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Abstract: Malaria, affecting all continents, remains one of the life-threatening diseases introduced by
parasites that are transmitted to humans through the bites of infected Anopheles mosquitoes. Although
insecticides are currently used to reduce malaria transmission, their safety concern for living systems,
as well as the environment, is a growing problem. Therefore, the discovery of novel, less toxic,
and environmentally safe molecules to effectively combat the control of these vectors is in high demand.
In order to identify new potential larvicidal agents, a series of 2-aryl-1,2-dihydroquinazolin-4-one
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derivatives were synthesized and evaluated for their larvicidal activity against Anopheles arabiensis.
The in silico absorption, distribution, metabolism, excretion, and toxicity (ADMET) properties of the
compounds were also investigated and most of the derivatives possessed a favorable ADMET profile.
Computational modeling studies of the title compounds demonstrated a favorable binding interaction
against the acetylcholinesterase enzyme molecular target. Thus, 2-aryl-1,2-dihydroquinazolin-4-ones
were identified as a novel class of Anopheles arabiensis insecticides which can be used as lead molecules
for the further development of more potent and safer larvicidal agents for treating malaria.

Keywords: Anopheles arabiensis; larvicidal activity; 2,3-dihydroquinazolin-4-one; docking; ADMET;
crystallography; graphene oxide

1. Introduction

Malaria is considered as one of the challenging life-threatening diseases initiated by parasites
that are transmitted to humans through the bites of infected Anopheles mosquitoes. Both genders
are affected, leading to severe health and socioeconomically negative impacts. Recently, the World
Health Organization (WHO) reported in 2018 that there were an estimated 228 million cases of
malaria that spread in 87 countries. The mortality rate of malaria was found to be 405,000 in 2018 [1].
The Anopheles arabiensis mosquito is considered as one of the major vectors of malaria. The origin of
infection starts with a bite from an infected female mosquito, where the parasite is delivered into the
circulatory system and ultimately to the liver, where it becomes mature and reproduces [2]. Many
approaches and strategies for the management of malaria were developed. One of the most effective
strategies is to eliminate the vector through environmental modifications, biological control, use of
long-lasting insecticidal nets (LLINs), and indoor residual spraying (IRS). Another effective strategy is
to eradicate mosquitos at the larval stage by preventing their development.

Organophosphates and carbamates are two major classes of synthetic insecticides known to
inactivate acetylcholinesterase (AChE), and they are currently used in combating malaria. However,
their use raises concerns regarding safety issues for the living system and the environment [3].
For instance, the most popular insecticide organophosphorus Temephos is a mutagenic compound and
is unsafe for human beings. In addition, insecticide resistance is becoming increasingly alarming and
threatens the management of vectors, thereby leading to prioritizing the development of new potent
and safer biologically active heterocyclic compounds as well as to aid in resistance management [4].
There are certain reports concerning the larvicidal activity of synthetic compounds [5–12].

The 2,3-dihydroquinazolin-4(1H)-ones (2,3-DHQs) are fused heterocyclic compounds which exist in
natural products such as luotonins A, B, E, and F [13], tryptanthrin [14], and rutaecarpine [15]. 2,3-DHQs
possess a broad range of pharmacological properties such as anti-cancer [16,17], antidepressant [18],
antidiabetic [19], antifungal [20], antihypertensive [21,22], analgesic, anti-inflammatory [23,24],
antibacterial [25], antioxidant [26], and antiviral [27] activities; they also act as bronchodilator [28],
centrally acting muscle relaxant [29], diuretic [30], sedative, and hypnotic [31] agents (Figure 1).
Quinazoline derivatives were also reported as bactericides [32], fungicides [33], and insecticides [34].

In recent years, green and sustainable chemistry drew much attention for the generation of new
chemical methods with less environmental impact. In this regard, graphene oxide (GO), a carbocatalyst,
attracted our attention for the preparation of quinazoline derivatives due to its non-hazardous nature
and the fact that it is easy to remove from the reaction mixture.

In continuation of our efforts in developing larvicidal agents [35–40] and pharmacologically active
heterocyclic compounds via green and microwave methods [41–43], we report herein the synthesis of
2,3-dihydroquinazolin-4(1H)-one derivatives, a biological evaluation of their larvicidal activity against
Anopheles arabiensis, and an in silico evaluation of their absorption, distribution, metabolism, excretion,
and toxicity (ADMET) properties as well as molecular target investigation.
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Figure 1. Representatives of 2,3-dihydroquinazolin-4(1H)-one derivatives as therapeutic agents.

2. Results and Discussion

2.1. Chemistry

An efficient protocol was reported for the synthesis of 2-(substituted phenyl)-2,3-dihydroquinazolin-
4(1H)-ones using graphene oxide as carbocatalyst [44]. The title compounds (3a–n) were prepared in
excellent yields as racemic mixtures (Table 1) via direct one-pot condensation of anthranilamide (1)
with substituted aryl aldehydes (2) in the presence of GO, as depicted in Scheme 1.

The yields obtained were excellent in the range of 82–95%. The purity of the title compounds was
ascertained by high-performance liquid chromatography (HPLC), and it was found to be over 99%.
Fourier-transform infrared spectroscopy (FT-IR) of 2,3-dihydroquinazolin-4(1H) one analogues (3a–n)
revealed a secondary amine and carbonyl carbon of six-membered heterocyclic rings in the ranges
of 3296–3382 and 1614–1660 cm−1, respectively. The title compounds 3c, 3m, and 3n exhibited broad
peaks for a phenolic hydroxyl group at 3357, 3396, and 3355 cm−1, respectively. Stretching of the cyano
group was observed at 2223 cm−1 for compound 3b. Compound 3d exhibited a peak at 1163 cm−1

for carbon–fluorine stretching. Proton NMR spectra of the title compounds (3a–n) revealed a singlet
signal corresponding to methine proton (–CH–) of the six-membered heterocyclic rings in the range of
δ = 5.57–6.08 ppm. Compounds 3a–j and 3l–n revealed a singlet for an amide –CONH– functional
group in the range of δ = 8.10–8.57 ppm, whereas derivative 3k revealed a singlet at δ = 8.09 ppm
for a secondary amine in the imidazole ring system. Title compounds 3c and 3n as mono-hydroxy
derivatives exhibited a singlet at δ = 9.53 ppm, whereas compound 3m exhibited a singlet for a hydroxy
group at δ = 11.66 ppm. For all the title compounds, aromatic protons were observed as a singlet,
doublet, doublet of a doublet, and multiplet depending on the substitution on the phenyl ring in the
range of δ = 8.18–5.57. Title compound 3a exhibited a singlet signal attributed to methoxy group
at 3.75 ppm, whereas compound 3g exhibited two signals for methoxy group at 3.75 and 3.77 ppm.
The dimethylamino group was observed as a singlet for compound 3h at 2.88 ppm. Compound 3l
exhibited a singlet signal for methoxy at 3.98 ppm. 13C-NMR spectra of compounds 3a–n exhibited a
singlet signal corresponding to a carbonyl signal in the range of δ = 163.39–163.86 ppm. The elemental
analysis results were within ±0.4% of the calculated values. ChemDraw 16.0.1.4v professional was
used to calculate the cLogP values of the title compounds (3a–n), and it was found to be in the range of
0.1488–3.4428.
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Table 1. Physicochemical characteristics of 2-(substituted phenyl)-2,3-dihydroquinazolin-4(1H)-ones (3a–n).

Compound
Code Ar Molecular Formula

(Molecular Mass)
Yield
(%)

m.p (◦C)
Reported

mp (◦C)
Found cLogP References CAS Number

3a 4-OCH3-Ph C15H14N2O2 (254) 95 182–183 181–182 2.2388 [45] 61195-16-2
3b 4-CN-Ph C15H11N3O (249) 92 178–180 178–180 1.7528 [44] 219619-59-7
3c 3-OH-Ph C14H12N2O2 (240) 91 184–186 185–187 1.6528 [46] 107922-06-5
3d 4-OCF3-Ph C15H11F3N2O2 (308) 94 194–196 195–196 3.3478 [47] 685505-75-3
3e 3-I-Ph C14H11IN2O (349) 92 – 153–155 3.4428 Novel Compound
3f 4-Cl-Ph C14H11ClN2O (258) 87 197–198 198–199 3.0328 [44] 13165-11-2
3g 3,4-diOCH3-Ph C16H16N2O3 (284) 88 214–216 213–215 1.9778 [46] 126492-17-9
3h 4-N,N dimethyl-Ph C16H17N3O (267) 93 209–211 210–211 2.4848 [48] 66181-66-6
3i 3-NO2-Ph C14H11N3O3 (269) 91 192–194 192–1193 2.0628 [44] 26029-30-1
3j 4-F-Ph C14H11FN2O (242) 91 196–198 197–198 2.4628 [48] 359605-44-0
3k Imidazole C11H10N4O (214) 87 – 156–158 0.1488 Novel Compound
3l 2-OCH3-4-NO2-Ph C15H13N3O4 (299) 93 – 149–151 2.2818 Novel Compound

3m 2-OH, 5-NO2-Ph C14H11N3O4 (285) 89 244–246 245–246 1.9818 [49] 1794721-69-9
3n 4-OH-Ph C14H12N2O2 (240) 95 209–211 210–211 1.6528 [50] 107920-18-3

Ar: Aromatic; m.p: Melting point; CAS: Chemical Abstracts Service.
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Scheme 1. Synthetic scheme for the construction of 2-(substituted phenyl)-2,3-dihydroquinazolin-
4(1H)-ones (3a–n). Reagents and conditions: (a) graphene oxide (2.5%), water, stirred at room
temperature; yield 82–95%.

2.2. Crystallography

Crystal Structure Analysis of 2-(3,4-Dimethoxyphenyl)-2,3-dihydroquinazolin-4(1H)-one (3g)

The compound 3g crystallized in the monoclinic centrosymmetric space group P21/n with Z = 4
(Table 2). Figure 2 gives the Oak Ridge Thermal Ellipsoid Plot (ORTEP) view of the title compound
and crystal data was deposited in Cambridge Crystallographic Data Centre (CCDC) with its number
1983734. The molecular conformation of the central ring exists in the envelope conformation, with the
displacement of the atom C8 from the mean plane passing through C1–C6–C7–N2–N1 being around
0.624 (3) Å. The torsion angle N1–C8–C9–C10 is 44.3(3) indicating conformational flexibility of the
molecule with respect to the C8–C9 bond. The crystal structure is connected via strong N–H···O
hydrogen bonds (H-bonds) (involving H2/O3) along with C–H···O interactions (involving H16C/O1)
forming a dimer (Table 3). This dimer is further supported via additional N–H···O H-bonds (involving
H1/O2) and C–H···O intermolecular interactions (involving H2C/H3 with O1 and H2C with O3),
forming a tetramer which is further connected with similar tetramers via van der Waals interactions
(Figure 3).

Table 2. Single-crystal X-ray data of title compound 2-(3,4-dimethoxyphenyl)-2,3-dihydroquinazolin-
4(1H)-one (3g).

CCDC Number 1983734

Molecular Formula C16H16N2O3
Molecular weight 284.31

Temperature 173(2)
Crystal Size (mm) 0.2, 0.110, 0.040

Absorption coefficient (mm−1) 0.096
Tmin, Tmax 0.981, 0.996

Crystal system Monoclinic
Lattice parameters: a (Å), b (Å), c (Å) 7.8881(6), 20.2194 (13), 8.9638 (6)

α, β, γ (◦) 90, 104.887(3), 90
Space Group, Density, Z, Z′ P21/n, 1.367, 4, 1
hmin, max; kmin, max; lmin, max; −8, 10; −26, 26; −11, 11

Number of total/unique/observed reflections 13,538, 3403, 2321
No. of parameters 200

Independent reflections, Rint 3403, 0.0482
Rall, Robs 0.0879, 0.0544

wR2all, wR2obs 0.1425, 0.1221
∆ρmax, min (eÅ−3) 0.541, −0.269

goodness-of-fit (G.o.F) 1.029
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2.3. Larvicidal Activity

The larvicidal test of the racemic title compounds (3a–n) was conducted at a concentration of
4 µg/mL, where the positive control Temephos demonstrated 99% to 100% mortality. The larvicidal
action of the title compounds (3a–n) is described in Table 4. Significant larvicidal effects of the
compounds were observed (F = 26.48, p < 0.0001), with all the compounds resulting in a higher larval
mortality than exposure to the negative control. Moreover, there was no significant effect of exposure
time (F = 3.73, p = 0.06) on larval mortality, i.e., mortality did not significantly increase from 24 h to 48 h.
Compound 3d was the most lethal, resulting in 93% mortality, which was not statistically different from
exposure to the positive control Temephos (99% to 100% mortality). Compounds 3b, 3e, 3f, and 3j were
not statistically different from 3d, resulting in larval mortalities ranging from 87% to 91% mortality after
48 h. The least lethal compounds (3c, 3i, 3h, 3k, and 3n) resulted in mortalities ranging from 43% to 57%.
On the basis of the functionalization of aryl ring and the observed larvicidal effect, it would be possible
to establish the structure–activity relationships (SAR) of the title 2,3-dihydroquinazolin-4(1H)-one
analogues (3a–n). The SAR indicated that the presence of halogen at the para and meta position of
aryl was favorable for the bioactivity (3e (3-I), 3f (4-Cl), 3j (4-F)). The presence of the cyano group
(3b) and methoxy group (3a) at the 4-position of the aryl exhibited interesting insecticide action.
The replacement of the methoxy at the 4-position by a trifluoromethoxy group considerably enhanced
the larvicidal activity. However, the replacement of trifluoromethoxy by a hydroxyl group at the
4-position of aryl (3n) was detrimental to the activity. Similarly, weak activity was observed for the
compound 3c with a hydroxyl group at the meta position. When 3-OH was replaced by the nitro group
(3i), no bioactivity improvement was identified. Disubstituted aryl compounds 3g, 3l, and 3m showed
moderate activity against larvae. The presence of the dimethylamino group at the para position (4h)
was the least favorable substituent for the larvicidal activity. Lastly, the introduction of an imidazole
ring at the 2-position of quinazoline was unfavorable for the activity, showing only 46% mortality.
Additional information, such as ADMET properties and binding interactions, is needed in order to
explain the observed activity of the compound.

Table 4. Mortality of Anopheles arabiensis larvae exposed to test compounds 3a–n at 4 µg/mL.

Compound 24-h Mortality 48-h Mortality

3a (4-OCH3) 0.77 ± 0.04 d,e,f 0.83 ± 0.04 c,d,e

3b (4-CN) 0.86 ± 0.04 b,c,d,e 0.88 ± 0.03 b,c,d

3c (3-OH) 0.51 ± 0.05 h,i,j,k,l,m 0.57 ± 0.05 h,i,j,k,l

3d (4-OCF3) 0.91 ± 0.03 b,c 0.93 ± 0.03 a,b

3e (3-I) 0.82 ± 0.04 c,d,e 0.87 ± 0.04 b,c,d

3f (4-Cl) 0.87 ± 0.04 b,c,d 0.91 ± 0.03 b,c

3g (3,4-diOCH3) 0.62 ± 0.05 g,h,i,j 0.66 ± 0.05 f,g,h

3h (4-N(CH3)2) 0.41 ± 0.05 m 0.43 ± 0.05 l,m

3i (3-NO2) 0.52 ± 0.05 h,i,j,k,l,m 0.54 ± 0.05 h,i,j,k,l,m

3j (4-F) 0.89 ± 0.03 b,c 0.91 ± 0.03 b,c

3k (imidazole) 0.46 ± 0.05 k,l,m 0.48 ± 0.05 j,k,l,m

3l (2-OCH3, 4-NO2) 0.74 ± 0.05 e,f,g 0.77 ± 0.04 d,e,f

3m (2-OH, 5-NO2) 0.59 ± 0.05 h,i,j,k 0.64 ± 0.05 f,g,h,i

3n (4-OH) 0.50 ± 0.05 i,j,k,l,m 0.52 ± 0.05 h,i,j,k,l,m

Temephos 0.99 ± 0.01 a 1.00 ± 0.00 a

Acetone 0.01 ± 0.01 m 0.04 ± 0.02 n

Means ± standard errors are shown. a–m Compounds sharing a letter do not differ significantly (p > 0.05).

2.4. In Silico Absorption, Distribution, Metabolism, Excretion, and Toxicity (ADMET) Analysis

The ADMET properties of the derivatives (3a–n) were predicted using Accelrys Discovery
Studio 4.0 client, and they are reported in Table 5. This study revealed that many compounds were
predicted to possess good to excellent drug-likeness properties with the exception of compounds 3d
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(4-OCF3), 3e (3-I), and 3f (4-Cl). Blood–brain barrier penetration prediction indicated that only 3d,
3e, and 3f might have the ability to readily cross the brain cell membrane; hence, they may interact
with the central nervous system (CNS). The remaining compounds also showed favorable cell brain
permeability with the exception of derivatives 3i (2-OCH3, 4-NO2), 3k (imidazole), and 3m (2-OH,
5-NO2). Moreover, these compounds demonstrated elevated polar surface area (PSA) 2D, indicating
poor cell membrane penetration ability. All compounds were predicted to be absorbed through the
intestine to reach the bloodstream circulation and be transported through the plasma-binding carrier
protein to reach the desired molecular target with the exception of compound 3k (imidazole). As for
the drug metabolism aspect, no inhibition against Cytochrome P450 (CYP450) was predicted for
all the compounds, indicating favorable metabolic stability against CYP450 enzymes. However, all
compounds might demonstrate some toxicity toward liver cells, as indicated from the hepatotoxicity
prediction. In general, most of the compounds were observed to have a favorable ADMET profile.
As for the insecticide Temephos ADMET profile, it showed that Temephos was predicted to be a highly
penetrant molecule towards the cell brain membrane, explaining why Temephos provides its action to
the CNS as a potent acetylcholesterase inhibitor. On the basis of ADMET analysis, this study revealed
a clear correlation between the larvicidal activity and the blood–brain permeability of the compounds.
Indeed, the most potent derivatives 3d (4-OCF3), 3e (3-I), and 3f (4-Cl) were predicted to be highly
permeable towards the brain cell membrane, and the permeability of less active compounds was
predicted to be low and medium. This study indicates that the quinazolinones are more likely to act in
the CNS of larvae.

Table 5. In silico ADMET properties of quinazolines (3a–n) and Temephos.

Entry Solubility
Level

Blood–Brain
Barrier

Penetration
(BBB) Level

CYP450
Inhibition Hepatotoxicity

Intestinal
Absorption

Level

Plasma
Protein
Binding

AlogP PSA 2D

Temephos 2 0 - + 0 + 5.656 53.58
3a (4-OCH3) 3 2 - + 0 + 2.432 51.851

3b (4-CN) 3 2 - + 0 + 2.327 65.856
3c (3-OH) 3 2 - + 0 + 2.206 63.736

3d (4-OCF3) 1 1 - + 0 + 4.568 51.851
3e (3-I) 2 1 - + 0 + 3.026 42.921

3f (4-Cl) 2 1 - + 0 + 3.113 42.921
3g (3,4-diOCH3) 3 2 - + 0 + 2.415 60.781
3h (4-N(CH3)2) 3 2 - + 0 + 2.610 46.273

3i (3-NO2) 3 3 - + 0 + 2.343 85.744
3j (4-F) 3 2 - + 0 + 2.654 42.921

3k (imidazole) 4 3 - + 0 - 0.632 69.237
3l (2-OCH3, 4-NO2) 3 2 - + 0 + 2.326 94.674
3m (2-OH, 5-NO2) 3 3 - + 0 + 2.101 106.559

3n (4-OH) 3 2 - + 0 + 2.206 63.736

Criteria: solubility level/drug-likeness: 0, extremely low/no; 1, very low/possible; 2, low/yes; 3, good/yes;
4, optimal/yes. BBB level (blood–brain barrier): 0, very high penetrant; 1, high; 2, medium; 3, low; 4, undefined.
HIA level (human intestinal absorption): 0, good; 1, moderate; 2, poor; 3, very poor. PBB: plasma protein binding.

2.5. Molecular Modeling

On the basis of the preliminary structure–activity relationship of the 2,3-dihydroquinazolin-
4(1H)-one derivatives, we explored a variety of enzyme molecular targets in an attempt to identify
the mode of action via which the compounds exert their larvicidal effect. It is well known that AChE
represents the main molecular target of insecticides [51–55] and can be associated with the larvicidal
action of our compounds. However, some insecticide enzyme targets other than AChE were reported.
For instance, larvicidal inhibitors have the ability to bind to sterol carrier protein-2 [56], juvenile
hormone-binding protein [57], D7r4 a salivary biogenic amine-binding protein [58], calcium-dependent
protein kinase-1 [59], or purine nucleoside phosphorylase targets [60]. The binding investigation of the
dihydroquinazolines against the above-mentioned molecular targets allowed us to identify AChE as the
most plausible molecular target which corroborated with the predicted brain cell permeability [51–60].
No crystal structures of Anopheles arabienesis AChE from mosquito are deposited in the Protein Data
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Bank (PDB) so far. A crystal structure of Anopheles gambiae AChE of the malaria mosquito was recently
reported with a low structure resolution of 3.4 Å that may not be exploitable for docking study [61].
Another crystal structure of Anopheles gambiae AChE of the malaria insecticide-resistant mosquito
harboring a G119S mutation was deposited with a better resolution (2.26 Å) [54]. This mutation does
not appear to perturb the other amino acids in the catalytic site. Knutsson et al. reported the synthesis
and the larvicidal activity of some phenoxyacetamide derivatives [55]. An enzymatic assay of these
derivatives was conducted against four AChE1 enzymes (Anopheles gambiae mosquito, G119S mutation
Anopheles gambiae mosquito, mouse, and human), and it demonstrated good selectivity in favor of
both mosquito AChE1 enzymes as compared to that of human AChE. Moreover, the tested derivatives
showed a similar inhibition profile between the mosquito AChE1 and insecticide-resistant mutant
mosquito AChE1, as well as between the mouse and human AChE. In light of the enzymatic assay, it
appeared that the structure of insecticide resistant mutant mosquito AChE1 showed high structural
similarity to the non-mutant one. Hence, the insecticide-resistant mutant receptor would appear to be
a suitable receptor that can be used as a template for providing a structural understanding of the title
compounds’ potency.

The computational study was then conducted using the co-crystal enzyme G199S mutant AChE1
mosquito (PDB code: 6ARY), with Table 6 presenting the binding energy and the residue interactions.
It should be noted that the dihydroquinazoline derivatives 3a–n, possessing a chiral center in the
2-position of the quinazoline ring, exist as R and S stereoisomer. Therefore, the docking interaction
against the AChE target was conducted for each stereoisomer. The molecular modeling study revealed
that the binding energies of some dihydroquinazolines were greater than the binding energy of the
native ligand found in the co-crystal AChE 1. As for Temephos, we were unable to dock it in the
AChE active site of the insecticide-resistant mosquito, which corroborates its resistance to insecticide.
It was also predicted that, for the majority of derivatives, the R form was more tightly bound in the
receptor than the S form, with the exception of compounds 3a, 3i, and 3n. This may indicate that
the R stereoisomer would be more potent than its enantiomer. The docking analysis revealed that
the hydrophilic and the hydrophobic interactions contributed more or less equally to the observed
larvicidal effect of the derivatives with the exception of quinazoline 3f R (4-Cl). The potency of this
compound might be explained by its involvement in π–π interactions with residues Tyr 282 and Tyr
489, as well as the chlorine interaction involvement with the amino acid Trp 245. Another halogen
interaction was also observed for quinazoline 3e R (3-I) with residue Asn 246 and for 3d R (4-OCF3)
with residues Gly 278 and Glu 359. The quinazoline ring appeared to be an important pharmacophore
due to its capability of forming hydrogen bond donors from the NH and acceptors from the carbonyl,
as well as a hydrophobic interaction through π–π stacking with the fused aryl ring of quinazoline.
The most potent compound 3d (4-OCF3) displayed very good binding energy of −110.82 kJ/mol for the
R enantiomer, displaying three hydrogen bonding interactions with residues Gly 278 (CF3), Tyr 291
(CF3), and Tyr 489 (NH quinazoline), as well as stacking interactions with residues Trp 245 and Tyr 282.
In general, the amino-acid residues Trp 245, Tyr 282, and Tyr 489 were implicated in π–π interactions
with the quinazoline ring and the aromatic ring at the 2-position of the derivatives. The halogenated
compounds 3e (3-I), 3f (4-Cl), and 3j (4-F), exhibiting high larvicidal action, showed π–π interactions
with residues Trp 245, Tyr 282, and Tyr 489 of the AChE active site. They also demonstrated hydrogen
bonding involvement with residues Tyr 489 (NH) for 3e (3-I), 3f (4-Cl), and 3j (4-F), and Ser 283 (NHCO)
for 3f (4-Cl) and 3j (4-F). The importance of the hydrogen bonding contribution to the bioactivity
of the compounds can also be observed. For instance, the couple 3a (4-OCH3)/3d (4-OCF3) as an R
stereoisomer adopted a similar binding mode in which the pendant aryl ring was located facing the
edge of residue Trp 245 in which OCF3 and OCH3 groups were oriented toward the backbone of Gly
278 participating in H-bonding with only quinazoline 3d (4-OCF3). Other residues were also involved
in H-bonding with the ligands, such as Gly 279, Gly 359, Asp 233, Ser 280, Tyr 281, and Tyr 291.
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Table 6. Binding energy and residue interactions of 2,3-dihydroquinazolin-4(1H)-one derivatives (3a–n) against G199S mutant acetylcholinesterase 1 (AChE1) (Protein
Data Bank (PDB) code: 6ARY).

Entry Larvicidal Activity Stereoisomer Binding Energy
(kJ/mol)

Residues Interaction

H-Bond (Interacting Atom) Hydrophobic (π–π)

Native ligand - - −46.68 Ser 280, Tyr 282 Gly 279, Trp 285,
Tyr 489

Temephos - - 0 - -

3a (4-OCH3) 0.77
R −93.21 Trp 245 (NH), Tyr 489 (NHCO) Trp 245, His 600

S −114.50 Gly 279 (NHCO), Ser 280 (NHCO)
Tyr 489 (NH) Tyr 282, Trp 245, Tyr 489

3b (4-CN) 0.86
R −98.03 Ser 283 (NHCO), Tyr 489 (NH)

Tyr 291 (CN)
Trp 245, Tyr 282, Asp 233

(ion-pi)

S −81.74
Trp 245 (NH), Tyr 291 (CN)

Gly 278 (CN), Tyr 282 (NHCO)
Tyr 489 (NHCO)

Trp 245

3c (3-OH) 0.51
R −99.16 Ser 289 (NHCO), Tyr 291 (OH)

Glu 359 (OH) Trp 245, Tyr 489

S −89.42 Ser 280 (OH), Tyr 282 (OH)
Ser 283 (NHCO), Tyr 289 (NH) Trp 245, Tyr 489

3d (4-OCF3) 0.91
R −110.82 Gly 278 (CF3), Tyr 291 (CF3)

Tyr 489 (NH)
Trp 245, Tyr 282, Asp 233

(ion-pi), Glu 359 (F), Gly 278 (F)

S −106.47 Ser 283 (NHCO)
Tyr 489 (NH) Trp 245, Tyr 282, Tyr 489

3e (3-I) 0.82
R −105.04 Tyr 489 (NH) Trp 245, Tyr 282, Tyr 489, Asn

246 (I)

S −75.88 Trp 245 (NH) Trp 245

3f (4-Cl) 0.87
R −108.19 Ser 283 (NHCO)

Tyr 489 (NH)
Tyr 282, Trp 245, Asp 233

(ion-pi)

S −81.59 Trp 245 (NH), Tyr 282 (NHCO)
Tyr 489 (NHCO), Glu 359 (Cl) Tyr 245
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Table 6. Cont.

Entry Larvicidal Activity Stereoisomer Binding Energy
(kJ/mol)

Residues Interaction

H-Bond (Interacting Atom) Hydrophobic (π–π)

3g (3,4-diOCH3) 0.62
R −95.90 Ser 283 (NHCO)

Tyr 489 (NH) Trp 245, Tyr 282, Tyr 489

S −91.29 Trp 245 (NH), Tyr 282 (NHCO)
Tyr 489 (NHCO) Tyr 245

3h (4-N(CH3)2) 0.41
R −92.98 Tyr 489 (NH) Trp 245, Tyr 282, Tyr 489

S −91.01 Ser 283 (NHCO)
Tyr 489 (NH) Trp 245, Tyr 489

3i (3-NO2) 0.52
R −108.38 Asp 233 (NO2), Ser 283 (NHCO)

Tyr 489 (NH) Trp 245, Tyr 282, Tyr 489

S −131.24 Ser 280 (NHCO)
Tyr 489 (NH) Trp 245, Tyr 282

3j (4-F) 0.89
R −101.15 Ser 283 (NHCO)

Tyr 489 (NH) Trp 245, Tyr 489

S −76.85 Tyr 291 (NHCO)
Tyr 489 (NH) Trp 245, Tyr 489

3k (imidazole) 0.46
R −91.64 Ser 283 (NHCO)

Tyr 489 (NH) Trp 245

S −80.14 Ser 283 (NHCO)
Tyr 489 (NH) Trp 245, Tyr 489

3l (2-OCH3,
4-NO2) 0.74

R −120.40 Gly 279 (NHCO), Ser 289 (NHCO)
Ser 289 (OCH3)

Trp 245, Tyr 489, His 600, Glu
359 (ion-pi)

S −89.15 Ser 283 (NHCO)
Tyr 489 (NH)

Trp 245, Tyr 282, Tyr 489, Tyr
493 (ion-pi)

3m (2-OH, 5-NO2) 0.59
R −127.01 Ser 283 (NHCO), Tyr 489 (NH)

Tyr 489 (OH) Trp 245, Tyr 282, Tyr 489

S −113.14 Trp 245 (NH)
Ser 283 (OH)

Trp 245, Glu 359 (ion-pi), His
600 (ion-pi)

3n (4-OH) 0.50
R −91.36 Ser 280 (NHCO), Tyr 291 (OH)

Glu 359 (OH) Trp 245, Tyr 282, Tyr 489

S −121.58 Ser 280 (NHCO), Tyr 291 (OH)
Glu 359 (OH) Trp 245
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It can be noted that compounds 3i S (3-NO2) and 3m R (2-OH, 5-NO2) exhibited a very strong
binding affinity to the receptor. However, 3i and 3m demonstrated modest larvicidal activities of
0.52 and 0.59, respectively. The lack of correlation between the bioactivity and the docking results
may be associated with the lipophilicity of the compounds. Indeed, from the ADMET properties,
both compounds were predicted to weakly cross the brain cell membrane, preventing their full action
toward the CNS of the larvae. It is interesting to note that, for all other compounds, the docking results
for the R enantiomer were in agreement with the larvicidal effect of the compounds with the exception
of 3n (4-OH), showing a high predicted binding energy of −121.58 for the S stereoisomer. The less
potent compounds, 3h (4-N(CH3)2) and 3k (imidazole), demonstrated weaker binding energies as
compared to their congeners.

The binding interactions of the most active compound 3d with the G199S mutant AChE receptor
are illustrated in Figure 4, showing a different binding mode for each enantiomer. The binding mode
of 3d R demonstrated three hydrogen bonding interactions with amino-acid residues Tyr 291 and Gly
278 with the fluorine atom, and residue Tyr 489 with the NH of the quinazoline ring. Additionally,
several fluorine interactions were also observed with residues Gly 278 and Glu 359. Furthermore, π–π
hydrophobic interactions were predicted between the aryl of the quinazoline at the 2-position and
both rings of tryptamine residue Trp 245 facing its edge, and the quinazoline moiety was involved in a
T-shaped π–π interaction with Tyr 282 and a π–ion interaction with amino acid Asp 233. In contrast,
the binding mode of enantiomer 3d S was predicted to be inverted, in which the quinazoline ring
interacted with residue Trp 245 facing its edge via π–π interaction, while the aryl ring showed two
π–π interactions with residues Tyr 282 and Tyr 489. Two hydrogen bonding interactions were also
predicted with the two NH groups of the quinazoline ring and residues Gly 279 and Tyr 489.
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Our molecular modeling input revealed that the AChE enzyme target might be the plausible
enzyme target and the R enantiomer would be the principal active compound for larvicidal activity
contribution. This study may also indicate that our compounds might be potentially active
against insecticide-resistant mosquitos due to the good fitting observed with the active site of
the G199S mutant AChE receptor. However, future work should address the identification of the
enzyme target, the enantiomer responsible for the insecticidal effect, and the potency against the
insecticide-resistant mosquito.
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3. Materials and Methods

3.1. General

The chemicals reported here were obtained from Sigma-Aldrich Co. (St. Louis, MO, USA), while
the solvents were obtained from Millipore Sigma (Burlington, MA, USA). Thin-layer chromatography
(TLC) using silica gel (Sigma-Aldrich Co.) on aluminum foil was employed to observe the chemical
reactions; n-hexane and ethyl acetate (4:6) were used as solvents. The reactions were visualized
under an ultraviolet (UV)-light/iodine chamber. B-545 was used to measure the melting points (Büchi,
Labortechnik, Flawil, Switzerland). Fourier-transform infrared (FT-IR) spectra were recorded on a
Shimadzu FT-IR spectrophotometer. Furthermore, 1H-and 13C-NMR spectra were recorded on Bruker
AVANCE III 400 MHz instruments using dimethyl sulfoxide (DMSO)-d6 as a solvent. Chemical shifts
(δ) were recorded in parts per million (ppm) downfield from tetramethylsilane, while the coupling
constants (J) were recorded in Hz. The splitting pattern was documented as follows: s, singlet;
d, doublet; q, quartet; m, multiplet. Liquid chromatography–mass spectrometry (LC–MS; Agilent 1100
series) was used to measure the mass spectra in conjunction with the mass selective detector (MSD),
as well as 0.1% aqueous trifluoroacetic acid in an acetonitrile system on the C18-BDS column. Then,
elemental analysis was carried out using the analyzer FLASH EA 1112 CHN (Thermo Finnigan LLC,
New York, NY, USA). A single-crystal X-ray diffraction study was performed using a Bruker KAPPA
APEX II DUO diffractometer equipped with a charge coupled device (CCD) detector; monochromated
Mo Kα radiation (λ = 0.71073 Å) was used. Data collection was carried out at 173(2) K using an Oxford
Cryostream cooling system featuring the Bruker Apex II software.

3.2. General Procedure for the Synthesis of 2-(Substituted phenyl)-2,3-dihydroquinazolin-4(1H)-ones (3a–n)

A mixture of aryl aldehyde (1.5 mmoL) and 2-aminobenzamide (1 mmoL) in 10 mL of water
was stirred in a round-bottom flask with graphene oxide (2.5%) at room temperature, as depicted in
Scheme 1. The progress of the reaction was monitored with TLC. After completion of the reaction,
the insoluble precipitate obtained was separated and filtrated, and the crude product was washed with
50% cold ethanol. The crude product was recrystallized from 75% ethyl alcohol to obtain 65% of the title
compound 2-(4-fluorophenyl)-2,3-dihydroquinazolin-4(1H)-one at 98% purity [44]. Physicochemical
characteristics of the title compounds are tabulated in Table 1. FT-IR, 1H and 13C-NMR of the title
compounds (3a–n) are available as electronic supplementary information.

3.2.1. 2-(4-Methoxyphenyl)-2, 3-dihydroquinazolin-4(1H)-one (3a)

FT-IR (KBr, cm−1) 3298, 3182, 2862, 1658, 1610, 1508, 1483, 1298, 1174, 802, 611. 1H-NMR (400 MHz,
DMSO-d6) δ = 8.20 (s, 1H), 7.64–7.62 (dd, J = 8 Hz, 1.6 Hz,1H), 7.45–7.42 (m, 2H), 7.27–7.23 (m, 1H),
7.02 (s, 1H), 6.97–6.94 (m, 2H), 6.77–6.70 (m,1H), 6.68–6.66 (m, 1H), 5.72 (s, 1H), 3.75 (s, 3H); 13C-NMR
(100 MHz, DMSO-d6) δ = 163.70, 159.41, 147.99, 133.42, 133.22, 128.19, 127.32, 117.07, 114.97, 114.39,
113.60, 66.29, 55.13. Analytically calculated for C15H14N2O2: C, 70.85; H, 5.55; N, 11.02; found: C, 70.75;
H, 5.50; N, 10.98.

3.2.2. 4-(4-Oxo-1,2,3,4-tetrahydroquinazolin-2-yl)benzonitrile (3b)

FT-IR (KBr, cm−1) 3440, 2223, 1664, 1610, 1502, 1373, 1153, 858, 771, 619. 1H-NMR (400 MHz,
DMSO-d6) δ = 8.52 (s, 1H), 7.88–7.86 (d, J = 8 Hz, 2H), 7.71–7.69 (d, J = 8.4 Hz, 2H), 7.66–7.64 (d,
J = 7.6 Hz, 1H), 7.30–7.25 (m, 2H), 6.81–6.79 (d, J = 8.4 Hz, 1H), 6.72–6.70 (d, J = 8.0 Hz,1H), 5.89 (s, 1H);
13C-NMR (100 MHz, DMSO-d6) δ = 163.40, 147.31, 147.24, 133.55, 132.36, 132.36, 127.68, 127.68, 127.41,
118.62, 117.45, 114.87, 114.52, 111.10, 65.59. Analytically calculated for C15H11N3O: C, 72.28; H, 4.45; N,
16.86; found: C, 72.15; H, 4.40; N, 16.78.
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3.2.3. 2-(3-Hydroxyphenyl)-2,3-dihydroquinazolin-4(1H)-one (3c)

FT-IR (KBr, cm−1) 3357, 3296, 1631, 1606, 1506, 1483, 1305, 1155, 1035, 865, 752. 1H-NMR (400 MHz,
DMSO-d6) δ = 9.53 (s, 1H), 8.28 (s, 1H), 7.66–7.64 (d, J = 7.6 Hz, 1H), 7. 27–7.17 (m, 2H), 7.10 (s, 1H),
6.95–6.92 (m, 2H), 6.78–6.76 (br d, J = 8.4 Hz, 2H), 6.71–6.67 (m, 1H), 5.69 (s, 1H); 13C-NMR (100 MHz,
DMSO-d6) δ = 163.57, 157.34, 147.80, 143.17, 133.30, 129.32, 127.34, 117.44, 117.01, 115.36, 114.81, 114.34,
113.63, 66.47. Analytically calculated for C14H12N2O2: C, 69.99; H, 5.03; N, 11.66; found: C, 69.85; H,
4.96; N, 11.58.

3.2.4. 2-(4-(Trifluoromethoxy)phenyl)-2,3-dihydroquinazolin-4(1H)-one (3d)

FT-IR (KBr, cm−1) 3296, 3184, 3074, 1652, 1614, 1510, 1440, 1278, 1163, 1018, 813, 792, 675. 1H-NMR
(400 MHz, DMSO-d6) δ = 8.36 (s, 1H), 7.66–7.63 (m, 3H), 7.42–7.40 (d, J = 8 Hz, 2H), 7.29–7.24 (m, 1H),
7.17 (s, 1H), 6.78–6.76 (br d, J = 8.4 Hz, 1H), 6.72–6.68 (m,1H), 5.84 (s, 1H); 13C-NMR (100 MHz,
DMSO-d6) δ = 163.49, 148.30, 148.28, 147.93, 133.38, 128.91, 127.36, 121.30, 118.76, 117.29, 114.88, 114.42,
65.82. Analytically calculated for C15H11F3N2O2: C, 58.45; H, 3.60; N, 9.09; found: C, 58.05; H, 3.46;
N, 8.88.

3.2.5. 2-(3-Iodophenyl)-2,3-dihydroquinazolin-4(1H)-one (3e)

FT-IR (KBr, cm−1) 3282, 3078, 2925, 1649, 1614, 1514, 1446, 1296, 1159, 811, 790, 754, 696. 1H-NMR
(400 MHz, DMSO-d6) δ = 8.39 (s, 1H), 7.88 (s, 1H), 7.72–7.70 (d, J = 8.0 Hz, 1H), 7.65–7.63 (dd, J = 8.0,
1.6 Hz, 1H), 7.54–7.51 (d, J = 7.2 Hz, 1H), 7.29–7.17 (m, 3H), 6.79–6.77(d, J = 6.8 Hz, 1H), 6.72–6.68 (m,
1H), 5.77 (s, 1H); 13C-NMR (100 MHz, DMSO-d6) δ = 163.45, 147.51, 144.35, 137.02, 135.50, 133.45,
130.54, 127.38, 126.17, 117.31, 114.84, 114.45, 94.76, 65.51. Analytically calculated for C14H11IN2O: C,
48.02; H, 3.17; N, 8.00; found: C, 47.90; H, 3.06; N, 7.88.

3.2.6. 2-(4-Chlorophenyl)-2,3-dihydroquinazolin-4(1H)-one (3f)

FT-IR (KBr, cm−1) 3450, 3307, 3190, 3064, 2933, 1658, 1608, 1485, 1386, 1153, 838, 795, 752, 667.
1H-NMR (400 MHz, DMSO-d6) δ = 8.37 (s, 1H), 7.66–7.64 (d, J = 7.6 Hz, 1H), 7.55–7.53 (m, 2H), 7.48–7.45
(m, 2H), 7.29–7.24 (m, 1H), 7.16 (s, 1H), 6.79–6.77 (d, J = 8.0 Hz, 1H), 6.72–6.68 (m,1H), 5.80 (s, 1H);
13C-NMR (100 MHz, DMSO-d6) δ = 163.53, 147.64, 140.61, 133.39, 133.00, 128.74, 128.29, 127.37, 117.29,
114.92, 114.46, 65.59. Analytically calculated for C14H11ClN2O: C, 65.00; H, 4.29; N, 10.83; found: C,
64.90; H, 4.16; N, 10.68.

3.2.7. 2-(3,4-Dimethoxyphenyl)-2,3-dihydroquinazolin-4(1H)-one (3g)

FT-IR (KBr, cm−1) 3450, 3330, 3299, 2933, 1660, 1610, 1510, 1488, 1369 1262, 1232, 1140, 1091, 810.
1H-NMR (400 MHz, DMSO-d6) δ = 8.21 (s, 1H), 7.65–7.63 (d, J = 7.0 Hz,1H), 7.28–7.26 (m, 1H), 7.16–7.15
(d, J = 1.6 Hz, 1H), 7.03–7.01 (m, 2H), 6.96–6.94 (m, 1H), 6.79–6.77 (d, J = 8.0 Hz,1H), 6.71–6.68 (m, 1H),
5.72 (s, 1H), 3.77 (s, 3H), 3.75 (s, 3H); 13C-NMR (100 MHz, DMSO-d6) δ = 163.76, 148.99, 148.58, 148.05,
133.55, 133.22, 127.33, 119.20, 117.14, 115.03, 114.43, 111.24, 110.60, 66.55, 55.54, 55.43. Analytically
calculated for C16H16N2O3: C, 67.59; H, 5.67; N, 9.85; found: C, 66.90; H, 5.36; N, 09.68.

3.2.8. 2-(4-(Dimethylamino)phenyl)-2,3-dihydroquinazolin-4(1H)-one (3h)

FT-IR (KBr, cm−1) 3450, 3296, 3193, 3060, 2932, 1658, 1614, 1485, 1357, 1296, 1161, 1064, 817,
754. 1H-NMR (400 MHz, DMSO-d6) δ = 8.10 (s, 1H), 7.66–7.64 (dd, J = 8.4, 1.2 Hz, 1H), 7.34–7.32 (d,
J = 8.8 Hz, 2H), 7.27–7.22 (m, 1H), 6.94 (s, 1H), 6.78–6.67 (m, 4H), 5.67 (s, 1H), 2.88 (s, 6H); 13C-NMR
(100 MHz, DMSO-d6) δ = 163.86, 150.67, 148.21, 133.12, 128.59, 127.70, 127.34, 116.94, 115.03, 114.38,
111.90, 111.90, 66.68, 40.12. Analytically calculated for C16H17N3O: C, 71.89; H, 6.41; N, 15.72; found:
C, 71.40; H, 6.36; N, 15.48.
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3.2.9. 2-(3-Nitrophenyl)-2,3-dihydroquinazolin-4(1H)-one (3i)

FT-IR (KBr, cm−1) 3296, 3193, 3074, 2923, 1652, 1610, 1530, 1485, 1352, 1257, 1153, 1033, 904, 752.
1H-NMR (400 MHz, DMSO-d6) δ = 8.57 (s, 1H), 8.39 (s, 1H), 8.22–8.19 (m, 1H), 7.97–7.95 (d, J = 8.0 Hz,
1H), 7.71–7.63 (m, 2H), 7.36 (s, 1H), 7.30–7.26 (m, 1H), 6.82–6.80 (d, J = 8.0 Hz, 1H), 6.72–6.69 (m, 1H),
5.98 (s, 1H); 13C-NMR (100 MHz, DMSO-d6) δ = 163.39, 147.68, 147.27, 144.24, 133.57, 133.32, 129.97,
127.41, 123.23, 121.55, 117.53, 114.91, 114.58, 65.19. Analytically calculated for C14H11N3O3: C, 62.45;
H, 4.12; N, 15.61; found: C, 62.06; H, 4.06; N, 15.37.

3.2.10. 2-(4-Fluorophenyl)-2,3-dihydroquinazolin-4(1H)-one (3j)

FT-IR (KBr, cm−1) 3400, 3299, 3184, 3130, 2931, 1658, 1610, 1508, 1485, 1389, 1234, 1159, 836, 750,
675. 1H-NMR (400 MHz, DMSO-d6) δ = 8.31 (s, 1H), 7.65–7.63 (dd, J = 8.8, 1.2 Hz, 1H), 7.58–7.55
(m, 2H), 7.26–7.21 (m, 3H), 7.12 (s, 1H), 6.78–6.76 (d, J = 8.0 Hz, 1H), 6.72–6.68 (m, 1H), 5.80 (s, 1H);
13C-NMR (100 MHz, DMSO-d6) δ = 163.57, 147.78, 137.76, 137.73, 133.34, 129.06, 128.97, 127.35, 117.24,
115.17, 114.96, 114.92, 114.43, 65.93. Analytically calculated for C14H11FN2O: C, 69.41; H, 4.58; N, 11.56;
found: C, 69.06; H, 4.46; N, 11.37.

3.2.11. 2-(1H-Imidazol-4-yl)-2,3-dihydroquinazolin-4(1H)-one (3k)

FT-IR (KBr, cm−1) 3247, 3130, 1614, 1579, 1515, 1440; 1H-NMR (400 MHz, DMSO-d6) δ = 8.09
(s, 1H), 7.49–7.48 (dd, J = 6.4, 1.2 Hz, 2H), 7.09–7.05 (m, 1H), 6.89, (s, 1H), 6.85, (s, 1H), 6.64–6.62 (d,
J = 8.0, 1H), 6.53–6.50 (m, 1H), 5.57 (s, 1H); 13C-NMR (100 MHz, DMSO-d6) δ = 163.84, 147.96, 135.37,
133.08, 127.30, 117.07, 115.19, 114.59, 61.67. Analytically calculated for C11H10N4O: C, 61.67; H, 4.71; N,
26.15; found: C, 61.06; H, 4.56; N, 25.37.

3.2.12. 2-(2-Methoxy-4-nitrophenyl)-2,3-dihydroquinazolin-4(1H)-one (3l)

FT-IR (KBr, cm−1) 3371, 3022, 2929, 1649, 1616, 1519, 1485, 1348, 1253, 1163, 1089, 887, 765, 740.
1H-NMR (400 MHz, DMSO-d6) δ = 8.23 (s, 1H), 7.87–7.85 (dd, J = 8.4, 2.4 Hz, 1H), 7.81–7.80 (m, 1H),
7.66–7.60 (m, 2H), 7.27–7.23 (m, 1H), 6.99 (s, 1H), 6.80–6.78 (d, J = 8.0 Hz, 1H), 6.71–6.67 (m, 1H),
6.08 (s, 1H) 3.98 (s, 3H); 13C-NMR (100 MHz, DMSO-d6) δ = 163.53, 156.76, 148.37, 147.32, 136.36,
133.46, 127.56, 127.32, 117.35, 115.38, 114.54, 114.49, 105.84, 60.71, 56.33. Analytically calculated for
C15H13N3O4: C, 60.20; H, 4.38; N, 14.04; found: C, 60.06; H, 4.16; N, 13.87.

3.2.13. 2-(2-Hydroxy-5-nitrophenyl)-2,3-dihydroquinazolin-4(1H)-one (3m)

FT-IR (KBr, cm−1) 3396, 3195, 2925, 1645, 1623, 1515, 1392, 1336, 1284, 1164, 1089, 833, 757, 628.
1H-NMR (400 MHz, DMSO-d6) δ = 11.66 (s, 1H), 8.24–8.23 (d, J = 7.2 Hz, 1H), 8.18–8.12 (m, 2H),
7.67–7.65 (d, J = 7.6 Hz, 1H), 7.28–7.24 (m, 1H), 7.07–7.05 (d, J = 9.2 Hz, 1H), 6.95 (s, 1H), 6.82–6.80 (d,
J = 8.0 Hz,1H), 6.73–6.69 (m, 1H) 6.05–6.04 (m, 1H); 13C-NMR (100 MHz, DMSO-d6) δ = 163.69, 161.30,
147.60, 139.19, 133.44, 128.28, 127.37, 125.78, 123.31, 117.44, 115.95, 114.60, 114.60, 60.80. Analytically
calculated for C14H11N3O4: C, 58.95; H, 3.89; N, 14.73; found: C, 58.77; H, 3.77; N, 14.43.

3.2.14. 2-(4-Hydroxyphenyl)-2,3-dihydroquinazolin-4(1H)-one (3n)

FT-IR (KBr, cm−1) 3355, 3296, 1631, 1606, 1506, 1481, 1463, 1278, 1157, 1130, 865, 752. 1H-NMR
(400 MHz, DMSO-d6) δ = 9.53 (s, 1H), 8.12 (s, 1H), 7.65–7.63 (d, J = 7.2 Hz, 1H), 7.34–7.32 (d, J = 8.4 Hz,
2H), 7.27–7.25 (m, 1H), 6.95–6,92 (m, 1H), 6.80–6.75 (m, 4H), 5.68 (s, 1H); 13C-NMR (100 MHz, DMSO-d6)
δ = 163.78, 157.67, 148.14, 133.23, 131.56, 128.28, 127.34, 117.04, 114.92, 114.37, 66.65. Analytically
calculated for C14H12N2O2: C, 69.99; H, 5.03; N, 11.66; found: C, 69.56; H, 5.87; N, 11.43.

3.3. Crystallographic Studies

Single-crystal X-ray diffraction data were collected on a Bruker KAPPA APEX II DUO diffractometer
using graphite monochromated Mo Kα radiation (χ = 0.71073 Å). Data collection was carried out at
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173(2) K. Temperature was controlled by an Oxford Cryostream cooling system (Oxford Cryostat). Cell
refinement and data reduction were performed using the program SAINT [62]. The data were scaled,
and absorption correction was performed using SADABS [62].

The structure was solved via direct methods using SHELXS-18 [63] and refined via the full-matrix
least-squares method based on F2 using SHELXL-2018 [63]. The program WinGx [64] was used to prepare
molecular graphic images. All non-hydrogen atoms were refined anisotropically. All hydrogen atoms,
except H1 and H2, were placed in idealized positions and refined in riding models with Uiso assigned
1.2 or 1.5 times the Ueq of their parent atoms, and the C–H bond distances were constrained to 0.95 Å for
aromatic hydrogen and 1.00 Å for methyl hydrogen. The amino hydrogens H1 and H2 were located in
the difference electron density maps and refined independently. There was a solvent-accessible void of
411.3 Å3 per unit cell volume of 2587.0 Å3 (~15.9%). Attempts to model the solvent molecule as discrete
atomic sites failed. PLATON SQUEEZE [65] was employed to calculate the contribution to the diffraction
from the missing solvent molecules, and it produced a set of partial solvent-free diffraction intensities.
This set of intensities was used for final refinements. SQUEEZE estimated a total count of 99 electrons
per unit cell, which were contributed by the missing solvents. The structure was refined to an R factor of
0.0544. The parameters for crystal data collection and structure refinement and the list of intermolecular
interactions in the crystal structure 2-(3,4-dimethoxyphenyl)-2,3-dihydroquinazolin-4(1H)-one (3g) are
given in Tables 2 and 3, respectively.

3.4. Larvicidal Activity

Anopheles arabiensis was used in the study according to the protocol described by WHO (1975)
guidelines [66] in an insectary, simulating the temperature (27.5 ◦C), humidity (70%), and lighting
(12/12) of a malaria-endemic environment. One milliliter of test compound (1 mg/mL) was added to
distilled water (250 mL) to obtain a final concentration of 4 µg/mL. Thirty instar larvae were introduced
into a container. A negative control was set up using the solvent (Acetone), and distilled water, as
well as a positive control Temephos, which is an active emulsified organophosphate larvicidal drug in
malaria control programs. Larval mortality was examined for each container separately for 24 h and
48 h, and larvae were fed specially made cat food that contained less oil/fat content. The percentage
mortality was determined relative to the initial number of larvae exposed. The bioassay was performed
in triplicate, and the results are tabulated in Table 4.

3.5. Data Analysis

Differences in larval mortality between treatments were assessed with generalized linear models
using a binomial link function [67]. The dependent variable was A. arabiensis mortality, while fixed
effects were test compound (test compounds 3a–n, and both controls) and observation period (24 and
48 h). A p-value <0.05 was considered statistically significant. Throughout the text, the results are
presented as the adjusted mean ±the standard error.

3.6. In silico ADMET Prediction

ADMET properties of the derivatives (3a–n) were predicted using the software Accelry’s Discovery
Studio 4.0 Client [68]. ADMET-related descriptors such as drug-likeness, permeability, intestine
absorption, plasma binding, liver toxicity, and CYP450 inhibition were investigated. The in silico
ADMET properties of quinazolines (3a–n) and Temephos are tabulated in Table 5.

3.7. Molecular Modeling

Docking simulation was conducted with the software Accelry’s Discovery Studio 4.0 client
employing the CHARMm force field algorithm following our earlier reported procedure [69,70]. In this
study, the X-ray co-crystal acetylcholinesterase receptor (PDB: 6ARY) was retrieved from the Protein
Data Bank (PDB) [71] and subjected to the following steps: removal of all ligands and water; adding
hydrogen and missing amino acids. The binding domain was defined by inserting the original ligand
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into the prepared protein. To validate the active site, the original ligand was re-docked to ensure
proper binding interactions with respect to those reported for PDB 6FSD. CDocker protocol was used to
predict the binding mode of compounds. The active amino-acid residues of the receptor were kept rigid
during the docking run. The conformation of the best 10 binding poses was ranked according to the
CDocker energy score. The most proper binding mode was selected according to the highest-scoring
functions PLP1, PLP2, Jain, and PMF [70]. The binding energy of the selected ligand binding pose was
determined by applying the in situ ligand minimization energy step in the CDocker protocol.

4. Conclusions

The 2,3-dihydroquinazolin-4(1H)-one represents a privileged scaffold exhibiting various
pharmacological activities. The functionalization of the quinazoline at the 2-position with aryl
led to potent medicinal agents with anti-tubulin, antifungal, anti-tuberculosis, and antiviral activities,
among others. Thus, the 2-aryl-2,3-dihydroquinazolin-4-one scaffold makes compounds attractive
in terms of exploring novel activity. The novel series of 2-aryl-2,3-dihydroquinazolin-4-ones were
identified as potent insecticides against larvae Anopheles arabiensis. These compounds exhibited potent
larvicidal effects for the control of malaria vectors due to their toxicity towards larvae, when exposed
to a concentration of 4 µg/mL. The most promising compound was found to be 3d, substituted in
the para position with an OCF3 group, which displayed a similar toxicity to that of Temephos, an
active emulsified organophosphate larvicidal used by malaria control programs. The next two potent
compounds were 3j and 3f, which resulted in over 90% larval mortalities after 24- to 48-h exposure.
The ADMET profile for the majority of the compounds was acceptable. The docking input revealed
that AChE would be the appropriate enzyme molecular target upon demonstrating a favorable binding
interaction, and the title compounds may find application for treating insecticide-resistant mosquitos.
In general, the R enantiomer was predicted to strongly bind to the AChE receptor. Based on ADMET
and docking analysis, the title compounds are investigated as potential AChE inhibitors, and the brain
cell permeability was an important parameter for the activity. However, elucidation of the molecular
target and the enantiomer responsible for larvicidal activity remains to be addressed in order to design
more potent and safer 2,3-dihydroquinazolin-4(1H)-ones. Therefore, the dihydroquinazolinone scaffold
having a para trifluoromethoxy functionality on the phenyl ring was identified as the lead compound,
which can serve as the starting point for the development of novel larvicidal agents.

Supplementary Materials: The following are available online at http://www.mdpi.com/1420-3049/25/6/1316/s1:
Figure S1: FT-IR of 2-(4-methoxyphenyl)-2,3-dihydroquinazolin-4(1H)-one (3a); Figure S2: 1H-NMR of
2-(4-methoxyphenyl)-2,3-dihydroquinazolin-4(1H)-one (3a); Figure S3: 13C-NMR of 2-(4-methoxyphenyl)-2,3-
dihydroquinazolin-4(1H)-one (3a); Figure S4: FT-IR of 4-(4-oxo-1,2,3,4-tetrahydroquinazolin-2-yl)benzonitrile
(3b); Figure S5: 1H-NMR of 4-(4-oxo-1,2,3,4-tetrahydroquinazolin-2-yl)benzonitrile (3b); Figure S6: 13C-NMR
of 4-(4-oxo-1,2,3,4-tetrahydroquinazolin-2-yl)benzonitrile (3b); Figure S7: FT-IR of 2-(3- hydroxyphenyl)-2,3-
dihydroquinazolin- 4(1H)-one (3c); Figure S8: 1H-NMR of 2-(3- hydroxyphenyl)-2,3- dihydroquinazolin-
4(1H)-one (3c); Figure S9: 13C-NMR of 2-(3- hydroxyphenyl)-2,3- dihydroquinazolin- 4(1H)-one (3c); Figure S10:
FT-IR of 2-(4- (trifluoromethoxy)phenyl)-2,3- dihydroquinazolin- 4(1H)-one (3d); Figure S11: 1H-NMR
of 2-(4- (trifluoromethoxy)phenyl)-2,3- dihydroquinazolin- 4(1H)-one (3d); Figure S12: 13C-NMR of 2-(4-
(trifluoromethoxy)phenyl)-2,3- dihydroquinazolin- 4(1H)-one (3d); Figure S13: FT-IR of 2-(3- iodophenyl)-2,3-
dihydroquinazolin- 4(1H)-one (3e); Figure S14: 1H-NMR of 2-(3- iodophenyl)-2,3- dihydroquinazolin- 4(1H)-one
(3e); Figure S15: 13C-NMR of 2-(3- iodophenyl)- 2,3-dihydroquinazolin- 4(1H)-one (3e); Figure S16: FT-IR of
2-(4- chlorophenyl)-2,3- dihydroquinazolin- 4(1H)-one (3f); Figure S17: 1H-NMR of 2-(4- chlorophenyl)-2,3-
dihydroquinazolin- 4(1H)-one (3f); Figure S18: 13C-NMR of 2-(4- chlorophenyl)-2,3- dihydroquinazolin-
4(1H)-one (3f); Figure S19: FT-IR of 2-(3,4- dimethoxyphenyl)-2,3- dihydroquinazolin- 4(1H)-one (3g); Figure S20:
1H-NMR of 2-(3,4- dimethoxyphenyl)-2,3- dihydroquinazolin- 4(1H)-one (3g); Figure S21: 13C-NMR of 2-(3,4-
dimethoxyphenyl)-2,3- dihydroquinazolin- 4(1H)-one (3g); Figure S22: FT-IR of 2-(4- (dimethylamino)phenyl)-2,3-
dihydroquinazolin- 4(1H)-one (3h); Figure S23: 1H-NMR of 2-(4- (dimethylamino)phenyl)-2,3- dihydroquinazolin-
4(1H)-one (3h); Figure S24: 13C-NMR of 2-(4- (dimethylamino)phenyl)-2,3- dihydroquinazolin- 4(1H)-one
(3h); Figure S25: FT-IR of 2-(3- nitrophenyl)-2,3- dihydroquinazolin- 4(1H)-one (3i); Figure S26: 1H-NMR
of 2-(3- nitrophenyl)-2,3- dihydroquinazolin- 4(1H)-one (3i); Figure S27: 13C-NMR of 2-(3- nitrophenyl)-2,3-
dihydroquinazolin- 4(1H)-one (3i); Figure S28: FT-IR of 2-(4- fluorophenyl)-2,3- dihydroquinazolin- 4(1H)-one
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(3j); Figure S29: 1H-NMR of 2-(4- fluorophenyl)-2,3- dihydroquinazolin- 4(1H)-one (3j); Figure S30: 13C-NMR
of 2-(4- fluorophenyl)-2,3- dihydroquinazolin- 4(1H)-one (3j); Figure S31: FT-IR of 2-(1H-imidazol- 4-yl)-2,3-
dihydroquinazolin- 4(1H)-one (3k); Figure S32: 1H-NMR of 2-(1H- imidazol-4-yl)-2,3- dihydroquinazolin-
4(1H)-one (3k); Figure S33: 13C-NMR of 2-(1H- imidazol-4-yl)-2,3- dihydroquinazolin- 4(1H)-one (3k);
Figure S34: FT-IR of 2-(2-methoxy-4-nitrophenyl)-2,3- dihydroquinazolin- 4(1H)-one (3l); Figure S35:
1H-NMR of 2-(2-methoxy-4-nitrophenyl)-2,3- dihydroquinazolin- 4(1H)-one (3l); Figure S36: 13C-NMR of
2-(2-methoxy-4-nitrophenyl)-2,3- dihydroquinazolin- 4(1H)-one (3l); Figure S37: FT-IR of 2-(2-hydroxy- 5-
nitrophenyl)-2,3- dihydroquinazolin- 4(1H)-one (3m); Figure S38: 1H-NMR of 2-(2-hydroxy- 5- nitrophenyl)-2,3-
dihydroquinazolin- 4(1H)-one (3m); Figure S39: 13C-NMR of 2-(2-hydroxy- 5- nitrophenyl)-2,3- dihydroquinazolin-
4(1H)-one (3m); Figure S40: FT-IR of 2-(4- hydroxyphenyl)-2,3- dihydroquinazolin- 4(1H)-one (3n);
Figure S41: 1H-NMR of 2-(4-hydroxyphenyl)-2,3-dihydroquinazolin- 4(1H)-one (3n); Figure S42: 13C-NMR
of 2-(4-hydroxyphenyl)-2,3-dihydroquinazolin- 4(1H)-one (3n).
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