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ABSTRACT: Board-shaped polymers form sanidic mesophases:
assemblies of parallel lamellae of stacked polymer backbones
separated by disordered side chains. Sanidics vary significantly with
respect to polymer order inside their lamellae, making them “stepping
stones” toward the crystalline state. Therefore, they are potentially
interesting for studying crystallization and technological applications.
Building on earlier mesoscopic models of the most disordered
sanidics Σd, we focus on the other extreme, near-crystalline order, and
develop a generic model that captures a highly ordered Σr mesophase.
Polymers are described by generic hindered-rotation chains.
Anisotropic nonbonded potentials, with strengths comparable to the thermal energy, mimic board-like monomer shapes. Lamellae
equilibrated with Monte Carlo simulations, for a broad range of model parameters, have intralamellar order typical for Σr
mesophases: periodically stacked polymers that are mutually registered along their backbones. Our mesophase shows registration on
both monomer and chain levels. We calculate scattering patterns and compare with data published for highly ordered sanidic
mesophases of two different polymers: polyesters and polypeptoids. Most of the generic structural features that were identified in
these experiments are present in our model. However, our mesophase has correlations between chains located in different lamellae
and is therefore closer to the crystalline state than the experimental samples.

1. INTRODUCTION

Many functional polymers comprise fairly large and rigid “flat”
repeat units with attached side chains, rendering them “board-
like” in shape.1 This feature affects supramolecular organ-
ization in these materials, so that their crystals present lamellae
of stacked backbones alternating with layers of ordered side
chains, as shown in Figure 1. Moreover, board-like molecular
shapes promote ordering into mesophases1−8 that occupy an
intermediate position between crystalline and amorphous
states on the order−disorder scale. The simplest case is
translationally invariant polymer biaxial nematics Nb,

9−11

where the two directors are oriented along and orthogonally
to the backbones, respectively (see Figure 1). More intriguing,
however, are sanidic mesophases, which have broken transla-
tional invariance. Here, in analogy to crystals, polymer
backbones assemble into lamellae of cofacially oriented
“stacks”, but now the layers of side chains that separate the
lamellae are disordered.3,6,8

Figure 1 summarizes three basic symmetries3 found in
sanidic mesophases: Σd, Σo, and Σr. In “disordered sandics” Σd,
polymers retain two-dimensional (2D) translational freedom
within each lamella, because their backbones shift arbitrarily
with respect to each other, and there is no long-range
positional order along the stacking direction (i.e., orthogonally
to the backbones within the lamellar plane). In “ordered

sanidics” Σo, the chain backbones are still not registered, so
may shift longitudinally, but are now regularly spaced along
their stacking direction. The symmetry of the “rectangular
sanidic” Σr mesophase is the closest to crystalline, exhibiting
both long-range order along the stacking direction, and also
registration of chain backbones. However, the positions of
stacks are uncorrelated between neighboring lamellae (in
contrast to crystals), at least along the stack normal.
Interest in the structure of sanidic mesophases has recently

grown, partially because of organic electronics. It is
argued4−6,12 that sanidics can serve as processing intermediates
for manufacturing solid state morphologies with favorable
properties, such as increased charge mobility,5,6 because they
offer thermodynamically stable states, where board-like
polymers are ordered along multiple directions. Inspecting
Figure 1 reveals another interesting aspect: as new features of
order emerge across the different sanidic mesophases, they
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increasingly reproduce generic attributes of crystals. In
addition, crystalline arrangements of board-like polymers
typically have substantial structural disorder,5,13−15 which
brings them even closer to sanidic liquid crystals (LC).
Hence, studying sanidic mesophases can offer (at least
qualitative) insights into the properties of crystalline states in
board-like polymers.
This approximation is used, often implicitly, in molecular

simulations of board-like polymers on device-relevant scales.
The reason is that such large-scale simulations must use
computationally efficient mesoscopic models,7,16−23 where
each effective particle represents a large number of atoms or
even an entire monomer. Drastic coarse-graining smears local
molecular details, which are crucial for crystallization. As a
consequence, to the best of our knowledge, the various highly
ordered arrangements of board-like polymers that have so far
been generated with mesoscopic models are not crystals. They
are partially ordered, akin to sanidic mesophases.
Nevertheless, simulations of partially ordered lamellar

mesophases7,18,20,22 provide valuable insights. One example is
the use of mesoscopic simulations18,20 to elucidate how free
volume between side chains influences intercalation of
fullerenes and, subsequently, how such intercalation affects
the ordering of conjugated oligomers. These simulations were
found to be in agreement with experiments24 on crystalline
materials.
To identify universalities in structure−property relation-

ships, it is frequently desirable for mesoscopic models to have a
simple generic construction. Taking into account the relevance
for approximate studies of crystalline materials, the develop-

ment of generic models describing the most ordered sanidic
mesophases, Σr, is particularly interesting. It is challenging,
however, to find a balance between simplifying the molecular
description as much as possible and retaining enough detail to
capture high structural order.
Here, we develop a generic model that, despite the

significant reduction of chemical details, enables simulations
of a Σr mesophase. We combine a drastically coarse-grained
(CG) description of the molecular architecture, where each
interaction site represents an entire repeat unit of a board-like
polymer with special nonbonded interactions. These are
expressed through potentials that are “soft” (their strength is
comparable with the thermal energy kBT) and anisotropic. In
the spirit of other models25−33 of LC, the choice of the
anisotropicity of the interactions is “top-down”; it is guided by
the symmetries of the sanidic mesophase one wants to model.
Here, we build upon a strategy previously developed7,19 to
simulate biaxial polymer nematics and the least ordered
sanidics Σd and create a simple, generic model for capturing a
highly ordered Σr mesophase.
We thoroughly explore the structure of our Σr mesophase

and qualitatively study the phase behavior of our model across
a broad range of parameter space. We compare the molecular
arrangement in our mesophase with structures that have been
reported in experimental studies3,8 of highly ordered sanidic
mesophases in board-like polymers from two different families:
polyesters3 and polypeptoids.8 In the experiments, the
molecular organizations of the mesophases were extracted
from scattering patterns. Therefore, we discuss the similarities
and differences between the structure of our mesophase and
the experimentally observed ones via a qualitative comparison
of their scattering patterns.

2. METHODS
To develop a mesoscopic model for Σr mesophases, we
advance an approach7,19 that has been designed to describe
less-ordered mesophases in conjugated polymers. The new
model is a generic representation of board-like polymers (not
necessary conjugated) and, as such, uses a minimum set of
features to describe polymer architecture. Within this generic
framework, we expand ideas of symmetry and interactions
developed in the previous studies7,19 and construct a new
nonbonded potential that enables modeling of a highly ordered
Σr mesophase.

2.1. Polymer Architecture and Degrees of Freedom.
Our systems contain n polymers described by a hindered-
rotation model. Each polymer consists of N monomers
connected by bonds with fixed length b.
The position of each CG monomer (site) in space is given

by the vector rj(s), where j = 1, ..., n and s = 1, ..., N indicate the
chain and the monomer, respectively. To represent an
underlying anisotropic, board-like, repeat unit, each CG site
also requires orientational degrees of freedom. These are
introduced7,19 by assigning three orthonormal unit vectors
{nj

(k)(s)} (k = 1, 2, and 3) to each monomer (see Figure 2),
which are fully defined by the local conformation of the chain.
If uj(s) = rj(s + 1) − rj(s) is a vector along the bond connecting
the sth and (s + 1) th CG sites, then nj

(1)(s)∥uj(s) + uj(s − 1),
nj
(2)(s)∥uj(s) − uj(s − 1), and nj

(3)(s) = nj
(1)(s) × nj

(2)(s). The
orientation vectors associated with the end monomers of each
chain are defined by adding ghost bonds to ghost monomers,
indexed by s = 0 or N + 1, depending on which end of the
polymer they are attached to. The ghost bonds are subjected to

Figure 1. Cartoons demonstrating biaxial nematics Nb, various types
of sanidic Σ mesophases, and crystalline order found in materials
composed of “board-shaped” polymers. These images represent
polymers as rigid boards with attached disordered/ordered side
chains. For simplicity, they do not show the internal degrees of
freedom available to the backbones or related conformational
fluctuations. Transparent blue boxes are a guide to the eye to show
lamellae; boxes that are vertically shifted relative to each other
indicate decorrelated lamellae. Blue arrows represent a regular
lamellar spacing. Green and orange arrows represent positional
order within each lamella in the stacking and backbone directions,
respectively.
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the bonded interactions of the model, but the ghost monomers
do not induce any nonbonded interactions.
The bond angles θ between neighboring monomers along

each polymer chain are controlled by an angular potential:

V k
1
2

( )0
2θ θ= −θ θ (1)

where θ0 is the most probable bond angle and kθ is the stiffness
coefficient. In real materials, bond angles tend to only fluctuate
a small amount around their equilibrium values,34 so we set kθ
to a generic high value of 100 kBT. Later, we find that smectic
order is part of the structure of our Σr mesophase. As the most
probable bond angle θ0 affects the local bent-shape of
molecules, which is known to correlate with smectic
behavior,35 we test the robustness of the smectic order by
varying θ0 in a broad range from 140° to 170°.
The dihedral angles ϕ between bonds along the polymer

backbone must be controlled by a torsional potential Vϕ in
order to promote board-like conformations. We require
minima corresponding to the cis and trans states, at angles
of ϕ = 0° and ϕ = ±180°, respectively. The final molecular
shapes in a self-assembled structure are determined in
combination with nonbonded potentials that favor relatively
linear arrangements (see section 2.2). Therefore, there is no
need to explicitly favor the trans conformation over the cis, and
we consider a simple generic case, where both states are
assigned a torsional potential of 0 kBT. Energy barriers for
torsional rotation are generally low.36 Hence, we choose a
weakly corrugated landscape for torsional rearrangements,
where the maxima of the energy barriers have a generic height
of 1 kBT and are placed at ϕ = ±90°, halfway between the
minima of 0 kBT at ϕ = 0° and ϕ = ±180°. We use a simple
form of Vϕ that fulfills these requirements:

V c c cos0 2
2 ϕ= +ϕ (2)

where c0 = 1 kBT and c2 = −1 kBT.
2.2. Nonbonded Interactions. We define a nonbonded

potential Vnb between CG monomers that either belong to
different polymer chains or are separated by four or more
monomers along the backbone of the same chain. Nonbonded
intramolecular interactions between sites closer than four
monomers apart are not activated on the grounds that such
monomers are correlated by the three- and four-body bonded
potentials Vθ and Vϕ.
The nonbonded potential is defined in a modular way as the

sum of four different contributions, where we define β = 1/
kBT:

V V V V V
V

nb iso biaxial stack reg

lamella

β κ λ ζ η= + + +
β

´ ≠ÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖ ÆÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖ
(3)

Each of the four components of Vnb is phenomenologically
designed to promote a different feature of structural order.
Their strengths can be adjusted by varying the non-negative
coefficients κ, λ, ζ, and η, which are defined in units of kBT. We
refer to the interaction defined by the sum of the first three
terms of eq 3 as Vlamella, the “potential for lamellar order”. This
potential has been developed previously7 and enables the self-
assembly of CG polymer chains into lamellar arrangements
that reproduce the most disordered lamellar sanidic mesophase
Σd. In this study, we find that Σr mesophases can be formed
simply by augmenting Vlamella with a generic “registration
potential” Vreg.
To present the model coherently and facilitate the

discussion of results, we first recapitulate the main features
of Vlamella (details are available elsewhere

7,19) and then present
the structure of Vreg.

2.2.1. Potential for Lamellar Order. Each of the three parts
of Vlamella serves a specific purpose and is defined as follows:7,19

V U r s m( ( , ))jliso = (4)

V U r s m s mb b
1
2

( ( , )) ( ): ( )jl j lbiaxial = −
(5)

n r n rV U r s m P s s m P m s m( ( , )) ( ( ) ( , )) ( ( ) ( , ))jl j jl l jlstack 2
(3)

2
(3)= − [ · ̂ + · ̂ ]

(6)

Viso provides finite compressibility and depends only on the
distance between two particles rjl(s, m) = |rj(s) − rl(m)| via a
repulsive isotropic core U(r) (where r ≡ rjl(s, m)). We define
U(r) by7,19

U r C
r r

r( ) 2
2

1
2

(2 )
2

σ σ
σ= + − Θ −i

k
jjj

y
{
zzz
i
k
jjj

y
{
zzz (7)

In material-specific simulations,7,19 the normalization constant
C depends on a characteristic (constant) reference density of
the modeled material and is considered explicitly. In our
generic simulations, there is no need to specify C, and we
simply incorporate C into the definition of the coefficients κ, λ,
and ζ. The range of the potential is 2σ, as indicated by the
Heaviside function Θ(2σ − r).
Formally, eq 7 is derived19,37 from a generic classical density

functional used in field-theory of polymers. Alternatively, the
functional form of U(r) in eq 7 has a simple qualitative
explanation. σ represents7,19 the length spanned by the side
chains of the board-like monomers. Hence, in a disordered
melt, each monomer has a characteristic volume v0 = 4πσ3/3.
When two monomers approach in real materials, steric
exclusions reduce the allowed conformations of side chains.
Let f(r) be the free energy of a pair of monomers separated by
distance r. When monomers are described as single objects,
they interact via an effective potential that approximately
equals38 Δf(r) = f(r) − f(r → ∞). Simplifying even further,
one can assume38 that Δf(r) ∼ v(r), where v(r) is the volume
of the region where the characteristic volumes v0 of the two
monomers overlap. The choice of U(r) in eq 7 matches (up to
a prefactor) the dependence38 of v(r) on r. To implement Viso,
we therefore only need to specify σ. In all cases, we use σ = 2 b.
In the following, all lengths will be presented in units of σ.
The dependence of Vbiaxial on rjl(s, m) is also defined via U(r)

(see eq 5). Using the same U(r) as Viso simplifies19 the model

Figure 2. Schematic of the polymer chain architecture used in the
model. Real monomers are shown as black circles, with solid black
lines representing bonds of fixed length b. The two ghost monomers
at the ends of the chains are shown in gray with dashed ghost bonds.
Examples of bond and dihedral angles (θ and ϕ, respectively) are
shown in red, and the orientation vectors for monomer s are
represented by colored arrows.
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and turns to be sufficient for obtaining a Σr mesophase. In
addition, Vbiaxial depends on the Frobenius product bj(s): bl(m)
of the biaxial tensors associated with the two interacting sites.
The tensor bj(s) is defined as

s s s s sb n n n n( ) ( ) ( ) ( ) ( )j j j j j
(2) (2) (3) (3)= ⊗ − ⊗ (8)

An equivalent expression holds for bl(m). Equation 5 is a
special case of a general expression25,29,30,39 for the
quadrupolar orientational interaction energy between two
biaxial particles. However, it is sufficient to define a potential
with a global minimum corresponding to a relative orientation
of chains where the planes of their backbones are parallel to
each other, forming a biaxial nematic.
Vstack, given by eq 6, is an anisotropic “perturbation”7 of Viso,

and is defined as convolution of U(r) with a combination of
second-order Legendre polynomials P2, where rĵl(s, m) = rjl(s,
m)/rjl(s, m) is the unit intermonomer vector. This perturbation
creates an interaction that is minimal when polymers stack
face-to-face on top of each other and maximal when they are
situated side by side.7 The combination of Vbiaxial and Vstack
creates an anisotropy that favors the formation of lamellae with
stacks.7 The effect of this synergy is illustrated in Figure 3a,

which presents a contour plot of Vlamella for two biaxially
aligned monomers. This cylindrically symmetric plot is shown
as a function of the components of the intermonomer vectors
rjl(s, m) parallel (rn(3)) and perpendicular (r⊥) to the n(3)

orientation vectors of the monomers (note that due to the
biaxial alignment, n(3) is the same for both monomers).
However, due to competing interactions from neighboring
monomers along the chain backbones, the corrugation created
by Vstack is not sufficient to break translational invariance along
the backbone direction. Therefore, we augment Vlamella with a
registration potential introduced in the next section.
2.2.2. Registration Potential. The registration potential

Vreg, which provides regularity in monomer spacing along the
stacking direction and prevents translational freedom along the
chain backbone direction, is defined as

n r n rV P s s m P m s m r s m R

r s m R

( ( ) ( , )) ( ( ) ( , )) ( ( , ) )

( ( , ) )

j jl l jl jl

jl

reg 2
(3)

2
(3)

2

1

= [ · ̂ + · ̂ ][Θ −

− Θ − ] (9)

Vreg enhances the strength of Vstack in a spherical shell between
the cutoff distances R1 and R2 (where R1 < R2). This creates a
zone of lower energy in Vnb (outlined in Figure 3b) that
promotes the stacking of monomers at a fixed distance from
each other and induces a highly ordered arrangement of
monomers in the system. The cutoff R2 reduces interference
between Vreg originating from different monomers along the
chain, producing a stronger corrugation along the next layer of
the stack than Vstack. The structure of the Σr mesophase arises
from a complex synergy between the potentials of all
interacting particles and is also affected by density. Therefore,
we cannot provide precise guidelines for choosing the cutoff
distances in Vreg. To reduce the parameter space, we assume R1
= R2 − 0.25 and use exploratory simulations to find suitable R2.
These simulations are simplified by qualitative arguments that
reduce the range of R2 values that need to be scanned (see
section 3.1). In this way, we converge to the choice R2 = 0.65.
We emphasize that, for η high enough to drive Σr order, as in

Figure 3b, the nonbonded potential Vnb contains negative
regions. For soft models, where particles overlap, potentials
with negative parts can create instabilities:40,41 molecules in the
system might agglomerate and collapse into a small region of
space. Here, due to the complex functional form of Vnb, the
formal stability of the system cannot be ensured for individual
monomers. In practice, however, it is the entire potential
surface originating from groups of bonded monomers that is
important, rather than pair interactions, and the combination
of the fixed bond length with the bonded potentials tends to
discourage collapse. We also always choose κ, λ, and ζ such
that Vlamella remains positive.7 Therefore, the negative regions
of Vnb are only located in the ring caused by Vreg, and as these
are away from the interaction centers, the likelihood of collapse
is probably reduced. We see no evidence of collapse in any of
our simulations, which are carried out at a range of different
densities and include building up the structure from a
disordered state. Prior research42−45 into liquid crystals has
also been carried out using soft core Gay−Berne potentials
with negative regions away from the center, without reporting
collapse.

2.3. System Setup and Monte Carlo Sampling. The
systems are initially set up in monodomains in boxes with edge
lengths Lα (where α = x, y, z) and periodic boundary
conditions (PBC) in each direction. Strictly monodisperse
molecules in the all-trans conformation are evenly distributed
among ny lamellae; the normals of the lamellae are parallel to
the y-axis. The chains in each lamella are placed into nz equally
spaced stacking layers. Each of them contains the same number
of molecules, nx. Chains lie with their backbones, that is, the
nj
(1)(s) of the monomers, parallel to the x-axis and stacked
along the z-axis (i.e., nj

(3)(s) is parallel to the z-axis).
Importantly, there is no correlation across different stacking
layers regarding the position of chains along the x-direction.
Note that nx, ny, and nz refer to the organization of molecules
in the initial setups; the arrangements can change during the
simulations. For each system in the rest of the paper, we quote
nx, ny, and nz for the initial configurations.
Subsequently, Metropolis Monte Carlo (MC) simulations

are used to equilibrate the systems and sample the
configuration space. We use two ensembles: standard canonical
and isostress. In both ensembles, the volume V and, therefore,
the average density ρ0 = nN/V are fixed. We mostly use ρ0 =
2.05 monomers/σ3, which in isotropic melts corresponds to a
packing fraction of monomers of Φ ≈ 8.58, where Φ = ρ0v0.

Figure 3. Contour plots of the nonbonded potential between two
biaxially aligned monomers, as a function of the components of the
intermonomer distance vector parallel (rn(3)) and perpendicular (r⊥) to
the n(3) orientation vectors of the monomers (i.e., the stacking
direction). (a) Vlamella, where κ = 0.874, λ = 0.408, and ζ = 0.204 (all
in units of kBT). (b) Vnb, where κ = 0.874, λ = 0.408, ζ = 0.204, η = 1,
R1 = 0.4, and R2 = 0.65. Zones where the potential is negative are
outlined in magenta. In both plots, white lines highlight selected
isosurfaces. The range of the potential is 2 (in units of σ), but only the
central region is shown to highlight the effect of Vreg.
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These choices of ρ0 and Φ correspond to rather moderate
values among the coarse-grained densities and packing
fractions one finds when representing real polymers using
our drastically coarse-grained approach. For example, using
one single coarse-grained site to represent one repeat unit, we
estimate that for poly(3-hexylthiophene), poly(3-dodecylth-
iophene), PE12 polyester,3 and Ac-Ndc9-Nte9 polypeptoid,

8 ρ0
≈ 1.6, 8.6, 3.4, and 6.5, respectively. The corresponding
packing fractions are Φ ≈ 6.8, 36, 14, and 28. In Section 1 of
the Supporting Information, we explain how these estimations
are made. Other choices of ρ0 are considered in section 3.2
when exploring the stability of the Σr mesophase. The
temperature T enters implicitly via the coefficients governing
the strength of the potentials (they are defined in units of kBT,
see section 2.2).
Two MC moves are employed for simulations in the

canonical ensemble: reptation46,47 and “flip”48 (also known as
“crankshaft”49) with 80% and 20% probability, respectively.
The reptation move is modified to account for the presence of
ghost bonds, as described previously.19

Flip moves are performed differently depending on whether
a real or ghost monomer is randomly selected. If a real
monomer is chosen, it is rotated by a random angle (from a
uniform distribution between −180° and 180°) around a local
axis joining the positions of the previous and next monomers
of the chain (even if one of these is a ghost). If a ghost
monomer is chosen, its connecting ghost bond is rotated by a
random angle around the axis defined by the bond immediately
next to it.
Simulations in the isostress ensemble also include a third,

variable-shape-constant-volume50−53 (VSCV) MC move with
0.1% probability. This move optimizes the box dimensions Lα

to make them commensurate with the natural geometry of the
lamellar structure, under the constraint of constant volume V
(and, therefore, constant average density ρ0). We emphasize,
however, that the move maintains an orthogonal shape of the
box and does not optimize the angles between its edges (in
contrast, e.g., to the Andersen−Parrinello−Rahman barostat54

in Molecular Dynamics). The application of the VSCV
algorithm has been described in detail previously7 for a similar
system. Proposed new values for Lα are chosen randomly, and
the first real monomer (i.e., not a ghost) of each chain
undergoes an affine transformation so that its coordinates
maintain their original proportions relative to the box lengths
Lα. The other monomers are translated to preserve internal
structures (bond lengths, bond angles, dihedral angles) and
orientations that the chains had immediately before the move.
Here, the maximum allowed changes to Ly and Lz are ±0.05;
Lx is then determined by the constant volume constraint.
Because the VSCV move is computationally costly, we use

the isostress ensemble only for small systems where n ≤ 400.
Simulations of larger systems are performed in the standard
canonical ensemble. In this case, Lα are set to optimum values
commensurate with periodicities (lamellar and stacking
spacings) estimated from isostress simulations of smaller
systems ({nx, ny, nz} = {2, 8, 25}). For each of these smaller
systems, we perform eight simulations starting from config-
urations with different initial box dimensions Lα. The runs
continue until the dimensions of all eight simulations converge
to similar values of Lα.

3. RESULTS AND DISCUSSION

3.1. Structure of the Σr Mesophase. When the strengths
of all terms in Vnb are sufficiently high, our model forms a Σr
mesophase for all chain lengths studied (see section 3.2). Here
we explain the structure of this mesophase for one
representative chain length N = 16 and one choice of
parameters κ = 0.874, λ = 0.408, ζ = 0.204, η = 1, θ0 =
150°, and ρ0 = 2.05.
To facilitate structural analysis, we equilibrate Σr mono-

domains where the chain backbones, lamellar spacing, and
stacking direction are oriented along the x-, y-, and z-axis of the
simulation box, respectively. An approximately cubic box with
dimensions {Lx, Ly, Lz} = {25.10, 21.36, 20.98} and n = 1440
chains ({nx, ny, nz} = {3, 12, 40}) is used to investigate the
general structure of the mesophase. Highly asymmetrical
boxes, which are long in one dimension α = x, y, or z, and short
in the other two, are used to investigate correlation functions
along each direction. Specifically, we use {Lx, Ly, Lz} = {133.89,
7.12, 7.87}, {16.74, 56.96, 7.87}, and {16.74, 7.12, 62.94}.
Each box contains n = 960 chains, with {nx, ny, nz} = {16, 4,
15}, {2, 32, 15}, and {2, 4, 120}, respectively. We study
configurations prepared with 16 independent simulations
(repeats).
A lamellar arrangement is evident in Figure 4a, which

presents a typical 3D configuration from our MC simulations.
Figure 4b and c are side views of this configuration along the y-

Figure 4. Visualizations of the Σr mesophase produced by simulation,
where each board shows a monomer in its current orientation. (a)
Perspective view of an entire simulation box showing a collection of
regular lamellae. (b) Side view of a single lamella, demonstrating the
intralamellar SmA structure. (c) Top-down view of a collection of
lamellae, where the end monomers are colored in blue to demonstrate
the interlamellar SmC structure.
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and z-axis, respectively. In such 3D configurations, we quantify
order along each direction α by calculating 1D pair-correlation
functions g(rα) defined as
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The prime on the second sum excludes monomer self-
interactions, that is, m ≠ s for l = j. Furthermore,·rjl;α(s, m) are
projections of distance vectors between monomers onto the
direction α, and ñα is the number of chains contributing to the
calculation of g(rα). ρ̃α = (ñα − 1)N/2Lα is a normalization
factor. g(rx) probes correlations along the chain backbone
direction, where ñx stands for the number of chains located in
the same lamella. For g(ry), which probes order in the direction
orthogonal to the lamellae, ñy is the total number of chains in
the system, that is, ñy = n. Finally, g(rz) quantifies correlations
along the stacking direction z; in this case, ñz is the number of
chains in the same stack. For g(rx) and g(rz), the angular
brackets in eq 10 indicate canonical averaging over all lamellae
and all stacks, respectively. For g(ry), the angular brackets
represent canonical averaging over all equilibrated config-
urations with the same size and shape. We obtain 1D pair-
correlation functions as histograms with a bin size of 0.5 for
g(rx) and 0.01 for g(ry) and g(rz).
The g(ry) presented in Figure 5a (dashed line) demonstrates

that the positional order orthogonal to the lamellae is indeed

strong: peaks are regularly spaced and there is no perceptible
decay in their height. The spacing of the peaks corresponds to
a lamella period of dlam = 1.78; this value changes as the model
parameters are varied.
Translational invariance is also broken within each lamella,

as demonstrated by Figure 4b, which provides a side view of a
representative lamella from the configuration in Figure 4a.
Within the lamellar xz-plane, chains form stacks analogous to a
“quasi-2D” Smectic A (SmA). The periodic shape of g(rx) in
Figure 5b (calculated in the system with Lx accommodating 16
chain backbones) is consistent with SmA order and suggests
that correlations along the backbone direction do not decay
with distance within each lamella, at least for the considered
system sizes.

Apart from lamellae and chain registration, Figure 4b
demonstrates that our model reproduces another hallmark of
Σr mesophases: periodicity along the stacking direction. This
periodicity is quantified by the g(rz) shown in Figure 5a (solid
line) for the system accommodating 120 stacking layers. The
peaks are regularly spaced, demonstrating a regular stacking
distance dst = 0.525, but their heights decay with distance,
suggesting that only quasi long-range order55 (QLRO) is
present along the stacking direction. The rate of decay also
increases with Lz, when comparing simulation boxes of
different shapes, as expected56 for QLRO (see Section 2 of
the Supporting Information).
Interestingly, the top view in Figure 4c demonstrates that

the positions of polymer chains across different lamellae in the
3D configuration are correlated. The ends of the chains are
shown in a different color than the internal monomers,
indicating that the mesophase forms an analogue of Smectic C
(SmC) in the xy-plane. The tilt direction is generally consistent
across the simulation box, but tilt reversals sometimes occur,
producing zigzags. These stem from metastability: multiple
domains frequently form during the early stages of
equilibration, particularly when the initially developed tilt
angle cannot be maintained across the whole simulation box
due to the PBC. It is observed that the tilt angles adjust during
the simulations to reduce discontinuities.
Although the Σr mesophase of our model is well structured

on the level of polymer chains, it has substantial disorder on
the monomer scale in some directions. We quantify monomer
packing using the 3D correlation function:
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We calculate c(rx, ry, rz) by binning the distances between all
pairs of monomers in a configuration into a histogram, with bin
size 0.05 in the x and z directions and 0.1 in the y direction.
Averaging takes place over all configurations with the same tilt
angle.
Figure 6a presents a contour plot of the 2D slice of c(rx, ry,

rz) that corresponds to intralamellar correlations, that is, ry = 0.
It demonstrates that the monomers locally form an analogue of
a 2D centered rectangular lattice. Further away, their
correlations are washed out by thermal fluctuations. In Figure
6b, we plot the 2D slice of c(rx, ry, rz) corresponding to
monomers found in neighboring lamellae, that is, ry = dlam.
Here, only a faint lattice can be discerned, suggesting weak xz-
positional correlations between monomers in different
lamellae. A broad vertical dark stripe, indicating higher
probability, appears slightly to the right of the origin. It
corresponds to the SmC shift of chain backbones along the x
direction between subsequent lamellae. When we average over
configurations with different tilt angles, we observe that
interlamellar correlations are washed out, confirming that
they are indeed very weak.
The intralamellar monomer-level lattice has a strong

energetic driver based on minimizing Vreg, see Section 3 of
the Supporting Information for details. The intralamellar SmA
order forms very quickly in our simulations, and there is

Figure 5. (a) 1D pair correlation functions g(ry) (dashed line) and
g(rz) (solid line) calculated along the interlamellar and stacking
directions, respectively. (b) 1D pair correlation function g(rx)
calculated along the backbone direction.
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evidence that there is a strong energetic contribution to its
appearance, although there may also be entropic effects. The
origin of the SmC order is less clear, because we were not able
to find clear evidence of an energetic benefit. Further
discussion can be found in Section 4 of the Supporting
Information.
Knowing the structure of our Σr mesophase enables a back-

of-the-envelope calculation. The volume per chain in the Σr
mesophase is dstdlam[(N − 1)b̃ + Δ]. Here, b̃ = b sin(θ/2) and
Δ is the intralamellar “gap” between SmA stacks. Hence, (N −
1)b̃ + Δ approximates the characteristic length of one SmA
stack. Of course, this simple estimate neglects conformational
fluctuations (deviations from the all-trans state), as well as
possible chain backfolding, and cross-lamellar bridging.
Considering that the volume per chain also equals N/ρ0, we
obtain

N
d d

b b
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0 st lamρ
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In a realistic model, Δ should remain “microscopic”, even for
long chains, that is, Δ must saturate with N. This requirement
holds when:

d d
b

1
st lam
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Equations 13 and 14 lead to two conclusions. First, they
suggest that the range of densities where our Σr mesophase
maintains realistically small gaps is rather narrow. We refer to a
range of densities because dst and dlam are not constant, but
functions of ρ0 (and N for short chains). Second, they guide
the choice of R2. In a stable sanidic mesophase, lamellae must
interact. Therefore, the range of our potential provides an
upper boundary for dlam, that is, dlam ≤ 2. Assuming that dst ≤
R2, we obtain from eq 14 that R2 ≥ 1/2ρ0b̃. Thus, our basic
choices of density ρ0 = 2.05 and θ = 150° correspond to R2 ≥
0.5. Starting from this value, we increased R2 in our exploratory
scans and found that R2 = 0.65 led to clear-cut Σr structures.
3.2. Robustness of Σr Mesophase. Here, we consider the

robustness of the Σr mesophase against varying the strengths of
the nonbonded potentials, chain length N, preferred bond
angle θ0, and average density ρ0.
To investigate the effect of the nonbonded potentials, we

construct a phase diagram. We fix the strength of the isotropic

repulsion Viso to κ = 0.874 and vary the other coefficients λ, ζ,
and η. The coefficients λ and ζ are allowed to change within a
range that maintains a positive potential for lamellar order
Vlamella > 0. This condition ensures that βVnb is always repulsive
when monomers come close, that is, rjl(s, m) ≃ 0 (see section
2.2). All other parameters are fixed to N = 16, θ0 = 150°, and
ρ0 = 2.05. We perform simulations of systems with n = 400
chains ({nx, ny, nz} = {2, 8, 25}) in the isostress ensemble. To
construct the phase diagram, we combine visual inspection
with several quantitative indicators. The transition from an
isotropic melt to biaxial nematic Nb is identified using uniaxial
and biaxial order parameters, S and B, calculated in a standard
way57 (see Section 5.1 of the Supporting Information). We
consider that Nb is formed when both S and B are ≥0.5. The
transition into a Σd disordered lamellar mesophase is
characterized by the occurrence of regular peaks corresponding
to lamellar spacing in g(ry), the 1D correlation function
introduced in eq 10.
A main characteristic of the transition from Σd to our highly

ordered Σr mesophase is the appearance of SmA order within
each lamella, which we quantify using a standard-order
parameter35,58,59 Λ (see Section 5.2 of the Supporting
Information). For the system sizes considered here, we find
that Λ > 0.7 is a strong indicator of SmA order; visual
corroboration is required when Λ ≈ 0.7. The presence of
cross-lamellar SmC is mainly judged by eye, although a
method for quantification is discussed in Section 5.3 of the
Supporting Information.
Figure 7 presents the phase diagram, where data points

correspond to an isotropic melt, a biaxial nematic Nb,
19 a Σd

sanidic mesophase,7 and our Σr sanidic mesophase. We
emphasize that this diagram is qualitative because of the
limited amount of repeats and no systematic study into finite
size effects. Moreover, we use a compressible model within a
statistical ensemble where two extensive variables, total
number of particles and system volume, are fixed. Therefore,
the identification of phase boundaries is complicated by the
possibility of phase coexistence.60 Nevertheless, Figure 7 is
sufficient to demonstrate the stability of the Σr mesophase over
a broad range of parameters. Overall, Σr is encouraged when λ,
ζ, and η are high. Interestingly, however, a Σr mesophase also
appears when ζ = 0, provided that λ and η are sufficiently large.
Although no upper phase boundary for Σr is identified, we note
that high values of η can prohibitively slow down equilibration.

Figure 6. Contour plots of the positional correlation function c(rx, ry,
rz) showing (a) intralamellar monomer correlations, c(rx, 0, rz), and
(b) correlations between monomers in neighboring lamellae, c(rx,
dlam, rz). Both graphs are plotted in the lamellar xz-plane. The scale for
c(rx, ry, rz) has a cutoff of 3, so spikes with values higher than 3 are
also shown in black.

Figure 7. Dependence of phase behavior on the strength of different
components of the nonbonded potential βVnb. Data points
correspond to isotropic melt (green triangles), biaxial nematic Nb
(black circles), Σd sanidic (orange squares), and Σr sanidic (blue
diamonds). N = 16 and κ = 0.874 throughout.
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Although each of the four components of Vnb is mainly
responsible for an individual feature of structural order, we
emphasize that there is a cooperativity between them (which is
also influenced by chain connectivity). Therefore, it is not
straightforward to develop simple guidelines for choosing
values λ, ζ, or η that promote specific mesophases, by
considering only the isolated effects of the interactions that are
conjugated to each of these parameters. Nevertheless, we
provide some qualitative analytical estimations in Section 6 of
the Supporting Information.
Changing other system parameters also preserves the

characteristic structural features of our mesophase. In
particular, we do not observe any qualitative changes when
the most probable bond angle is varied within the range θ0 =
140−170°, despite expectations that straighter chains might
produce an interlamellar SmA rather than SmC. For example,
in another study,35 hard zigzag molecules were unable to form
SmC for θ0 > 154° (we clarify, however, that in that case there
were no lamellae and the order was driven purely by steric
interactions).
In general, chain length parity can affect smectic

behavior.61−63 For board-like molecules, an odd−even effect
has been recently reported in simulations of nonlamellar oligo-
thiophenes, where only even-numbered chains formed SmC
mesophases.64 Therefore, we perform simulations for consec-
utive chain lengths, N = 13, 14, 15, and 16, with all other
parameters fixed (κ = 0.874, λ = 0.408, ζ = 0.204, η = 1, θ0 =
150°, and ρ0 = 2.05). For our model, we observe no odd−even
effect: all aforementioned chain lengths produce mesophases
with the same symmetries as described in section 3.1.
We find that the structure of our Σr mesophase is

qualitatively insensitive even to pronounced variations in
chain length; namely, when we compare mesophases
composed of molecules with N = 16, 24, and 32. Of course,
the largest of these chains, N = 32, is only about five times
longer than the persistence length of the ideal chain. It is
plausible that much longer chains will destabilize (at least)
some of the features of our Σr order, for example, because of
increased conformational “defects”. Exploring this issue
requires additional MC moves that enable equilibration of
long polymers, such as rebridging65,66 and configurational
bias67 algorithms.
Finally, we check the qualitative prediction, eqs 13 and 14,

that our Σr mesophase exists in a limited range of densities. For
three different chain lengths, N = 16, 24, and 32, we consider
the same point in the parameter space (κ = 0.874, λ = 0.408, ζ
= 0.204, η = 1, and θ0 = 150°) and vary the average system
density ρ0. For this purpose, simulations are performed in the
isostress ensemble, with a constant number of chains n = 270,
but different volumes ({nx, ny, nz} = {3, 6, 15}).
Figure 8 presents a qualitative stability diagram of the Σr

mesophase as a function of ρ0 and N. Indeed, for each N, the
Σr mesophase is stable in a rather limited range of densities,
marked as the “Σr” region. Outside this range, in regions “A”
and “B”, some of the Σr features start to disappear.
In region “A”, gaps between stacks are eliminated and chain

ends overlap along the backbone direction (see upper inset in
Figure 8), meaning that Δ < 0. Presumably, this overlap at high
densities stems from the softness of interactions and is favored
by the negative part of Vreg. In principle, the Σr mesophase may
actually extend to higher densities: the VSCV move optimizes
only the lengths Lα while maintaining the orthogonal shape of
the simulation box. If the box angles were also allowed to

adjust, the system might be able to maintain Δ > 0 until
somewhat higher densities by tilting the lamellae. Δ < 0 occurs
at slightly lower densities as N increases, in agreement with eq
13 (see decreasing boundary of region “A”).
In region “B”, gaps are large due to low density. As Δ

increases, more disorder around chain ends and bridging
between lamellae occur. We set the boundary of the “B” region
to densities where chain ends start to bridge; an example is
shown in the lower inset of Figure 8. Of course, for some ρ0,
we might enter a regime of average system densities for which
Σr coexists with a less-ordered phase. In agreement with eq 13,
we observe that large Δ occur at slightly higher densities as N
increases (see increasing boundary of region “B”).
In summary, we find that our Σr mesophase is robust against

varying parameters such as nonbonded potential strengths,
chain length, and bond angle. As expected from section 3.1, the
range of possible densities of the Σr mesophase formed in our
soft model is rather limited.

3.3. Scattering and Relevance to Actual Sanidics. We
now compare the structure of our Σr mesophase with two
highly ordered sanidics that have been reported in experi-
ments.3,8 In these studies, the molecular organizations of the
mesophases were determined from scattering measurements.
In our particle-based simulations, molecular organizations are
known without the need to perform scattering calculations,
because monomer coordinates are explicitly available. How-
ever, calculating scattering patterns and juxtaposing them with
experimental data offers an illustrative framework for perform-
ing structural comparisons. Because of the drastic coarse-
graining used in our model, we know a priori that our
scattering patterns cannot quantitatively reproduce properties
sensitive to atomistic details, such as atomic form factors.
Furthermore, in this work, our model is not tailored to
represent a specific material. Therefore, we cannot directly
compare absolute length scales associated with scattering peaks
in our simulations and experiments. For the same reason, the
ratios of lengths characterizing different geometric features of
mesophases in our generic model, such as stacking distance,
lamellar spacing, and smectic period, can differ quantitatively
from the ratios found in a real material. Hence, the scattering
peaks in our patterns can appear at somewhat different
positions relative to each other than in an actual scattering
pattern. The goal of our discussion is to illustrate structural

Figure 8. Qualitative stability diagram for the Σr mesophase as a
function of density and chain length. The boundaries represent the
first clear example of Σr (according to the structure in section 3.1)
when approaching from regions “A” and “B”. Insets are visualizations
of representative molecular arrangements from each of these regions:
the visualization for “A” shows a single lamella from the side, whereas
“B” shows a top-down view of a collection of lamellae.
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similarities and differences between simulations and experi-
ments through the presence (or absence) of scattering signals
that are linked to certain generic features of molecular
organization in the mesophases.
We calculate scattering from sanidic monodomains,

equilibrated and oriented as described in sections 2.3 and
3.1. In general, experimental samples are expected to have
multiple domains with some disorder in between, caused, for
example, by slow kinetics of ordering. Hence, scattering
patterns calculated from monodomains may indicate stronger
long-range order (and therefore more higher order scattering
peaks) than experimental data. Monodomains are, however,
well-defined equilibrium systems. In contrast, the preparation
of nonequilibrium samples with experimentally relevant
polydomain structures in simulations would require a realistic
description of the kinetics of ordering. Accounting for the
kinetics of structure formation is beyond the scope of the
current study, which is focused on initial model development.
We consider monodomains accommodated in approximately

cubic simulation boxes, {Lx, Ly, Lz} = {25.10, 21.36, 20.98},
each containing n = 1440 chains of length N = 16 ({nx, ny, nz}
= {3, 12, 40}). 2D scattering functions are calculated using
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Here, α and β refer to mutually exclusive combinations of the
x, y, and z components of the scattering vector q. The
components comply with the PBC, that is, qα = 2πm/Lα (α =
x, y, z), where m is an integer. Angular brackets indicate
averaging over different configurations and repeats. Figure 9
shows the calculated 2D scattering patterns; to facilitate their
interpretation, we also replot visualizations of the planes they
represent from Figure 4. We report scattering vectors in units
of σ−1.
To obtain powder diffraction spectra S(q), where q = |q|, we

first calculate the complete 3D scattering function:

q q rS
nN

i s( )
1

exp ( )
j

n

s

N

j
1 1

2

∑ ∑= [ · ]
= = (16)

The components of the scattering vector q comply with the
PBC, as described before. S(q) is obtained by spherically
averaging the data for S(q) and is presented in Figure 10a. The
triangular-like shapes of some peaks result from the quantized
values of q for which S(q) is available.
To compare our scattering patterns with experiments, we

focus on two studies.3,8 The first study by Ebert et al.3 reported
a Σr mesophase in a rigid-rod polyester comprising aromatic
backbones and alkyl side-chains, that is, the PE12 sample.3 To
obtain 2D scattering patterns, they used flow to prepare
macroscopic monodomains oriented along well-defined
directions and, in this sense, their samples are analogous to
the idealized set up of monodomains used in our simulations.
Ebert et al.3 distilled the key features of their scattering data
into sketches, which they then used to discuss the basic
characteristics of molecular arrangements in their sanidic
mesophases. The generic nature of these sketches makes them
particularly suitable for comparison with the scattering patterns
from our generic model. In Figure 9, we replot the sketches

provided by Ebert et al. for the PE12 sample (Figure 3 of ref
3), so that the orientations of the mesophase directors in our
simulations and their experiments are consistent.
The second study by Greer et al.8 reported a sanidic

mesophase involving polypeptoid diblock copolymers. 1D X-
ray scattering patterns were obtained for their multidomain
samples, and the authors inferred the structure of the
mesophase from careful analysis of this data. Greer et al.8

did not explicitly mention that their sanidic mesophase is Σr,
but we believe the structural features they found indicate that
this is the case. In Figure 10b, we replot the data for this
mesophase (Ac-Ndc9-Nte9 at 50 °C); the original data are
available in Figure S5 of the Supporting Information of ref 8.
One important qualitative difference between the sketches

for PE12 and simulations is the lack of amorphous halo in the
latter. This is not surprising; the halo in experimental data
stems from scattering from amorphous side chains, which our

Figure 9. 2D scattering patterns of our Σr mesophase obtained from
simulations with N = 16, in the (a) interlamellar-stacking yz, (b)
backbone-stacking xz, and (c) interlamellar-backbone yx planes.
There is a cutoff for the scales of the plots, so peaks higher than 15 are
shown in white. Insets for each image show visualizations of the
relevant scattering planes (replotted from Figure 4), and cartoons
based on sketches introduced by Ebert et al.3 as a distilled
representation of the key features of their scattering data for PE12
(note that we transform the original sketches of Ebert et al.3 into the
same coordinate frame as the simulation data).
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model does not include explicitly, although backmapping68

could be used to add them a posteriori.
Intense narrow reflections, labeled “1”, appear in Figures

9a,c and 10 in simulations and both experiments. They are
attributed3,8 to a highly regular lamellar spacing. In all cases
(sketches of Ebert et al.,3 1D scattering patterns of Greer et al.8

and simulations), first and higher order peaks are evident. To
avoid crowded 2D scattering patterns, we label only one
representative primary peak in each group of reflections; in 1D
patterns, secondary and tertiary reflections are indicated by the
same label as the primary peak but with primes, for example,
“1′” and “1′′”. Compared to the primary peak “1”, the
intensities of the secondary and tertiary reflections in the 1D
patterns of Greer et al.8 are weaker than in our case; this
difference might stem from the multidomain structure of the
experimental samples.
The peaks “2” in the scattering patterns of our mesophase

(Figure 9a,b) stem from regular stacking. Similar peaks
explained3,8 by regular stacking were also identified in the
scattering patterns of Ebert et al.3 and Greer et al.8 (Figures
9a,b and 10). Comparing with the sketches of Ebert et al.,3 we
observe one qualitative difference. For our mesophase, the “2”
peaks are sharp along qz due to a strong stacking periodicity,
but very elongated along qy (Figure 9a). This feature indicates
that, in simulations, stacks in neighboring lamellae can shift
arbitrarily with respect to each other along z; this is consistent
with the weak interlamellar correlations reported in Figure 6b.
Ebert et al.3 did not report elongation of “2” peaks along qy, but
from their general discussion, it remains unclear whether
stacking is correlated between lamellae in PE12. For the
polypeptoids, the stacking is uncorrelated, similar to our
mesophase. In that system, the absence of cross-correlation is
suggested by the loss of interlamellar-stacking cross-peaks
observed8 when melting from crystal.
The scattering from our mesophase has cross-peaks “3” in

the qx−qz plane (Figure 9b) which arise from the intralamellar
monomer-level lattice (registration) observed in Figure 6a.

Analogous cross-peaks corresponding to intralamellar registra-
tion of monomers were identified3 in the PE12 scattering
pattern; see sketch in Figure 9b. The experiments on
polypeptoids did not provide any evidence that those polymers
are mutually registered on a monomer level along the
backbone direction (note that this lack of registration does
not contradict the presence of periodicity along the stacking
direction described previously).
At first sight, the faint broad cross-peaks “4” in our data

(visible in Figure 9c, and responsible for raising the baseline at
q > 8 in Figure 10a) appear to imply monomer-level
registration between molecules in different lamellae. However,
these peaks are actually part of the single-chain structure factor,
so do not indicate cross-lamellar correlations. Similar to our
mesophase, no interlamellar monomer-level registration has
been identified (so far at least) in the PE12 or polypeptoid
systems.
In our mesophase, chains are organized within each lamella

into SmA layers (see section 3.1), which are signaled by the
scattering peaks “5” and their secondary reflections (Figures 9b
and 10a). The polypeptoid system shows a prominent
reflection (also marked as “5” in Figure 10b), which was
assigned8 to the length of chain backbone. We hypothesize that
this signal is too strong to be attributed solely to the single-
chain structure factor and, therefore, signifies smectic order
analogous to that found in our mesophase. This smectic order
might be driven by microphase separation between the blocks
of the diblock copolymer. In other words, although
polypeptoid backbones can shift with respect to each other
on the level of monomers, they remain registered when
observed on the scale of entire chains. Smectic peaks are not
evident, and were not discussed,3 in scattering patterns of
PE12. Still, we believe that their absence does not completely
exclude smectic order in PE12 because: (i) These scattering
features could be present at q-values that were not accessed in
the experiments. (ii) The samples were prepared under
nonequilibrium conditions and flow might have inhibited
smectic order.
The cross-peaks “6” in Figures 9c and 10a are the only

signals in the scattering patterns from our simulations that do
not have an equivalent scattering feature reported3,8 in at least
one of the two experimental systems. They arise from chain-
level SmC registration between molecules in different lamellae
(see section 3.1). For a SmC with a single tilt direction, the
peaks would lie on a single diagonal extending from each
lamellar spacing reflection “1”. However, averaging over
systems with opposite tilting produces the characteristic
diamond shapes. These interlamellar smectic peaks occur
only weakly in the 1D plot (Figure 10a), as a shoulder to the
primary lamellar spacing peak “1”. This “merging” of scattering
features suggests that intermolecular smectic order cannot be
completely ruled out for the polypeptoid system, based on
powder diffraction spectra only.
In summary, these structural comparisons suggest that there

are at least two different flavors to the Σr mesophases observed
in experimental systems. Namely, backbone registration within
lamellae can occur either on the level of monomers, for
example, in PE12,3 or chains, for example, in polypeptoid
diblock copolymers.8 In experiments, no correlations were
observed between monomers or chains located in different
lamellae. Our model exhibits both monomer and chain-level
registration within lamellae, as well as chain-level registration
between lamellae. Therefore, it appears to be more highly

Figure 10. (a) 1D spherically averaged scattering pattern of our Σr
mesophase obtained from simulations with N = 16. (b) Powder
diffraction pattern experimentally measured for the polypeptoid Ac-
Ndc9-Nte9 at 50 °C. The data used to prepare the plot have been
published by Greer et al.8 (see Figure S5 of the Supporting
Information of ref 8). The unlabeled peak arises from the sample
holder.
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ordered and closer to crystalline in structure than any of the
yet observed experimental sanidic mesophases.

4. CONCLUSIONS
We developed a generic coarse-grained model enabling Monte
Carlo simulations of Σr sanidic mesophases of board-like
polymers. The hallmarks of these highly ordered mesophases
are as follows:1,3 they have parallel lamellae, which are created
by the assembly of polymer backbones into stacks. These
lamellae are separated by layers of disordered side chains. In
each lamella, polymers stack at regular distances, forming a
periodic structure along the stack normal. Furthermore, there
is positional order along the long axis of each stack, that is,
polymers register along the direction of chain backbone.
In our approach, polymers are represented by a hindered-

rotation-chain model, where variations of angular and torsional
degrees of freedom are subjected to a generic energy
landscape. Nonbonded interactions between coarse-grained
monomers are described by anisotropic potentials that are
“soft”, namely, their strength is comparable to the thermal
energy. To define them, we built upon generic anisotropic
“force fields” developed previously for modeling biaxial
nematic19 and disordered lamellar sanidic7 Σd mesophases in
conjugated polymers. Here, to model a Σr mesophase, we
developed an additional generic interaction responsible for
molecular registration. Thus, we have now accomplished a
method that can generate (at least) three mesophases, biaxial
nematic and two sanidics, that span almost the entire order−
disorder scale between crystalline and amorphous states. This
is achieved in a modular way, simply by activating terms in a
series defining a phenomenological nonbonded potential.
We compared the structure of the Σr mesophase in our

simulations with structures that have been experimentally
determined3,8 for two highly ordered sanidic mesophases. The
experimental studies established the structures of these
mesophases on the basis of scattering data. Therefore, we
discussed similarities and differences between the structures of
sanidic mesophases in our simulations and the two experi-
ments using their scattering patterns as a framework. The
general hallmarks of sanidic Σr order are present in all three
cases. However, there are differences in the way polymers
register along the backbone axis. In the two experiments,
backbone registration within each separate lamella occurred
either only on the level of monomers3 or only on the level of
entire chains8 (leading to smectic-like order within each
lamella). The experiments reported no evidence that the order
along the direction of polymer backbone is correlated across
neighboring lamellae. In our simulations, in contrast, back-
bones register within each stack on both a monomer and chain
level (manifested by a local lattice of monomers and smectic A
intralamellar packing of polymers respectively). Moreover, we
find a regular (smectic C) coupling of chain registration
between different lamellae. Therefore, the Σr mesophase
generated by our model is more ordered and closer to
crystalline in structure than the mesophases reported in the
two aforementioned experiments.
The model developed here is interesting for two reasons.

First, sanidic materials are themselves useful for technological
applications, in particular in organic electronics, where they are
considered as processing intermediates for manufacturing solid
state morphologies with favorable electronic properties.4−6,12

Second, our highly ordered Σr mesophase offers an
approximation to crystalline states of board-like polymers

that can be simulated at experimentally relevant length scales.
In this work, we did not apply our model to any questions
related to crystallization phenomena, but instead outline a few
representative research directions for future studies.
One might wonder whether models with soft potentials,

which by construction violate kinetic constraints imposed by
noncrossability of chains in real materials, are at all applicable
to polymer crystals, which are largely controlled by kinetic
effects.69−72 We believe, however, that modeling the
equilibrium structure of Σr mesophases while varying
molecular features, such as chain topology, polydispersity, or
deviations from molecular planarity73 (twisting), can help to
answer certain questions. These include understanding the
effects of altering these features on the general tendency of
materials to crystallize, and the likelihood of forming
conformational defects74 within crystallites.
Our model can be expanded to multicomponent polymers,

where block copolymers with crystallizing blocks are of
particular interest.71,72,75 Combining the expanded model
with pseudodynamical Monte Carlo schemes that account
for dynamic asymmetries between components76 would allow
qualitative investigation into the interplay between microphase
separation and crystallization. It is even worth applying such
pseudodynamical stochastic algorithms to homopolymer melts.
In this case, it is interesting to explore whether some
mesoscopic features of the developing Σr grains, such as
grain size, grain shape, chain folding, and bridging, bear
similarities to actual semicrystalline materials.
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