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Abstract

More than a decade of genome-wide association studies (GWASs) have identified genetic

risk variants that are significantly associated with complex traits. Emerging evidence sug-

gests that the function of trait-associated variants likely acts in a tissue- or cell-type-specific

fashion. Yet, it remains challenging to prioritize trait-relevant tissues or cell types to elucidate

disease etiology. Here, we present EPIC (cEll tyPe enrIChment), a statistical framework

that relates large-scale GWAS summary statistics to cell-type-specific gene expression

measurements from single-cell RNA sequencing (scRNA-seq). We derive powerful gene-

level test statistics for common and rare variants, separately and jointly, and adopt general-

ized least squares to prioritize trait-relevant cell types while accounting for the correlation

structures both within and between genes. Using enrichment of loci associated with four

lipid traits in the liver and enrichment of loci associated with three neurological disorders in

the brain as ground truths, we show that EPIC outperforms existing methods. We apply our

framework to multiple scRNA-seq datasets from different platforms and identify cell types

underlying type 2 diabetes and schizophrenia. The enrichment is replicated using indepen-

dent GWAS and scRNA-seq datasets and further validated using PubMed search and exist-

ing bulk case-control testing results.

Author summary

Genome-wide association studies (GWASs) have yielded genetic variants associated with

various complex traits. Emerging evidence suggests that the function of trait-associated

variants likely acts in a tissue- or cell-type-specific fashion. For many complex traits, how-

ever, the specific cell or tissue types leading to risk are unknown. Recent advances of sin-

gle-cell RNA sequencing (scRNA-seq) provide unprecedented opportunities, alongside

challenges, to systematically investigate the cell-type-specific enrichment of GWAS risk

variants. We propose EPIC, a statistical framework that relates large-scale GWAS sum-

mary statistics to cell-type-specific transcriptomic measurements from scRNA-seq data to
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prioritize trait-relevant cell types. We use known trait-relevant tissues and cell types as

ground truths for benchmark, adopt independent GWAS and scRNA-seq datasets for

reproducibility, and refer to PubMed keyword search and existing case-control studies for

validation. Such an integrative analysis helps elucidate the underlying cell-type-specific

disease etiology and prioritize important risk variants.

Introduction

Many years of genome-wide association studies (GWASs) have yielded genetic risk variants

associated with complex traits and human diseases. Emerging evidence suggests that the func-

tion of trait-associated variants likely acts in a tissue- or cell-type-specific fashion [1,2]. Recent

advances in single-cell RNA sequencing (scRNA-seq) enable characterization of cell-type-spe-

cific gene expression and provide an unprecedented opportunity to systematically investigate

the cell-type-specific enrichment of GWAS polygenic signals [3–6]. There is a pressing need to

develop a statistically rigorous and computationally scalable analytical framework to integrate

large-scale genome-wide association studies (e.g., the UK Biobank [7]) and high-dimensional

scRNA-seq efforts (e.g., the Human Cell Atlas [8]). Such an integrative analysis helps elucidate

the underlying cell-type-specific disease etiology and prioritize important functional variants.

Several methods [9–13] have been developed to integrate scRNA-seq data with GWAS

summary statistics to prioritize trait-relevant cell types. One set of methods, including Roly-

Poly [9] and LDSC-SEG [11], develops models on the single-nucleotide polymorphism (SNP)

level and derives SNP-wise annotations from the transcriptomic data. RolyPoly adopts a poly-

genic model, and the effect sizes of all SNPs associated with a gene have a covariance that is a

linear combination of the gene expressions across all cell types. RolyPoly, therefore, captures

the effect of the cell-type-specific gene expression on the covariance of GWAS effect sizes,

which can be computationally intensive. LDSC-SEG also constructs SNP annotations from

cell-type-specific gene expressions and then carries out a one-sided test using the stratified LD

score regression framework [11,14,15]. It tests whether trait heritability is enriched in regions

surrounding genes that have the highest cell-type-specific expression.

Another set of methods, such as CoCoNet [12] and MAGMA [3,10,16,17], does not devise

the SNP-level framework. These methods first derive gene-level association statistics since this

more naturally copes with the gene-level expression measurements; they then prioritize risk

genes in a specific cell type. Specifically, CoCoNet models gene-level test statistics as a function

of the cell-type-specific adjacency matrices, which are inferred from the gene expression mea-

surements. While CoCoNet is the first method to evaluate the gene co-expression networks, its

rank-based method does not allow hypothesis testing due to the strong correlation among

gene co-expression patterns constructed from different cell types. Like CoCoNet, MAGMA

and MAGMA-based approaches also begin by combining SNP-level GWAS summary statistics

into gene-level statistics. This step is followed by a second "gene-property" analysis, where the

cell-type-specific gene expressions are regressed against the genes’ GWAS test statistics. The

various versions of the methods adopt different ways to select genes, transform the outcome

and predictor variables, and include different sets of additional covariates [3,10,16,17]. While

MAGMA-based methods have been successfully used in several studies [18–20], Yurko et al.

[21] examined the statistical foundation of MAGMA, and they identified an issue: type I error

rate is inflated because the method incorrectly uses the Brown’s approximation when combin-

ing the SNP-level p-values. MAGMA’s implementation replaces the SNP-SNP correlation
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available at https://ctg.cncr.nl/software/magma.

Bulk RNA-seq and scRNA-seq data are

downloaded from GTEx v8 at http://www.

gtexportal.org. ScRNA-seq read counts from two

pancreatic islet studies are publicly available with

accession GSE84133 (https://www.ncbi.nlm.nih.

gov/geo/query/acc.cgi?acc=GSE84133) and E-

MTAB-5061 (https://www.ebi.ac.uk/arrayexpress/

experiments/E-MTAB-5061). We obtain a list of

human housekeeping genes from the

Housekeeping and Reference Transcript Atlas at

https://housekeeping.unicamp.br. EPIC is compiled

as an open-source R package available at https://

github.com/rujinwang/EPIC. Scripts used for

analyses carried out in this paper are deposited in

the GitHub repository.
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coefficient with its square, which serves as a rough correction yet masks the true LD structure.

A rigorous testing framework that is powerful and controls for false positives is needed.

When modeling on the gene level, one needs to account for the gene-gene correlations.

RolyPoly ignores proximal gene correlations but implements a block bootstrapping procedure

as a correction. MAGMA approximates the gene-gene correlations as the correlations between

the model sum of squares from the second-step gene-property analysis. However, the gene-

gene correlation of the effect sizes should be a function of the LD scores (i.e., the correlations

between the SNPs within the genes). CoCoNet does not take account of this either, instead

using LD information only to calculate the gene-level effect sizes and assuming that gene-gene

covariance is a function solely of gene co-expression. A statistically rigorous and computation-

ally efficient method to derive the gene-gene correlation structure while incorporating the

SNP-level LD information is needed.

These existing methods either focus on common variants (e.g., RolyPoly and LDSC-SEG) or

do not differentiate between common and rare variants (e.g., MAGMA with only summary sta-

tistics) due to the limited statistical power for rare variants. While methods for rare-variant

association analysis have been developed (e.g., sequence kernel association test [22] and burden

test [23]), to our best knowledge, no methods are currently available to detect cell-type-specific

enrichment of GWAS risk loci using summary statistics for both common and rare variants.

Here, we propose EPIC, a statistical framework to identify trait-relevant cell types by inte-

grating GWAS summary statistics and cell-type-specific gene expression profiles from scRNA-

seq. We adopt gene-based generalized least squares to identify enrichment of risk loci. For the

prioritized cell types, EPIC further carries out a gene-specific influence analysis to identify sig-

nificant genes. Compared to existing methods, EPIC’s main advantages include the following:

(i) a statistical framework for association testing based on multivariate GWAS summary statis-

tics that is powerful and controls for type I error; (ii) separate and joint modeling of common

and rare variants when integrating GWAS and single-cell sequencing data; (iii) a rigorous and

scalable regression framework that accounts for gene-gene correlations; and (iv) a cell-type-

and gene-specific influential testing scheme to identify genes and gene sets that are relevant to

the significant enrichment. We demonstrate EPIC on multiple tissue-specific bulk RNA-seq

and scRNA-seq datasets, along with GWAS summary statistics of four lipid traits, three neuro-

psychiatric disorders, and type 2 diabetes, and successfully replicate and validate the prioritized

tissues and cell types. Together, EPIC’s integrative analysis of cell-type-specific expressions

and GWAS polygenic signals help to elucidate the underlying cell-type-specific disease etiology

and prioritize important functional variants. EPIC is compiled as an open-source R package

available at https://github.com/rujinwang/EPIC.

Results

Overview of methods

The goal of EPIC is to identify disease- or trait-relevant cell types. An overview of the frame-

work is outlined in Fig 1. EPIC takes as input single-variant summary statistics from GWAS,

which is used to aggregate SNP-level associations into genes, and gene expression datasets

from scRNA-seq data. An external reference panel is adopted to account for the linkage dis-

equilibrium (LD) between SNPs and genes. We first perform gene-level testing based on

GWAS summary statistics from the single-variant analysis. The multivariate statistics for both

common and rare variants can be recovered using covariance of the single-variant test statis-

tics, which can be estimated from either the raw genotype matrix or a reference panel (e.g., the

1000 Genomes Project). We then develop a gene-based regression framework that can priori-

tize trait-relevant cell types from gene-level test statistics and cell-type-specific omics profiles
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while accounting for gene-gene correlations due to LD. The underlying hypothesis is that if a

particular cell type influences a trait, then more of the GWAS polygenic signals would be con-

centrated in genes with greater cell-type-specific gene expression. For significantly enriched

cell type(s), we further carry out a gene-specific influence analysis to identify genes that are

highly influential in leading to the significance of the prioritized cell type. Refer to the Methods

section for methodological and algorithmic details.

EPIC’s gene-level association testing

We first performed the gene-level chi-square association test with the shrinkage estimators

and sliding-window approach using GWAS summary statistics for eight diseases and traits

(four lipid traits [24], three neuropsychiatric disorders [25–27], and type 2 diabetes (T2Db)

[28]; Table A in S1 Text). We benchmarked against the aforementioned method, MAGMA, as
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Fig 1. Overview of EPIC framework. EPIC starts from GWAS summary statistics and an external reference panel to account for LD

structure. To ensure that the correlation matrix is well-conditioned, EPIC adopts the POET estimators to obtain a sparse shrinkage

correlation matrix. EPIC performs LD pruning, computes the gene-level chi-square statistics for common variants, and calculates burden test

statistics for rare variants. EPIC then integrates gene-level association statistics with transcriptomic profiles and prioritizes trait-relevant cell

types using a regression-based framework while accounting for the gene-gene correlation structure.

https://doi.org/10.1371/journal.pgen.1010251.g001
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well as ACAT [29], a method that combines correlated SNP-level p-values via Cauchy combi-

nation test and does not make any assumptions on the direction of the effects. In Table B in S1

Text, we summarized a list of genes that have been previously reported to be associated with

traits [24–28]; for these sets of well-characterized trait-associated genes, EPIC returned more

significant p-values compared to MAGMA and ACAT, especially when the common and rare

variants are jointly modeled. On the genome-wide scale, the quantile-quantile (Q-Q) plots of

gene-level p-values demonstrated EPIC’s elevated power (Fig A in S1 Text), and EPIC detected

more significant genes than MAGMA after Bonferroni correction (Fig B in S1 Text). For the

significantly associated genes detected by EPIC, but not by MAGMA, we performed functional

enrichment analysis using DAVID [30] and identified gene ontology (GO) biological processes

directly relevant to the traits of interests (Table C in S1 Text).

Importantly, we further reported gene-level association testing results for a set of house-

keeping genes [31] and demonstrated that, while powerful, EPIC also controlled for type I

error (Fig C in S1 Text). Notably, for psychiatric diseases and type 2 diabetes (T2Db), all three

methods that we benchmarked (i.e., EPIC, MAGMA [10,17], and ACAT [29]) seemingly show

inflated false positive rates–we focused on the top five significantly associated genes and con-

firmed that they had been previously reported to be trait relevant (see Fig C in S1 Text for

details). This indicates that part of the housekeeping genes, while constitutively expressed to

maintain cellular functions, can still be associated with complex traits. Therefore, for all empir-

ical studies, we generated Q-Q plots for genes with p-values from 0.05 to 1, excluding potential

trait-relevant genes; we showed that across all traits EPIC’s p-values in this range are uniformly

distributed (Fig A in S1 Text).

Inferring trait-relevant tissues using tissue-specific RNA-seq

As a proof of concept, we applied EPIC to identify trait-relevant tissues by integrating the

gene-level testing statistics from the previous section with tissue-specific transcriptomic pro-

files from the Genotype-Tissue Expression project (GTEx) v8 [32] (Table A in S1 Text). The

GTEx consortium consists of bulk-tissue gene expression measurements of 17,382 samples

from 54 tissues across 980 postmortem donors; after sample-specific quality controls, we

obtained gene expression profiles of 45 tissues, averaged across samples (Table A in S1 Text).

For subsequent analyses, we focused on a set of 8,708 genes with tissue specificity scores

greater than 5 (Note A in S1 Text).

All four lipid traits are significantly enriched in the liver (Fig 2), which plays a key role in

lipid metabolism. The small intestine was marginally enriched for TC–it has been shown that

the small intestine plays an important role in cholesterol regulation and metabolism [33]. In

addition, the adipose tissues, which have also been shown to regulate lipid metabolism [34],

were identified as being significantly enriched by both EPIC and MAGMA. Both LDSC-SEG

and RolyPoly suffer from low power, although the liver was one of the top-ranked tissues for

the lipid traits. The pancreas and the liver were prioritized as the T2Db-relevant tissues by

EPIC, while MAGMA yielded significant results in the pancreas as well as the stomach (Fig

3A). RolyPoly identified the pancreas as the second most relevant tissue; LDSC-SEG reported

the liver as the only significantly enriched tissue (Fig 3A). Finally, neuropsychiatric disorders

exhibited strong brain-specific enrichments, as expected. The frontal cortex of the brain was

detected as being the most strongly enriched for SCZ, BIP, and SCZBIP (Fig 4A). The pituitary

also demonstrated strong enrichment signals with SCZ and SCZBIP, while the spinal cord was

found to be an irrelevant tissue with these three neuropsychiatric disorders. In comparison,

LDSC-SEG identified part of the brain tissues as trait-relevant, while RolyPoly failed to return

enrichment in any of the brain tissues (Fig 4A).
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We have thus far focused on carrying out the enrichment analysis using common variants

only or using common and rare variants combined. Notably, validation results based on read

data suggest that combining common and rare variants is mostly better than, or otherwise on

par with only using common variants. For rare variants alone, EPIC successfully identified

liver and brain as the top-rank and significant tissues for the lipid traits and the neuropsychiat-

ric disorders, respectively (Table D in S1 Text), although it is generally underpowered. This is

possibly due to GWAS being underpowered to detect rare-variant associations and the expres-

sion profiles of rare variants being hard to be recapitulated by a single-cell reference. Neverthe-

less, while current studies only reported common variants that were consistently mapped to a

subset of brain cell types for neuropsychiatric disorders [3,16], EPIC offers a statistical frame-

work to identify cell-type-specific enrichment signals attributed to both common and rare var-

iants, separately and jointly.

For validation, we adopted a similar strategy as proposed by Shang et al. [12]–we carried

out a PubMed search, resorting to previous literature studying the trait of interest in relation

to a particular tissue or cell type. Specifically, we counted the number of previous publications

using the keyword pairs of trait and tissue/cell type and calculated the correlations between the

number of publications and EPIC’s tissue-/cell-type-specific p-values after negative log trans-

formation (Fig 5). Across all traits, we found significant positive correlations between EPIC’s

enrichment results and PubMed search results (Fig 5A).

Inferring relevant cell types for T2Db by scRNA-seq data of pancreatic

islets

We next analyzed pancreatic islet scRNA-seq data to identify trait-relevant cell types for T2Db.

To assess reproducibility, EPIC was separately applied to two scRNA-seq datasets consisting of

multiple endocrine cell types (Table A and Fig D in S1 Text). The scRNA-seq data were gener-

ated using two different protocols: the SMART-Seq2 protocol on six healthy donors from

Segerstolpe et al. [35] and the InDrop protocol on three healthy individuals from Baron et al.

[36]. In both datasets, beta cells were identified as the trait-relevant cell types by EPIC (Fig 3B).

Enrichment of beta cells is used as a gold standard for benchmark, in that beta cells produce

and release insulin but are dysfunctional and gradually lost in T2Db [37]. We also found that

gamma cells were marginally associated with T2Db in the Segerstolpe dataset–pancreatic poly-

peptide, which is produced by gamma cells, is known to play a critical role in endocrine pan-

creatic secretion regulation [38]. As a comparison, neither MAGMA nor LDSC-SEG detected

significant enrichment in beta cells, even though the enrichment was top-ranked. RolyPoly, on

the other hand, did not report any enrichment of the beta cells compared to the other types of

cells.

To additionally validate the beta-cell enrichment, we carried out the PubMed search and

showed that EPIC’s cell-type-specific p-values were significantly correlated with the number of

PubMed search results using the trait-and-cell-type pairs as keywords (Fig 5B). Together, we

demonstrate the effectiveness of EPIC in identifying trait-relevant cell types using scRNA-seq

datasets generated by different protocols.

To identify specific genes that drive the significant enrichment in beta cells, we carried out

the gene-specific influence test as outlined in Methods and identified 142 highly influential

genes (Fig 3C). We performed KEGG pathway analysis and GO biological process enrichment

Fig 2. Tissue enrichment for four lipid traits using GTEx bulk RNA-seq data. (A) LDL; (B) HDL; (C) TC; and (D)

TG. The dashed line is the Bonferroni-corrected p-value threshold. EPIC achieved higher power while controlling for

false positives compared to other existing methods.

https://doi.org/10.1371/journal.pgen.1010251.g002
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analysis using the DAVID bioinformatics resources [30]. Beta-cell-specific influential

genes are enriched in GO terms including glucose homeostasis and regulation of insulin secre-

tion, as well as KEGG pathways including insulin secretion, maturity onset diabetes, etc. (Fig

3D). Compared to the set of genes that are significantly associated with T2Db from GWAS

and the set of genes that are specifically expressed in beta cells from scRNA-seq, the set of

Fig 3. Cell-type-specific enrichment of T2Db risk loci. (A) Inferring T2Db-relevant tissues using GTEx tissue-specific RNA-seq data. (B) Inferring T2Db-relevant

cell types using scRNA-seq data of human pancreatic islets. The dashed line is the Bonferroni-corrected p-value threshold. (C) Gene-specific influence analysis for

the significantly enriched beta cells. DFBETAS measure the difference in the estimated coefficients in the gene-property analysis with and without each gene. Red

lines are the size-adjusted cutoffs�2=
ffiffiffiffi
N
p
� �0:03, where N is the number of genes. (D) Gene pathway enrichment analysis using highly influential genes. KEGG

pathways and GO biological processes related to T2Db are significantly enriched. (E). Venn diagram of the significant genes from the beta-cell-specific influential

analysis by EPIC, gene-level association testing from GWAS, and nonparametric testing of cell-type-specific expression from scRNA-seq. The highly influential genes

significantly overlap with genes associated with the trait and/or specifically expressed in the cell type of interest, with p-values shown from the hypergeometric test of

enrichment.

https://doi.org/10.1371/journal.pgen.1010251.g003
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Fig 4. Cell-type-specific enrichment for three neuropsychiatric disorders. (A) Beeswarm plot of–log10(p-value) from the tissue enrichment analysis using GTEx

bulk RNA-seq data. The dashed line is Bonferroni corrected p-value threshold. (B) UMAP embedding of 14,137 single cells from five donors. (C) Heatmap of–log10

(p-value) from the cell-type enrichment analysis using GTEx scRNA-seq brain data. Bonferroni-significant results are marked with red asterisks. GABA: GABAergic

interneurons; exPFC: excitatory glutamatergic neurons in the prefrontal cortex; exDG: excitatory granule neurons from the hippocampal dentate gyrus region; exCA:

excitatory pyramidal neurons in the hippocampal Cornu Ammonis region; OPC: oligodendrocyte precursor cells; ODC: oligodendrocytes; NSC: neuronal stem cells;

ASC: astrocytes; MG: microglia cells; END: endothelial cells. (D) Boxplot of gene-specificity ranks across ten brain cell types for differentially expressed genes from

SCZ case-control studies.

https://doi.org/10.1371/journal.pgen.1010251.g004

PLOS GENETICS EPIC: Inferring relevant cell types for complex traits by integrating GWAS and scRNA-seq

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1010251 June 16, 2022 9 / 22

https://doi.org/10.1371/journal.pgen.1010251.g003
https://doi.org/10.1371/journal.pgen.1010251.g004
https://doi.org/10.1371/journal.pgen.1010251


beta-cell-specific highly influential genes identified by EPIC are highly associated with the trait

and/or specifically expressed in the cell type of interest (Fig 3E). We further carried out a

hypergeometric test of significant overlap between each pair of the three testing schemes (see

Materials and Methods for details). Highly influential genes from EPIC’s integrative analysis

framework significantly overlap with genes returned by both gene-level association testing and

cell-type-specific gene expression analyses, while the latter two from GWAS and scRNA-seq

showed no significant overlap (Fig 3E). The influential analysis by EPIC helps prioritize trait-

relevant genes in a cell-type-specific manner.

(A) GTEx bulk RNA-seq: 

(B) Pancreatic islet scRNA-seq (C) GTEx scRNA-seq:
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Fig 5. Correlations of tissue/cell type ranks from enrichment analysis and PubMed Search. Pearson correlations are calculated between the PubMed search and

EPIC’s tissue- or cell-type-specific enrichment testing. Trait-relevant tissues/cell types with statistical significance after Bonferroni correction are highlighted in red,

where the top-ranking tissues/cell types are labeled. Correlation coefficients and p-values from correlation test are included.

https://doi.org/10.1371/journal.pgen.1010251.g005
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Inferring relevant cell types for neuropsychiatric disorders by scRNA-seq

data of human brain

To further test EPIC in a more complex tissue, we sought to prioritize trait-relevant cell types in

the brain. While the brain tissues are significantly enriched using the GTEx bulk-tissue RNA-

seq data (Fig 4A), the relevant cell types in the brain for neuropsychiatric disorders are not as

well defined and studied. We obtained droplet-based scRNA-seq data [39], generated on frozen

adult human postmortem tissues from the GTEx project (Table A in S1 Text), to infer the rele-

vant cell types. After pre-processing and stringent quality controls, the scRNA-seq data contains

gene expression profiles of 17,698 genes across 14,137 single cells collected from the human hip-

pocampus and prefrontal cortex tissues of five donors. The cells belong to ten cell types (Fig

4B), and we focused on the top 8,000 highly variable genes for subsequent analyses.

We evaluated EPIC’s cell-type-specific enrichment results and found that all three neuro-

psychiatric disorders were significantly enriched in GABAergic interneurons (GABA), excit-

atory glutamatergic neurons from the prefrontal cortex (exPFC), and excitatory pyramidal

neurons in the hippocampal CA region (exCA). Additionally, excitatory granule neurons from

the hippocampal dentate gyrus region (exDG) were identified as relevant cell types for SCZ

and SCZBIP (Fig 4C).

We employed three strategies to validate the trait-relevant cell types for the neuropsychiat-

ric disorders. First, we again found positive correlations between PubMed search results and

EPIC’s enrichment results (Fig 5C). Although the correlation testing does not retain signifi-

cance, the top enriched cell type (GABA), when paired with the three psychiatric traits, also

returned the largest number of PubMed hits (Fig 5C). The insignificant p-values from the cor-

relation test are likely due to the limited number of existing single-cell studies on neuropsychi-

atric diseases via PubMed; indeed, the cell types that are found to be enriched by EPIC agree

with the recently reported association of neuropsychiatric disorders with interneurons and

excitatory pyramidal neurons [3, 16]. Second, we adopted additional independent GWAS

summary statistics for SCZ (SCZ2) [40] (Table A in S1 Text) and observed highly concordant

enrichment results between SCZ and SCZ2 (Fig 4C). Third, we tested whether genes that are

upregulated/downregulated for SCZ were enriched in the identified cell types to additionally

implicate cell types involved in SCZ. Specifically, we performed differential expression (DE)

analysis from an independent SCZ case-control study using bulk RNA-seq of the dorsolateral

prefrontal cortex [41], retaining 287 significant DE genes that also overlap the post-QC genes

from scRNA-seq (Fig E in S1 Text). We reasoned that if SCZ-relevant risk loci were enriched

in a particular cell type, genes that are differentially expressed between SCZ cases and controls

would demonstrate greater cell-type specificity in this cell type. We calculated cell-type speci-

ficities using the set of DE genes and observed GABA, exCA, exDG, and exPFC were the top

four cell types with the lowest gene-specificity ranks (Fig 4D). Using three different strategies

by querying external databases and adopting additional and orthogonal datasets, we validated

the trait-cell-type relevance results.

Simulation studies to assess power and type I error control

To assess EPIC’s type I error control for gene-level association testing, we first carried out sim-

ulation studies under the null, where we resampled the reference genotype matrix and gener-

ated binary phenotypes from a Bernoulli distribution with probabilities 0.1, 0.2, and 0.5. We

then computed the SNP-level summary statistics using logistic regression and applied EPIC to

carry out the gene-level testing under this null setting. For both large and small genes (with

number of SNPs greater/less than 50), EPIC controls for false positives (Fig F in S1 Text).

Refer to Materials and Methods for simulation details.

PLOS GENETICS EPIC: Inferring relevant cell types for complex traits by integrating GWAS and scRNA-seq

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1010251 June 16, 2022 11 / 22

https://doi.org/10.1371/journal.pgen.1010251


To assess EPIC’s type I error control for the second-step regression analysis, we randomly

permuted the gene expressions to disrupt any association between gene-level summary statis-

tics and their expression profiles. We applied EPIC to prioritize tissues/cell types: EPIC con-

trols false positives with type I error rates close to zero for the lipid traits, less than 0.02 for the

psychiatric diseases, and less than 0.01 for the T2Db (Fig G in S1 Text).

To assess EPIC’s power for gene-level association testing, we generated dichotomous phe-

notypes as a function of the genotypes with varied proportions of causal variants, effect sizes,

and directions of effects (see Materials and Methods for details). We then computed the sum-

mary statistics for each SNP via logistic regression, which were used as input for EPIC. Our

results suggest that under 30 different simulation configurations EPIC is more powerful than

MAGMA and that the power gain is substantial when the signals are sparse or in different

directions (Table E in S1 Text).

Discussion

Over the last one and half decades, GWASs have successfully identified and replicated genetic

variants associated with various complex traits. Meanwhile, bulk-tissue and single-cell tran-

scriptomic sequencing allow tissue- and cell-type-specific gene expression characterization

and have seen rapid technological development with ever-increasing sequencing capacities

and throughputs. Here, we propose EPIC to address the problem of how GWAS summary sta-

tistics should be integrated with scRNA-seq data to prioritize trait-relevant cell type(s) and to

elucidate disease etiology. To our best knowledge, EPIC is the first method that prioritizes cell

type(s) for both common and rare variants with a rigorous statistical framework that properly

accounts for both within- and between-gene correlations. We demonstrate EPIC’s effective-

ness and outperformance compared to existing methods with extensive benchmark and valida-

tion studies. Notably, EPIC’s analysis can be run in parallel across different chromosomes, and

its overall computational efficiency is on par with the other existing methods from benchmark

analyses on identifying relevant GTEx tissues for the LDL, SCZ, and T2Db traits (Table F in

S1 Text).

For scRNA-seq data, all existing methods, including EPIC, resort to pre-clustered/anno-

tated cell types and average across cells to obtain cell-type-specific expression profiles. How-

ever, scRNA-seq goes beyond the mean measurements [42,43], and how to make the best use

of gene expression dispersion, nonzero fraction, and other aspects of its distribution needs fur-

ther method development [44]. Additionally, while many efforts have been devoted to identi-

fying enrichment of discretized cell types, how to carry out enrichment analysis for transient

cell states needs further investigation. Last but not least, when multiple scRNA-seq datasets are

available across different experiments, protocols, or species, borrowing information from

additional sources can potentially boost the performance and increase the robustness of the

enrichment analysis [45]. While it is nontrivial to directly perform gene expression data inte-

gration, a cross-dataset conditional analysis workflow was proposed by Watanabe et al. [17] to

evaluate the association of cell types based on multiple independent scRNA-seq datasets. How-

ever, the linear conditional analysis may not be sufficient to capture any nonlinear batch effects

[46,47].

It is also worth noting that CoCoNet, MAGMA, and EPIC first carry out a gene-level asso-

ciation test so that the summary statistics and expressions are unified to be gene-specific. They

integrate SNP-wise summary statistics in different ways, yet for all methods, SNPs need to be

first annotated to genes based on a window surrounding each gene. While RolyPoly and

LDSC-SEG model on the SNP level directly, each SNP still needs to be assigned to a gene so

that the gene expression can be used as an SNP annotation. There is not a consensus on how
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to most accurately assign SNPs to genes, and more importantly, one would only be able to per-

form gene annotations for SNPs that reside in gene bodies or promoter regions. Meanwhile, a

large number of GWAS hits are in the noncoding regions, and their functions are yet to be

fully understood. EPIC’s framework can be easily extended to infer enrichment of noncoding

variants when combined with the single-cell assay for transposase-accessible chromatin using

sequencing (ATAC-seq) data [48,49]. Additionally, cell-type-specific expression quantitative

trait loci from the noncoding regions [50] can also be integrated with the second-step gene-

property analysis to boost power and to infer enrichment of noncoding variants.

Materials and methods

Gene-level associations for common variants

Let β = (β1,� � �,βk)
T be the effect sizes of K common variants within a gene of interest. Let b̂ ¼

ðb̂1; � � � ; b̂KÞ
T

be the estimator for β, with corresponding standard error ŝ ¼ ðŝ1; � � � ; ŝKÞ
T
.

Let ẑ ¼ ðẑ1; � � � ; ẑKÞ
T

be the z-scores, where ẑ j ¼ b̂ j=ŝ j is the standard-normal statistic for test-

ing the null hypothesis of no association for SNP j. We approximate the correlation matrix of

b̂ (equivalent to the covariance matrix of ẑ) by the LD matrix R = {Rjl;j,l = 1,. . .,K}, where Rjl is

the Pearson correlation between SNP j and SNP l. We further define V ¼ covðb̂Þ ¼
diagðŝÞ R diagðŝÞ as the covariance matrix of b̂. Under the null hypothesis of β = 0, the esti-

mator b̂ is K-variate normal with mean 0 and covariance matrix V. To perform gene-level

association testing for common variants, we construct a simple and powerful chi-square statis-

tic for testing the null hypothesis of β = 0:

Qc ¼ b̂TV � 1b̂ ¼ ẑTR� 1ẑ;

which has the w2
K distribution under the null. The correlation matrix R can be estimated from

either the raw genotype matrix or a publicly available reference panel. In this study, we utilize

the 1000 Genomes Project European panel [51], which comprises genotypes of ~500 European

individuals across ~23 million SNPs.

An effective chi-square test described above requires the covariance matrix to be well-con-

ditioned. For most GWASs, the ratio of the number of SNPs and the number of subjects is

greater than or close to one, making the sample covariance matrix ill-conditioned [52]. In

these cases, smaller eigenvalues of the sample covariance matrix are underestimated, leading to

inflated false positives in the gene-level association testing. To solve this issue, we choose to

adopt the POET estimator [53], a principal orthogonal complement thresholding approach, to

obtain a well-conditioned covariance matrix via sparse shrinkage under a high-dimensional

setting. The estimator of V = {Vjl;j,l = 1,. . .,K} is defined as V̂ H ¼
PH

j¼1
l̂ jv̂jv̂T

j þ R̂�H , where l̂ j

is the jth eigenvalues of the covariance matrix with corresponding eigenvector v̂j; R̂�H is

obtained from applying adaptive thresholding on R̂H ¼
PK

j¼Hþ1
l̂ jv̂jv̂T

j , and H is the number of

spiked eigenvalues. The degree of shrinkage is determined by a tuning parameter, and we

choose one so that the positive definiteness of the estimated sparse covariance matrix is

guaranteed. Notably, other sparse covariance matrix estimators [52,54,55] can also be used in a

similar fashion.

Gene-level associations for rare variants

Recent advances in next-generation sequencing technology have made it possible to extend

association testing to rare variants, which can explain additional disease risk or trait variability
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[26,28,56]. Previous work [57] has demonstrated that gene-based association tests for rare vari-

ants can be constructed using the single-variant statistics and that it is powerful and achieves

well-controlled type I error as long as the correlation matrix of single-variant test statistics can

be accurately estimated. Here, we inherit the same framework and recover the gene-level bur-

den test statistics [58,59] for rare variants from univariate GWAS summary statistics. Specifi-

cally, let U = {Uj; j = 1,. . .,M} and C = {Cjl;j,l = 1,. . .,M} be the score statistic and the

corresponding covariance matrix for testing the null hypothesis of no association for a total of

M rare variants residing in a gene. Under H0, the burden test statistic T ¼ xTU=
ffiffiffiffiffiffiffiffiffiffiffi
x
TCx

p
fol-

lows a standard normal distribution, where ξM×1 = (1,� � �,1)T. The GWAS summary statistics

do not contain U and C; we approximate Uj and Cjl by

Û j ¼ wjb̂ j=ŝ j ¼ wjẑ j

Ĉjl ¼ wjRjlwl;

where R is the correlation or covariance matrix of ẑ and wj ¼ 1=ŝ j is an empirical approxima-

tion to
ffiffiffiffiffi
Cjj

p
. Denote w = (w1,. . .,wM)T. The burden test uses Qr ¼ ðwTẑÞ2=wTRw, which fol-

lows the w2
1

distribution under the null.

Joint analysis for common and rare variants

Existing methods either remove rare variants from the analysis [9,11] or do not differentiate

common and rare variants when only summary statistics are available [10]. Yet, existing

GWASs have successfully uncovered both common and rare variants associated with complex

traits and diseases [26,28,56], and rare variants should therefore not be ignored in the enrich-

ment analysis. To incorporate rare variants into the common-variant gene association testing

framework, we collapse genotypes of all rare variants within a gene to construct a pseudo-SNP.

We then treat the aggregated pseudo-SNP as a common variant and concatenate the z-scores

ẑ� ¼ ðẑ1; � � � ; ẑK ; ẑ rÞ
T
; where the first K elements are from the common variants and ẑ r ¼

wTẑ=
ffiffiffiffiffiffiffiffiffiffiffiffi
wTRw
p

is from the burden test statistic for the combined rare variants. A joint chi-square

test for common and rare variants is performed as below:

Q ¼ ẑ�TR�� 1ẑ�;

which has the w2
Kþ1

distribution under the null hypothesis. R� can be estimated using POET

shrinkage with the pseudo-SNP included.

Gene-gene correlation

Proximal genes that share cis-SNPs inherit LD from SNPs and result in correlations among

genes. Since the correlations between genes are caused by LD between SNPs, which quickly

drops off as a function of distance, we adopt a sliding-window approach to only compute cor-

relations for pairs of genes within a certain distance from each other. It is worth noting that

this also significantly reduces the computational burden. Specifically, let N be the number of

genes from the same chromosome, and we adopt a sliding window of size d to estimate the

sparse covariance matrix among genes fG1; . . . ;Gdg; fG2; . . . ;Gdþ1g; . . . ; fGN� dþ1; . . . ;GNg;

respectively. By default, we set d = 10 so that gene-wise correlations can be recovered for a

gene with its 18 neighboring genes (see Fig H in S1 Text for the effect of sliding window size

on EPIC’s performance). Similar to MAGMA, correlations are only computed for pairs of

genes within 5 megabases by default.
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Recall that the gene-level association statistics are chi-square statistics in a quadratic form.

Within a specific window, the gene-wise correlations are obtained via transformations of

the SNP-wise LD information. Let ẑ ðsÞ and ẑ ðtÞ be the SNP-wise z-scores for genes s and t,
respectively. Let RðsÞ ¼ fRðsÞjl ; j; l ¼ 1; . . . ;Ksg; RðtÞ ¼ fR

ðtÞ
jl ; j; l ¼ 1; . . . ;Ktg; and Rðs;tÞ ¼

fRðs;tÞjl ; j ¼ 1; . . . ;Ks; l ¼ 1; . . . ;Ktg ¼ corðẑ ðsÞ; ẑ ðtÞÞ be the within- and between-gene correla-

tion matrices obtained from the POET shrinkage estimation. We take advantage of the Cho-

lesky decomposition to obtain the gene-gene correlation between Qs ¼ ðẑ ðsÞÞ
T
ðRðsÞÞ� 1ẑ ðsÞ and

Qt ¼ ðẑ ðtÞÞ
T
ðRðtÞÞ� 1ẑ ðtÞ:

rst ¼ cor Qs;Qtð Þ ¼

PKs
j¼1

PKsþKt
i¼1

L2
ij

ffiffiffiffiffiffiffiffiffi
KsKt
p ;

where Lij’s are entries of a lower triangular matrix L such that ~RðKsþKtÞ�ðKsþKtÞ
¼ LLT and

~RðKsþKtÞ�ðKsþKtÞ
¼

IKs
RðsÞ� 1=2Rðs;tÞRðtÞ� 1=2

RðtÞ� 1=2Rðt;sÞRðsÞ� 1=2 IKt

0

@

1

A;

IK is the identity matrix with dimension K. The full derivation is detailed in Note B in S1 Text.

When rare variants are included in the framework, gene-gene correlations are calculated simi-

larly by aggregating all rare variants that reside in a gene as a pseudo-SNP.

Prioritizing trait-relevant cell type(s)

To identify cell-type-specific enrichment for a specific trait of interest, we devise a regression

framework based on generalized least squares to identify risk loci enrichment. The key underlying

hypothesis is that if a particular cell type influences a trait, more GWAS polygenic signals would

be concentrated in genes with greater cell-type-specific gene expression. Under this hypothesis,

genes that are significantly associated with lipid traits are expected to be highly expressed in the

liver since the liver is known to participate in cholesterol regulation. This relationship between the

GWAS association signals and the gene expression specificity is modeled as below.

Let Qg be the gene-level chi-square association test statistic for gene g. To account for the

different number of SNPs within each gene, we adjust the degree of freedom of Kg+1 to obtain

Yg = Qg/(Kg+1), which is included as the outcome variable. Note that under the null, Yg has

mean of 1 and variance of 2/(Kg+1). For each cell type c, to test for its enrichment we fit a sepa-

rate regression using its cell-type-specific gene expression Ecg (reads per kilobase million

(RPKM) or transcripts per million (TPM)) as a dependent variable. To account for the baseline

gene expression [17], we also include another covariate Ag ¼
1

T

PT
c¼1

Ecg , which is the average

gene expression across all T cell types. Taken together, we have

Y ¼ g0 þ Ecgc þ AgA þ �;

where � has a multivariate normal distribution with mean 0 and covariance σ2W, W = DPDT,

D ¼ Diagð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2=ðKg þ 1Þ

q
Þ; and P = {ρst} is the gene-gene correlation matrix of the chi-square

statistics. We adopt the generalized least squares approach to fit the model and perform a one-

sided test against the alternative γc>0, under which the gene-level association signals positively

correlated with the cell-type-specific expression.

For a significantly enriched cell type, we further carry out a statistical influence test to iden-

tify a set of cell-type-specific influential genes, using the DFBETAS statistics, which indicate

the effect that deleting each observation has on the estimates for the regression coefficients
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[60]. Specifically, we repeatedly remove gene g, fit the regression model, and denote the esti-

mated coefficient as gðgÞc . DFBETAg � gc � g
ðgÞ
c , and large values of DFBETAS indicate observa-

tions (i.e., genes) that are influential in estimating γc. With a size-adjusted cutoff 2=
ffiffiffiffi
N
p

, where

N is the number of genes used in the cell-type-specific enrichment analysis, significantly influ-

ential genes allow for further pathway or gene set enrichment analyses.

To compare these influential genes from EPIC’s integrative framework with significant

genes from gene-level association testing (by GWAS) and cell-type-specific gene expression

analyses (by scRNA-seq), we carry out a hypergeometric test of significant overlap between

each pair of the three call sets. Specifically, let m and n be the number of significant and insig-

nificant genes for testing A, respectively, k be the number of significant genes from testing B,

and q be the number of overlapped significant genes between A and B. We aim to test for an

enrichment of testing A’s significant genes in B–the p-value of enrichment is derived from the

hypergeometric distribution using the cumulative distribution function, coded as phyper(q,

m, n, k, lower.tail = FALSE) in R.

GWAS summary statistics and transcriptomic data processing

We adopt GWAS summary statistics of eight traits, including four lipid traits [24] (low-density

lipoprotein cholesterol (LDL), high-density lipoprotein cholesterol (HDL), total cholesterol

(TC), and triglyceride levels (TG)), three neuropsychiatric disorders [25–27] (schizophrenia

(SCZ), bipolar disorder (BIP), and schizophrenia and bipolar disorder (SCZBIP)), and type 2

diabetes [28] (T2Db). The relevant tissues involved in these traits are well known/studied–liver

for the lipid traits, brain for the neuropsychiatric disorders, and pancreas for the T2Db–and

we use this as ground truths to demonstrate EPIC and to benchmark against other methods.

See Table A in S1 Text for more information on the GWASs.

For each trait, we obtain SNP-level summary statistics and apply stringent quality control

procedures to the data. We restrict our analyses to autosomes, filter out SNPs not in the 1000

Genomes Project Phase 3 reference panel, and remove SNPs with mismatched reference SNP

ID numbers. We exclude SNPs from the major histocompatibility complex (MHC) region due

to complex LD architecture [9,12,14]. In addition to SNP filtering, we align alleles of each SNP

against those of the reference panel to harmonize the effect alleles of all processed GWAS sum-

mary statistics. A gene window is defined with 10kb upstream and 1.5kb downstream of each

gene [3], and SNPs residing in the windows are assigned to the corresponding genes.

In the analysis that follows, we uniformly report results using a minor allele frequency

(MAF) cutoff of 1% to define common and rare variants (see Fig I in S1 Text for enrichment

results with different MAF cutoffs). To reduce the computational cost and to alleviate the mul-

ticollinearity problem, we perform LD pruning using PLINK [61] with a threshold of r2�0.8 to

obtain a set of pruned-in common variants, followed by a second-round of LD pruning if the

number of common SNPs per gene exceeds 200. See Fig J in S1 Text for results with varying

LD-pruning thresholds. For rare variants, we only carry out a gene-level rare variant associa-

tion testing if the minor allele count (MAC), defined as the total number of minor alleles

across subjects and SNPs within the gene, exceeds 20. We report the number of SNPs (com-

mon variants and rare variants), the number of genes, and the number of SNPs per gene for

each GWAS trait in Table G in S1 Text.

We adopt a unified framework to process all transcriptomic data. For scRNA-seq data, we

follow the Seurat [47] pipeline to perform gene- and cell-wise quality controls and focus on the

top 8000 highly variable genes. Cell-type-specific RPKMs are calculated by combining read or

UMI counts from all cells of a specific cell type, followed by log2 transformation with an added

pseudo-count. For tissue-specific bulk RNA-seq data from GTEx, we first calculate a tissue

PLOS GENETICS EPIC: Inferring relevant cell types for complex traits by integrating GWAS and scRNA-seq

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1010251 June 16, 2022 16 / 22

https://doi.org/10.1371/journal.pgen.1010251


specificity score for each gene [12], and only focus on genes that are highly specific in at least

one tissue. See Note A in S1 Text for more details. We then perform log2 transformation on

the tissue-specific TPM measurements with an added pseudo-count.

Benchmarking against RolyPoly, LDSC-SEG, and MAGMA

We benchmarked EPIC against three existing approaches: RolyPoly [9], LDSC-SEG [11], and

MAGMA [10]. For all methods, we used RPKMs for each cell type and TPMs for each GTEx

tissue in the benchmarking analysis. We made gene annotations the same for RolyPoly,

MAGMA, and EPIC by defining the gene window as 10kb upstream and 1.5kb downstream of

each gene. For LDSC-SEG [11], as recommended by the authors, the window size is set to be

100kb up and downstream of each gene’s transcribed region. Since all methods adopt a

hypothesis testing framework to identify trait-relevant cell type(s), for each pair of trait and

cell type, we reported and compared the corresponding p-values from the different methods.

RolyPoly takes as input GWAS summary statistics, gene expression data, gene annotations,

and LD matrix from the 1000 Genomes Project Phase 3. As recommended by the developer for

RolyPoly [9], we scaled the gene expression for each gene across cell types and took the absolute

values of the scaled expression values. We performed 100 block bootstrapping iterations to test

whether a cell-type-specific gene expression annotation was significantly enriched in a joint

model across all cell types. We also benchmarked LDSC-SEG, which computes t-statistics to

quantify differential expression for each gene across cell types. We annotated genome-wide

SNPs using the top 10% genes with the highest positive t-statistics and applied stratified LDSC

to test the heritability enrichment of the annotations that were attributed to specifically

expressed genes for each cell type. For MAGMA, we first obtained gene-level association statis-

tics using MAGMA v1.08. We then carried out the gene-property analysis proposed in Wata-

nabe et al. [17], with technical confounders being controlled by default, to test the positive

relationship between cell-type specificity of gene expression and genetic associations.

Simulation setup

We first ran a null simulation to evaluate EPIC’s type I error control for its gene-level associa-

tion testing. We generated simulated null genes in the following way. (i) We randomly selected

100 genes with well-pruned and annotated common SNPs from our SCZ GWAS analysis; the

number of SNPs per gene ranged from 10 to 195, with a mean of 53.2 and a median of 31.5.

(ii) For each gene, we resampled the reference genotype matrix from the 1000 Genomes Proj-

ect 5,000 times and obtained a resampled reference genotype matrix Xn×m, where n = 5000

individuals, m = the number of SNPs, and Xij2{0,1,2} indicates the number of effect alleles for

individual i and SNP j. (iii) We simulated binary phenotype Yi~Bernoulli(θ) for each individ-

ual i and θ2{0.1, 0.2, 0.5}. For each SNP j, we fit a logistic regression to generate SNP-level z-

scores with corresponding two-sided p-values. (iv) To compute the correlation matrix for each

gene, we obtained the sparse and shrinkage POET estimators within the sliding window. (v)

Repeat (ii)—(iv) 1,000 times and calculate the type I error rate for small genes (number of

SNPs� 50) and large genes (number of SNPs > 50).

To evaluate EPIC’s power for gene-level association testing, we used the same set of 100

genes with the same resampled reference genotype matrix as mentioned above. For each gene,

we randomly selected different proportions of causal variants with different effect sizes and

generated dichotomous phenotypes under the alternative by

logitPðYi ¼ 1Þ ¼
X

j

bjXij:
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Balanced case-control sampling was used to simulate dichotomous phenotypes with 50% cases

and 50% controls [29,62]. For each SNP, we then fit a logistic regression to generate SNP-level

z-scores with corresponding two-sided p-values as summary statistics. The proportion of

causal variants was set to be 5%, 20%, and 50%, representative of both sparse and dense signals;

effect sizes, as well as directions of effects, were also varied (Table E in S1 Text). Altogether, we

had a total of 30 simulation configurations for each of the 100 genes. Empirical power was esti-

mated as the proportion of p-values less than α = 10−6. The simulation was repeated 1,000

times to allow for standard error estimates.
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