activate HSC via miR-19a

102

HCV-infected 
hepatocytes

miR-192 Exosomes derived from hepatocytes infected with HCV also 
transferred miR-192 to HSCs and then promoted fibrosis

111

HBV-infected 
hepatocytes

miR-222 Expression level of miR-222 was significantly increased 
in the exosomes from HBV infected hepatocytes, 
and significantly enhanced the activation of HSCs 
by inhibiting TFRC and TFRC induced ferroptosis

112

Acute liver 
injury

HSCs HIF-PKM2/
GLUT1

HIF-1 in exosomes of HSCs inhibited the increased 
expression of PKM2 and GLUT1, and then, reduced 
hepatocyte damage in the glycolysis pathway

116

HSCs n-APAP /H2O2 HSC-MVs dose-dependently increased the viability of 
hepatocytes and increased expression levels of LDH, ALT, 
and AST, and suppressed the hepatocytes apoptosis induced 
by n-APAP or H2O2 and activated caspase-3 expression

117

Damaged 
hepatocytes

RORγt-IL-17A Hepatocyte-derived exosome-affected HSCs 
inversely promoted γδT cells to produce IL-
17A via increasing the expression of RORγt and 
combine with unknown self-TLR3 ligands

118

ALD Serum/plasma miR-122, 
miR-155

miR-122 and miR-155 were predominantly associated 
with the exosome-rich fraction after liver damage and 
inflammation stimulation during the process of ALD

121

HSCs miR19b, miR92 Expression levels of miR19b and miR92 in HSC-derived 
exosomes were increased after alcohol exposure

123

Hepatocytes Heparin/integrin HSCs received the delivery of exosomal RNA payload 
in donor hepatocytes via downstream of heparin- 
or integrin-dependent binding interactions

123

Liver fibrosis HSCs CCN2 HSC exosomal CCN2 in conjunction with other exosome 
constituents may amplify or fine tune fibrogenic signaling

127

PMFs VEGF-VEGFR2 PMFs release particles containing VEGF and 
activate VEGF receptor 2 in endothelial cells, 
thus greatly promoting angiogenesis

128

(continued)
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ECM due to chronic liver injury based on the abovemen-
tioned etiology. The process mainly involves intercellular 
communication between HSCs and inflammation-damaged 
hepatocytes.29,125,126 In hepatic fibrosis, diverse intracel-
lular signaling cascades maintain the activated phenotype 
and control the fibrogenic and proliferative state of HSCs. 
Exosomes represent an emerging means of intercellular 
signaling in the inflammation-irritated liver microenviron-
ment undergoing coordinated immune responses to liver 
repair. HSC exosomal CCN2 in conjunction with other exo-
some constituents induces shifts between qHSCs or aHSCs 
and may amplify or fine tune fibrogenic signaling.127 In the 
study of hepatic fibrosis caused by portal vein dilation, por-
tal vein myofibroblasts (PMFs), which are transdifferenti-
ated from aHSCs, act the key cells of hepatic vascular re-
modeling. PMFs release microvesicles containing VEGF and 
activate VEGF receptor 2 in SECs, thus greatly promoting 
angiogenesis and providing a larger fibrotic skeleton for liv-
er cirrhosis.128 Benbow et al.90 found that activated human 
HSC exosomes stimulated macrophage IL6 and TNF-α syn-
thesis and release as well as macrophage migration, which 
was innately linked to the hepatic immune response to fi-
brosis. In addition, PDGF-treated HSCs released exosomes 
containing biologically active Hh ligands and induced similar 
Hh-dependent changes in hepatic sinusoidal endothelial cell 
(SEC) gene expression, suggesting a novel mechanism for 
vascular remodeling during cirrhosis.129 Based on the signal 
transduction and biological effects exerted by exosomes, 
mouse liver AML12 cell exosomes encapsulating the CRIS-
PR/dCas9-VP64 system were delivered to HSCs. In turn, the 
engineered HSC-derived exosomes together with activated 
hepatocyte nuclear factor 4 alpha (HNF4α) partially induced 
the transdifferentiation of HSCs to a hepatocyte-like phe-
notype.130 Similarly, human induced pluripotent stem cell 
(iPSC)-derived exosomal miR-92a-3p and miR-302-3p,131 
liver stem cell-derived EV miR-146a-5p,132 and SEC-de-

rived exosomal SphK1133 shuttled profibrotic transcripts 
into HSCs and alleviated the fibrotic phenotype of HSCs. 
Together, the fibrogenesis mechanisms involved are not yet 
completely understood, but the findings suggest that imbal-
ance of diverse extra- and intra-HSC-exosomal profibrotic 
or antifibrotic factors may determine the development of 
liver fibrosis.

Liver cancer

Chronic liver disease with fibroinflammation contributes not 
only to fibrosis but also hepatocyte regeneration as well as 
replication-induced DNA damage, all of which may promote 
the development of liver cancer.134–139 Extensive data have 
described exosomes as carriers of various cargoes conveying 
cellular information that enables them to serve as important 
players in malignant cell–nonmalignant cell communication 
during cancer developemnt.88,140–142 miRNA expression pro-
filing of HSCs cocultured with liver cancer cells showed that 
miR-148a-3p was significantly reduced in HSCs.88 Subse-
quent studies demonstrated that aHSC exosome-depleted 
miR-148a-3p accelerated hepatocellular carcinoma (HCC) 
progression through the ITGA5/PI3K/Akt axis. To validate 
the effects of HSC-derived exosomes on effective intercel-
lular transportation and information integration, Peng, et 
al.89 provided related evidence that aHSC exosomal DHFR 
induced M1 macrophage polarization of M0 macrophages. 
Two interesting studies verified that the exosomes secreted 
by qHSCs do not have the ability to affect liver cancer cells, 
whereas senescent HSC or aHSC exosomes promote the 
progression of HCC.143,144 In the tumor microenvironment, 
cancer cell-derived exosomes and HSC-derived exosomes 
mediate intercellular communication and form a positive 
feedback loop, thereby jointly constructing a prometastatic 
milieu suitable for the invasion and metastasis of tumor 

Disease
Cellular 
origin of 
exosomes

Content Mechanism Refer-
ence

HSCs IL-6,TNFα Activated human HSCs-exosomes stimulated 
macrophage IL-6 and TNFα synthesis and release 
and macrophage migration, in fibrosis

90

HSCs PDGF-Hh ligands PDGF-treated HSCs released exosomal Hh ligands 
and induced similar Hh-dependent changes in hepatic 
sinusoidal endothelial cells gene expression

129

HSCs HNF4α HSC-derived exosomes together with activated 
HNF4α partially induced the transdifferentiation 
of HSCs to hepatocyte-like phenotype

128

Stem cells miR-92a-3p, 
miR-302-3p, 
miR-146a-
5p, SphK1

Human iPSCs-derived exosomal miR-92a-3p and miR-302-
3p, liver stem cell-derived EVs miR-146a-5p and SECs-
derived exosomal SphK1 shuttled profibrotic transcripts 
into HSCs, and alleviated fibrotic phenotype of HSCs

131–133

Liver cancer HSCs miR-148a-3p Activated HSC exosome-depleted miR-148a-3p accelerated 
HCC progression through ITGA5/PI3K/Akt axis

88

HSCs DHFR Activated HSC exosomal DHFR induced M1 macrophage 
polarization of M0 macrophage enhancement

89

ALT, alanine aminotransferase; AST, aspartate aminotransferase; ALD, alcohol-related liver disease; α-SMA, alpha-smooth muscle actin; CCN2, connective tissue growth 
factor; DHFR, dihydrofolate reductase; GLUT1, glucose transporter-1; HSC, hepatic stellate cell; HIF-1, hypoxia inducible factor-1; HCV, hepatitis C virus; HBV, hepatitis 
B virus; HCC, hepatocellular carcinoma; HNF4α, hepatocyte nuclear factor 4 alpha; iPSC, induced pluripotent stem cells; ITGA5, integrin alpha 5; LDH, lactic dehydro-
genase; MV, extracellular vesicles; MAFLD, metabolic associated fatty liver disease; n-APAP, n-acetyl-p-aminophenol; NAFLD, nonalcoholic fatty liver disease; PTEN, 
phosphatase and tensin homolog; PDGF-B, platelet-derived growth factor-B; PMF, portal vein myofibroblasts; PI3K, phosphatidylinositol 3-kinase; RORγt, retinoic acid 
receptor-related orphan receptor γt; ROS, reactive oxygen species; SOCS, suppressor of cytokine signaling; STAT3, signal transducer and activator of transcription 3; 
SEC, sinusoidal endothelial cells; SphK1, sphingosine kinase 1; TLR3, toll-like receptor 3; TGF-β, transforming growth factor beta; TFRC, transferrin receptor; TNFα, 
tumor necrosis factor alpha; VEGF, vascular endothelial growth factor.

Table 1.  (continued)
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cells.145 After the education of pancreatic cancer cells74 or 
colorectal cancer cells77 by exosomes, aHSCs were identi-
fied as a component of the potential premetastatic niche 
that promotes liver metastasis. The detailed mechanisms 
of HSC-derived or HSC-associated exosomes in tumor inva-
sion and metastasis remain incompletely characterized and 
more in-depth research work needs to be performed. The 
roles of HSC-derived exosomes in liver diseases are sum-
marized in Figure 2.

Clinical value of HSC-derived exosomes in liver dis-
eases

Currently, early and accurate diagnostic, therapeutic and 
prognostic biomarkers of various liver diseases are lacking. 
Additionally, there are relatively few applied and transla-
tional studies of HSC-derived exosomes in liver diseases. 
Most relevant studies focus on exosomes derived from 
hepatocytes, nonparenchymal cells and nonparenchymal 
immune cells or exosomal mRNAs and ncRNAs, such as 
lncRNAs, miRNAs, and circRNAs. Recently, as potential bio-
markers assessed by liquid biopsy, the safety and reliability 
of methods used to evaluate exosomes in patients and the 
therapeutic effect of exosomes have been evaluated in vari-
ous liver diseases, such as ALD,146 NAFLD,147 viral hepati-
tis,148 fibrosis,149 and liver cancer.150

HSC-associated exosomes may offer potential clinical 
benefits for liver diseases, mainly fibrosis and cancer. In 
fibrosis, as mentioned above,116 HSC exosomal GLUT1 and 
PKM2 interfere with the metabolic activity of liver nonparen-
chymal cells around the liver through the glycolytic path-
way, representing a new therapeutic target of liver fibrosis. 
Regarding extracellular exosomes targeted to HSCs, M2 
macrophage-derived exosomal miR-411-5p inhibited HSC 
activation to inactivate stellate cells in an NAFLD model 
by directly downregulating the expression of calmodulin-
regulated spectrin-associated protein 1 (CAMSAP1). Thus, 
an exosomal miR-411-5p inhibitor may serve as a poten-
tial therapeutic target for NAFLD and fibrosis.35 Similarly, 
through targeting HSCs, several exosomal microRNAs origi-
nating from other cell types, such as liver stem cells (miR-
141-3p151 and miR-146a-5p132) and hepatocytes (miRNA-
26b,152 miRNA-107,153 and miR-19a102) have biological 
effects that influence the fibrogenic phenotype of HSCs.

In the liver cancer microenvironment, on the one hand, 
HSC exosomal microRNAs and mRNAs (miR-148a-3p88 and 
DHFR89) participate in the malignant behavior of tumors via 
intercellular information shuttling. On the other hand, ex-
osomes from liver cancer cells stimulate multiple signaling 
pathways (IGF2-PI3K.154 HSPC111-CXCL5-CXCR2,77 IL-6-
STAT3,155 and MIRLET7BHG-miR-330-5p-SMO156 axes) in 
HSCs, subsequently contribute to tumor development and 
consequently provide potential targets for the prevention 
and treatment of liver cancer. The studies suggest that exo-

Fig. 2.  Brief summary of the roles of HSC-derived exosomes in liver diseases and involved molecules and signaling pathways. Various types of cells, such 
as hepatocytes, macrophages, adipocytes, and endothelial cells, exhibit intercellular communication with HSCs via extracellular vesicles (EVs) and significantly affect 
the processes associated with various liver diseases, such as acute liver injury, alcoholic liver disease, nonalcoholic fatty liver disease, viral hepatitis, fibrosis, and cancer, 
through the modulation of some critical molecules and signaling pathways. HSC, hepatic stellate cell. EVs, extracellular vesicles.
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somal miRNAs and mRNAs derived from HSCs or targeted to 
HSCs are major regulators of tumor homeostasis and have 
bright prospects for clinical application.

Conclusions and perspectives

As multifaceted regulators in liver diseases responding to 
their activated state, HSCs generate corresponding cy-
tokines and microRNAs that interact with adjacent cells 
during changes in glucose metabolism, lipid metabolism, 
amino acid metabolism, protein metabolism, and mitochon-
drial metabolism, in which HSC-derived exosomes have im-
portant roles. During the activation process, the metabolic 
regulation of HSC-derived exosomes may provide impor-
tant information regarding the prevention and treatment 
of various liver diseases. An increasing number of studies 
highlight key extra- and intracellular exosomal pathways in-
volved in HSC activation. In the near future, more in-depth 
research data are urgently needed to provide references 
for the potential translational and clinical application of ex-
osomes derived from or associated with HSCs for various 
liver diseases.
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