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Abstract

Mitochondrial genes in animals are especially useful as molecular markers for the reconstruction of phylogenies among
closely related taxa, due to the generally high substitution rates. Several insect orders, notably Hymenoptera and
Phthiraptera, show exceptionally high rates of mitochondrial molecular evolution, which has been attributed to the parasitic
lifestyle of current or ancestral members of these taxa. Parasitism has been hypothesized to entail frequent population
bottlenecks that increase rates of molecular evolution by reducing the efficiency of purifying selection. This effect should
result in elevated substitution rates of both nuclear and mitochondrial genes, but to date no extensive comparative study
has tested this hypothesis in insects. Here we report the mitochondrial genome of a crabronid wasp, the European beewolf
(Philanthus triangulum, Hymenoptera, Crabronidae), and we use it to compare evolutionary rates among the four largest
holometabolous insect orders (Coleoptera, Diptera, Hymenoptera, Lepidoptera) based on phylogenies reconstructed with
whole mitochondrial genomes as well as four single-copy nuclear genes (18S rRNA, arginine kinase, wingless,
phosphoenolpyruvate carboxykinase). The mt-genome of P. triangulum is 16,029 bp in size with a mean A+T content of
83.6%, and it encodes the 37 genes typically found in arthropod mt genomes (13 protein-coding, 22 tRNA, and two rRNA
genes). Five translocations of tRNA genes were discovered relative to the putative ancestral genome arrangement in insects,
and the unusual start codon TTG was predicted for cox2. Phylogenetic analyses revealed significantly longer branches
leading to the apocritan Hymenoptera as well as the Orussoidea, to a lesser extent the Cephoidea, and, possibly, the
Tenthredinoidea than any of the other holometabolous insect orders for all mitochondrial but none of the four nuclear
genes tested. Thus, our results suggest that the ancestral parasitic lifestyle of Apocrita is unlikely to be the major cause for
the elevated substitution rates observed in hymenopteran mitochondrial genomes.
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Introduction

Mitochondrial genes have been used extensively for phyloge-

netic studies in insects. Their generally high substitution rates

render them especially useful to resolve the relationships among

closely related taxa [1]. Deeper phylogenetic splits, however, are

usually not well resolved in analyses based on mitochondrial genes,

and the high heterogeneity in among-site rate variation may partly

be responsible for the poor performance of mitochondrial as

compared to nuclear genes [2]. An additional problem with

mitochondrial sequences is that differences in mitochondrial

evolutionary rates among insect lineages can cause long-branch

attraction problems [3] that result in unrelated taxa with high

substitution rates erroneously grouping together in phylogenetic

trees [4]. A similar effect has been observed as a consequence of

occasional reversals in the strand-specific compositional bias that is

often pronounced in mitochondrial genomes [5–7].

Recently, the availability of an increasing number of complete

insect mitochondrial genomes has initiated phylogenomic approaches

that have greatly enhanced our understanding of the evolutionary

relationships within and among extant hexapod orders [8–13].

Despite these efforts, the range of insect taxa for which complete

mitochondrial genomes are available remains rudimentary, and

many large families are not represented by a single sequence. This is

also true for several families within the Hymenoptera, one of the

largest insect orders on earth. Notably, no mitochondrial genome

sequence is available for the about 8000 species of Crabronidae,

although they constitute the sister group to the Apidae, a family of

considerable interest due its ecological and economical importance

and the wide range of social systems represented in this taxon [14].
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Substitution rates of mitochondrial genomes have been found to

vary substantially across insect taxa. Notably, Hymenoptera and

Phthiraptera exhibit significantly elevated rates of nucleotide

substitutions [11,15–17], which has been attributed to the parasitic

lifestyle of the extant or ancestral members of these orders [18,19].

The usually short generation times and small effective population

sizes due to frequent founder events typically found in parasitic

lineages would be expected to result in elevated nucleotide

substitution rates in both mitochondrial and nuclear genes [16,20].

However, to date no detailed multi-gene study is available that

compares evolutionary rates between mitochondrial and nuclear

genes in parasitic versus non-parasitic insect taxa (but see [21]).

Here we report on the first complete mitochondrial genome

sequence of a crabronid wasp, the European beewolf, Philanthus

triangulum (Hymenoptera, Crabronidae). Due to their interesting

natural history, Philanthus species have attracted considerable

attention among behavioral ecologists, and their biology has been

studied in detail [22–24]. Recently, Philanthus females have been

found to engage in an unusual symbiosis with the actinobacterium

‘Candidatus Streptomyces philanthi’ [25,26]. These bacteria are

cultivated in unique antennal gland reservoirs of female beewolves

[27] and transferred to the larval cocoon [28], where they provide

protection against pathogenic microorganisms by producing a

cocktail of antibiotic substances [29].

Using complete mitochondrial genome sequences as well as four

different nuclear gene datasets, we reconstructed the phylogenetic

relationships among the four largest holometabolous insect orders

(Coleoptera, Hymenoptera, Diptera, and Lepidoptera), and we

compared the substitution rates of mitochondrial and nuclear

genes among the orders. Based on earlier studies [21], we

hypothesized that the ancestral parasitic lifestyle of apocritan

Hymenoptera resulted in elevated substitution rates in both

mitochondrial and nuclear genomes.

Materials and Methods

Ethics statement
A male European beewolf was obtained from a laboratory

culture that had earlier been established with field-collected

animals from Würzburg and Erlangen, Germany. No specific

permits were required for collecting, as P. triangulum is not an

endangered or protected species, and the collecting localities

constituted non-protected public areas.

Mitochondrial genome sequencing, assembly and
annotation

Whole genomic DNA was extracted from the thorax of the male

beewolf by standard phenol-chloroform extraction [30] and stored

at 4uC in 100 ml Low-TE (1 mM Tris, 0.1 mM EDTA, pH 8.0).

For the PCRs, 2 ml of a 1:10 dilution were used per 25 ml PCR

mix. About half of the mitochondrial genome (7891 bp) could be

amplified by using the primers C2LF2 and CBLR5 with the

Peqlab MidRange PCR System according to the manufacturer’s

suggestions (Table S1 and S2). The remaining part was amplified

in smaller fragments (Table S2). For fragments spanning the AT-

rich control region, the extension temperature had to be reduced

to 60uC for successful amplification [31,32]. The amplicons were

sequenced bidirectionally by primer walking on ABI 3700 or ABI

3730 instruments using the Big Dye terminator kit (for sequencing

primers see Table S1).

Sequences were edited and assembled using the Phred/Phrap/

Consed package [33–35]. The whole mitochondrial genome

sequence was saved as a FASTA file, and tRNAscan-SE 1.21

was used for tRNA search and secondary structure prediction

[36]. Lowering the Cove threshold to 1 yielded all of the expected

tRNA genes except for the tRNA-Ser(AGN) gene that has proven

difficult to find in earlier studies due to its unusual secondary

structure [37]. This gene was detected by aligning other

hymenopteran tRNA-Ser(AGN) genes with the P. triangulum

mitochondrial genome, and the sequence was manually inspected

and the annotation corrected based on the predicted secondary

structure. The localization was confirmed by using MOSAS [38].

For annotation of protein-coding genes and rRNAs, the sequence

file was imported into DOGMA [39]. All genes were checked and

corrected manually on the basis of the predicted amino acid

sequences and BLAST searches against available mitochondrial

genomes. The rRNA genes were compared to the secondary

structure predicted for the honeybee rRNAs [40], and the

beginning and end of the genes were assumed to extend to the

boundaries of the adjacent tRNA genes [41]. The A+T-rich region

was checked for repeat motifs using REPFIND [42]. On the basis

of the whole genome sequence and the annotation table exported

from DOGMA, a GenBank file was created by using the Sequin

9.00 tool downloaded from GenBank. The file was imported into

OrganellarGenomeDRAW for creating a graphical representation

of the genome [43]. The complete mitochondrial genome

sequence of Philanthus triangulum was deposited in the NCBI

database (accession number JN871914).

Phylogenetic analysis
All completed mitochondrial genomes of holometabolous

insects available as of October 2010 (but only one species per

genus) as well as the genomes of two hemimetabolous outgroup

species (Hemiptera) were downloaded from the NCBI database

(Table S3). The hymenopteran dataset was complemented with

some unfinished genomes (Primeuchroeus sp.: nad2, nad3, nad5

missing; Perga condei: nad2 missing; Nasonia vitripennis: small part of

nad2 missing).

Four nuclear genes were used for the comparative analysis of

mitochondrial and nuclear substitution rates: the 18rRNA gene

(18S), wingless (Wg; 336 bp), arginine kinase (ArgK; 1029 bp), and

phosphoenolpyruvate carboxykinase (PEPCK; 732 bp). For 18S,

an alignment based on the predicted secondary structure of the

rRNA was obtained from the study of Whiting [44]. Four Apidae

sequences were added manually to the alignment (Anthophora

montana [AY995678], Apis mellifera [AB126807], Centris rhodopus

[AY995680], and Thyreus delumbatus [AY995687]). For the three

protein-coding genes, representative sequences from the major

holometabolous insect orders Lepidoptera, Diptera, Hymenoptera

and Coleoptera as well as outgroup specimens from the

hemimetabolous Hemiptera were downloaded from the NCBI

database (for accession numbers see Table S4). The ArgK

sequence for Philanthus triangulum (JQ083477) was obtained by

sequencing of a fragment that had been amplified by PCR with

primers ArgK_fwd2 (59-GACAGCAARTCTCTGCTGAAGAA-

39) and ArgK_KLTrev2 (59-GATKCCATCRTDCATYTCCTT-

SACRGC-39) [45].

For phylogenetic analyses, we aligned protein-coding sequences

with ClustalX [46] and with T-Coffee [47] using the respective

default parameters. To account for secondary structure of the

rRNAs we used R-Coffee [48]. We checked the alignments by eye

and corrected small portions of obvious homology missed by the

alignment software (MacClade4 [49]) and selected final alignments

on the basis of the fits of the alternatives as measured by the color-

coded scoring system of T-Coffee and R-Coffee. All nuclear and

mitochondrial gene alignments were submitted to TreeBASE.

For the combined analysis of all mitochondrial genes, the

sequences were concatenated with MacClade4 [49]. We used

Mitochondrial vs. Nuclear Evolution in Hymenoptera
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likelihood tests in Phyml [50] to determine optimal models of

sequence evolution from HKY, GTR, TN93 and their variants

with invariant site (I) and rate heterogeneity (G). For the

concatenated protein-coding genes, the Likelihood Ratio Test

and the Bayesian Information Criterion (BIC) as implemented in

Metapiga [51] were used to determine the optimal model. Based

on these results, trees and parameters were optimized using

MrBayes [52] assuming GTR+I+G maximum likelihood models

partitioned by codon position for the protein-coding gene

sequences. For the final analysis, the third codon position was

excluded. Each analysis comprised two simultaneous runs with

four chains each. The chains ran from 500,000 to 1,000,000

generations depending on when the average standard deviation of

the split frequencies was consistently less than 0.01. Plots of the

number of generations against the maximum likelihood scores

indicated stabilization of likelihood scores. Further diagnostics

included the potential scale reduction factor (PSRF) that measures

the fit of branch length and all parameters. Trees and parameters

from the first 25% of the generations were discarded (the burn in)

after completion of the MCMC (Markov Chain Monte Carlo)

search.

For the maximum likelihood analyses of the individual genes,

we estimated parameters for GTR+I+G models of sequence

evolution and optimized the tree using PHYML [50]. Our analysis

of 1000 bootstrap replicates provided confidence limits on the

maximum likelihood tree clades. For the concatenated sequences

of several genes we used RAxML [53] to optimize the maximum

likelihood tree and to calculate bootstrap proportions under

GTR+I+G models partitioned by codon position.

Finally, we tested various alternative topologies (e.g. monophyly

of the Hymenoptera and of the Diptera) using Shimodaira-

Hasegawa [54] tests with GTR+I+G optimized parameters in

PAUP*4b10 [55] to determine whether any differed significantly

from the optimal tree. We inferred trees using the log-determinant

transformation [56] to correct for base composition bias. We

explicitly tested for base composition homogeneity across insect

orders with an analysis of variance (ANOVA, JMP Pro 9.0.0) of

the first two eigenvectors from a principal components analysis

(PCA) of the base frequencies. Unlike the raw base frequencies, the

PCA transformed variables (eigenvectors) are uncorrelated and

approximately normally distributed and so amenable to ANOVA

analysis.

We tested the sequences for the presence of a global molecular

clock using the Rambaut multidimensional clock option in

PAUP4b10 [55]. For computational facility, calculations of local

clock parameters were calculated using maximum likelihood

methods of Hyphy2.0 [57] on a smaller (50 taxa) data set rather

than the full set. To test for significant differences in substitution

rates across taxa for the various phylogenies (concatenated

mitochondrial protein-coding genes, mitochondrial SSU and

LSU rRNA, respectively, and the nuclear genes ArgK, PEPCK,

wingless, and 18S rRNA), we used Hyphy’s relative rates test. The

Kishino80+G model was used for all datasets except for wingless,

because relative rate parameters for this gene could not be

resolved using the optimal model. Thus, we excluded the gamma

parameter and used the suboptimal K80 test for the wingless

dataset. For all analyses, substitution rates were compared for all

possible pairwise combinations, using a hemipteran specimen as

outgroup (except for the 18S rRNA dataset, for which Libellula

[Odonata] was used as outgroup). Additional outgroup specimens

were discarded from the analysis. Probability values were

corrected for multiple comparisons with the Bonferroni correction.

Results and Discussion

Architecture of the beewolf mitochondrial genome
The mitochondrial genome of P. triangulum consists of

16,029 bp, with a mean A+T content of 83.6% (Fig. 1). The 37

genes typical for arthropod mitochondrial genomes were found (22

tRNA genes, two rRNA genes, and 13 protein-coding genes;

Table S5). While the protein-coding and rRNA genes were

conserved in positions and orientations relative to the inferred

ancestral arrangement in insect mitochondrial genomes [58], five

translocations of tRNAs were detected (tRNA-Met/-Gln; tRNA-

Trp; tRNA-Glu/-Ser(AGN); tRNA-Pro/-Thr; tRNA-Ile). The

organization of the highly variable nad3-nad5 junction was

identical to that of Vespula germanica and differed only in the

relative order of tRNA-Glu/-Ser(AGN) from the inferred ancestral

type in insects [59].

Coding density
As is characteristic for mitochondrial genomes in general, the

mt-genome of P. triangulum exhibits an extremely high coding

density. Overlaps between protein-coding regions and/or tRNA

genes were found in six locations, with a total of 26 bases shared by

two genes (Table S5). tRNA genes in animal mitochondrial

genomes have commonly been found to overlap at the

discriminator nucleotide [60], and shared nucleotides between

protein coding genes and tRNA genes have also been reported for

many insect species [11,41,61–64]. If the A+T-rich region and

potential non-coding regions between the rRNA genes and

adjacent tRNA genes are not taken into account, a total of

217 bp of non-coding intergenic spacers was found (size range of

non-coding regions: 1–61 bp). Thus, coding density in the

mitochondrial genome of P. triangulum tends to be even higher

than in other hymenopteran mt-genomes (e.g. 811 bp non-coding

sequences in Apis mellifera [61]; 486 bp in Melipona bicolor [41];

880 bp in Bombus ignitus [64]), but slightly lower than in Drosophila

yakuba (183 bp [62]).

Protein-coding genes
The 13 protein-coding genes typical for animal mitochondrial

genomes were found in the mt-genome of P. triangulum (Fig. 1,

Table S5). Conventional start codons ATG or ATT could be

assigned to all protein-coding genes except for nad3 and cox2

(Table S5). The nad3 gene apparently uses ATC (codes for Ile) as a

start codon, while the start codon for cox2 seems to be TTG (codes

for Leu). The use of irregular start codons has been found

repeatedly for animal mitochondrial genomes (notably for cox1,

e.g. [60–63,65]), but to our knowledge this is the first report of a

TTG start codon in cox2 (but GTG has recently been found as the

start codon for cox2 in Eriogyna pyretorum, Lepidoptera: Saturniidae,

see [66]). Six of the protein-coding genes end in complete stop

codons (TAA). The remaining seven protein-coding genes appear

to use abbreviated stop codons (TA or T) that are presumably

completed by post-transcriptional polyadenylation as reported for

other animal mitochondrial genomes [67–69]. The nucleotide

composition of the P. triangulum mt-genome was strongly biased

towards A+T, with a mean A+T content of 83.6%, which lies in

the range found for other hymenopteran mt-genomes (Table S6)

[9,41,61,63,64,70]. Within protein-coding genes, the nucleotide

bias differed strongly among codon positions. The highest A+T

bias was found for the third positions (94.7%), while the first and

second positions had A+T contents lower than the average of the

complete genome (79.0% and 74.4%, respectively) (Table S6).

Mitochondrial vs. Nuclear Evolution in Hymenoptera
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Ribosomal and transfer RNAs
The anticodons of the tRNAs in the European beewolf

mitochondrial genome were identical to those of Bombus ignitus

[64] and Apis mellifera [61], but differed from those found for other

insects: in P. triangulum, GAT is the anticodon of tRNA-Ile, TTT of

tRNA-Lys, and TCT of tRNA-Ser(AGN), while these are CCT,

CTT, and GCT in most other insects, respectively [64]. Of the 22

tRNAs, 21 showed the typical cloverleaf secondary structure. As in

several other insect species, the tRNA-Ser(AGN) showed an

aberrant structure, with the D-arm forming a simple loop [64,71].

Two rRNAs were found in the mitochondrial genome of P.

triangulum: rrnL is located between tRNA-Leu(CTN) and tRNA-

Val, and rrnS between tRNA-Val and tRNA-Ile. Their lengths

(1328 bp for rrnL and 863 bp for rrnS) are similar to those of

other hymenopteran mt-rRNAs [61,64].

A+T-rich region
Both length (1039 bp) and AT-content (85.7%) of the A+T-rich

region in the beewolf mt-genome are within the range of other

insect mitochondrial genomes (Table S6) [64,72]. This region is by

far the longest non-coding sequence in the beewolf mitochondrial

genome, and it is likely to play a role in the initiation of replication

as well as the regulation of transcription, as has been shown for

Drosophila yakuba [62,73]. In the A+T-rich region of the beewolf

Figure 1. Mitochondrial genome sequence of Philanthus triangulum. Genes on the inside of the circle are located on the complementary
strand (2). Genes are color-coded according to gene function: tRNA genes in blue, rRNA genes in red, genes of the NADH dehydrogenase complex in
yellow, ATP synthase genes in dark green, cytochrome oxidase genes in light pink, cytochrome b in light green, and the AT-rich control region in
magenta.
doi:10.1371/journal.pone.0032826.g001
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Figure 2. Bayesian phylogeny inferred from the 1st and 2nd codon positions of the 13 mitochondrial protein-coding genes. Because
most of the maximum likelihood values differed very little from the posterior probabilities, branches are labeled with a single number for reading
clarity. Most are maximum likelihood bootstrap proportions (regular text) but are replaced by posterior probabilities (bold italics) for branches with a

Mitochondrial vs. Nuclear Evolution in Hymenoptera
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mitochondrial genome, a 43 bp-tandem repeat (two repeat copies)

as well as several (AT)n microsatellite-like tandem repeats of up to

13 copies were discovered. Such repeats are typical for insect

mitochondrial A+T-rich regions and may cause heteroplasmy

[72].

Phylogeny of holometabolous insects based on
mitochondrial genomes

Bayesian and maximum likelihood analyses were used to

reconstruct the phylogeny of holometabolous insects based on

mitochondrial protein-coding and rRNA genes. Analyses includ-

ing the 1st and 2nd positions of all protein-coding genes recovered

most of the expected relationships on the order, suborder,

superfamily and family level, with three notable exceptions: The

gall midge genera Rhopalomyia and Mayetiola (Diptera, Cecidomyii-

dae) were consistently misplaced in the Hymenoptera; the only

Raphidiopteran was placed at the base of the Hymenoptera

instead of within the Neuropterida (Neuroptera+Mecoptera); and

the non-aculeate genus Evania erroneously grouped as a sister

group of Radoszkowskius within the Aculeata (Fig. 2) [74,75]. As in

previous phylogenetic studies, the Hymenoptera were recovered as

the most basal of the holometabolous insect orders [75,76],

Diptera and Mecoptera were sister groups and together repre-

sented the sister group of the Neuropterida [77], which disagrees

with a recent study based on single-copy nuclear genes that

revealed the Coleoptera and Strepsiptera to be the closest relatives

to the Neuropterida [75]. Including the 3rd positions in the

phylogenetic analysis led to the loss of monophyly in the

Coleoptera, and an analysis with only the 3rd positions did not

recover the Coleoptera or the Lepidoptera as monophyletic clades,

and several of the expected relationships below order level were

not recovered as monophyletic clades (Fig. S1). A maximum

difference of more than five between the two values. Branches are color-coded based on order-level taxonomic affiliations.
doi:10.1371/journal.pone.0032826.g002

Figure 3. Maximum likelihood tree inferred from the mitochondrial 12S and 16SrRNA gene sequences of 50 representative taxa
from the four major holometabolous insect orders. Branches are color-coded based on order-level taxonomic affiliations (see Fig. 2).
doi:10.1371/journal.pone.0032826.g003

Mitochondrial vs. Nuclear Evolution in Hymenoptera
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likelihood phylogeny of the two mitochondrial rRNA genes with a

subset of 50 taxa recovered the Lepidoptera, Diptera, and

Hymenoptera as monophyletic, but not the Coleoptera or many

of the relationships on lower taxonomic levels (Fig. 3). Our results

agree with an earlier study indicating that Bayesian analyses of 1st

and 2nd protein-coding positions are most useful to recover

uncontroversial relationships within the Hymenoptera when using

mitochondrial genomes [8].

All phylogenetic analyses showed markedly longer branches for

the apocritan Hymenoptera as well as for Orussus and, to a lesser

extent, Cephus, than for any other taxa (with the exception of the two

dipteran genera Rhopalomyia and Mayetiola, which will be discussed

below), indicating unusually high mitochondrial substitution rates in

the Hymenoptera. High substitution rates in hymenopteran mt-

genes have been reported repeatedly and implicated in the problems

of reconstructing holometabolous insect phylogenies based on

mitochondrial genes due to long-branch attraction effects [8,11,18].

Although tree topologies varied markedly among single genes, we

observed long branches leading to hymenopteran taxa for all

protein-coding genes with the possible exception of Atp8 (see Fig.

S2). Molecular clock analyses including all protein-coding genes

showed that the substitution rates within Hymenoptera deviated

significantly from molecular clock assumptions (Fig. 4). Relative rate

tests confirmed the significant differences between Hymenoptera

and the other major holometabolous insect orders for the

concatenated protein-coding gene dataset and to a lesser extent

for the SSU rRNA, but not for the LSU rRNA (Table 1).

Surprisingly, more detailed analyses of the basal Hymenoptera

(‘‘Symphyta’’) indicate that elevated substitution rates are not

confined to the Apocrita, as had been suggested earlier [18], but also

occur in Orussus (Orussoidea) and Cephus (Cephoidea), both of which

show significantly higher rates than .95% of all investigated non-

hymenopteran taxa (with 2/2 and 2/3 non-significant pairwise

comparisons involving the dipteran taxa Rhopalomyia and Mayetiola,

respectively, which also exhibit unusually high substitution rates [see

below]). Even in Perga condei (Tenthredinoidea), more than 30% of

the pairwise comparisons suggest elevated substitution rates as

compared to non-hymenopteran taxa, which is significantly more

than the proportion of significant paiwise tests among non-

hymenopterans (9.35%, Chi2 = 35.2, P,0.001). It has to be noted,

however, that all three symphytan taxa show significantly lower

substitution rates than most Apocrita (Table 1), so their substitution

rates should be considered intermediate between Apocrita and the

non-hymenopteran taxa.

Figure 4. Molecular clock analysis of 50 representative taxa from the four major holometabolous insect orders (global molecular
clock lnL = 2311050, no clock lnL = 2309424). Numbers correspond to significantly different local clock log likelihood values as follows:
DlnL = 24 df = 2 (branch 1), DlnL = 125 df = 3(branch 2), DlnL = 170 df = 5 (branch 3), DlnL = 172 df = 6 (branch 4), DlnL = 263 df = 8 (branch 5),
DlnL = 817 df = 9 (branch 6), DlnL = 2363 df = 19 (branch 7). Branches are color-coded based on order-level taxonomic affiliations (see Fig. 2).
doi:10.1371/journal.pone.0032826.g004

Mitochondrial vs. Nuclear Evolution in Hymenoptera
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Table 1. Comparative analysis of relative substitution rates in hymenopteran and non-hymenopteran taxa for three mitochondrial
and four nuclear phylogenies.

Number of tests

Genome Genes Pairwise comparisons signif.(1) non-signif. total % signif.

Mito all protein- Apocrita vs. non-Hymenoptera 930 6(2) 936 99

coding Apocrita vs. Tenthredinoidea (Perga) 13 13 100

genes Apocrita vs. Cephoidea (Cephus) 12 1 13 92

combined Apocrita vs. Orussoidea (Orussus) 7 6 13 54

Apocrita vs. Apocrita 29 49 78 37

Orussoidea (Orussus) vs. non-Hymenoptera 70 2(3) 72 97

Orussoidea (Orussus) vs. Tenthred. (Perga) 1 1 100

Orussoidea (Orussus) vs. Cephoidea (Cephus) 1 1 0

Cephoidea (Cephus) vs. non-Hymenoptera 69 3(4) 72 96

Cephoidea (Cephus) vs. Tenthred. (Perga) 1 1 0

Tenthredinoidea (Perga) vs. non-Hymenoptera 22 50 72 31

non-Hymenoptera vs. non-Hymenoptera 239(5) 2317 2556 9

Total 1392 2436 3828 36

SSU rRNA Apocrita vs. non-Hymenoptera 177 165 342 52

Apocrita vs. Symphyta (Perga) 9 9 0

Apocrita vs. Apocrita 36 36 0

Symphyta (Perga) vs. non-Hymenoptera 2 36 38 5

non-Hymenoptera vs. non-Hymenoptera 3 700 703 0

Total 182 946 1128 16

LSU rRNA Apocrita vs. non-Hymenoptera 17 325 342 5

Apocrita vs. Symphyta (Perga) 9 9 0

Apocrita vs. Apocrita 36 36 0

Symphyta (Perga) vs. non-Hymenoptera 38 38 0

non-Hymenoptera vs. non-Hymenoptera 4 699 703 1

Total 21 1107 1128 2

Nuclear ArgK Hymenoptera vs. non-Hymenoptera 98 98 0

Hymenoptera vs. Hymenoptera 21 21 0

non-Hymenoptera vs. non-Hymenoptera 91 91 0

Total 0 210 210 0

PEPCK Hymenoptera vs. non-Hymenoptera 350 350 0

Hymenoptera vs. Hymenoptera 1 90 91 1

non-Hymenoptera vs. non-Hymenoptera 300 300 0

Total 1 740 741 0

wingless Hymenoptera vs. non-Hymenoptera 42 322 364 12

Hymenoptera vs. Hymenoptera 9 69 78 12

non-Hymenoptera vs. non-Hymenoptera 378 378 0

Total 51 769 820 6

18S rRNA Hymenoptera vs. non-Hymenoptera 506 454 960 53

Hymenoptera vs. Hymenoptera 190 190 0

non-Hymenoptera vs. non-Hymenoptera 564 564 1128 50

Total 1070 1208 2278 47

(1)significant at P,0.01 after Bonferroni correction.
(2)all involving Rhopalomyia or Mayetiola.
(3)Orussus vs. Rhopalomyia and Mayetiola.
(4)Cephus vs. Rhopalomyia, Mayetiola, and Pyrocoelia.
(5)of those 140 involving Rhopalomyia or Mayetiola.
Given are the numbers of significant (after Bonferroni-correction) and non-significant pairwise comparisons of relative rates, as well as the proportion of significant tests
(in percent). Comparisons with .50% significant tests are highlighted in bold. To elucidate the origin of elevated substitution rates in Hymenoptera, the results for the
basal symphytan taxa are listed individually for the genes for which sequences of these taxa were available. A hemimetabolous species was used as the outgroup for
each analysis.
doi:10.1371/journal.pone.0032826.t001
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Our analyses consistently misplaced the gall midge genera

Rhopalomyia and Mayetiola within the Hymenoptera rather than the

Diptera (Fig. 2), and a Shimodaira-Hasegawa test significantly

rejected a tree with a monophyletic dipteran clade (DlnL = 733.3,

P,0.0001). To explain the presumably false attraction of these

dipteran sequences to the hymenopteran clade, we investigated

sources of bias uncorrected by the optimal GTR+I+G model.

First, we used a logDet transform [56] that mitigates the effect of

base composition bias among the sequences. This tree, however,

also included the two dipteran sequences in the hymenopteran

clade (data not shown). In order to statistically test for

homogeneity of base composition across the sequences, we

transformed the four correlated base frequency variables to

uncorrelated, normally distributed variables with principal com-

ponent analysis (Table S7). The resulting first two principal

components (PCs) explain 93% and 5% of the variance,

respectively, and the sign and magnitude of the eigenvectors

indicates that the first PC contrasts AT against CG frequencies

across the sequences. A scatterplot of the two PCs shows that many

of the Hymenoptera and the two Diptera (Rhopalomyia and

Mayetiola) cluster in a group separated from most of the other

sequences (Fig. 5A). A comparison of PC1 across insect orders

confirmed that the Hymenoptera differ significantly in base

composition from all of the other three major holometabolous

insect orders (Fig. 5B; ANOVA, P,0.001; Tukey HSD post-hoc

tests: P,0.01 for all pairwise comparisons including Hymenop-

tera). However, both Rhopalomyia and Mayetiola exhibit base

composition biases that are in the range of Hymenoptera rather

than other Diptera. Thus, the misplacement of these gall midge

genera within the Hymenoptera is likely due to their bias in base

composition (especially the extreme AT bias) that is more similar

to the Hymenoptera than to the Diptera. Although the authors of

the original description of the Rhopalomyia and Mayetiola mito-

chondrial genomes did not report on elevated substitution rates in

gall midges as compared to other Diptera, they commented on

several unusual features like the very small size, the rearrange-

ments and truncation of tRNA genes, and, notably, an unusually

high AT content in the coding regions [78].

Nuclear phylogeny of holometabolous insects
Based on four nuclear gene datasets, we reconstructed the

phylogenetic relationships among holometabolous insect orders

(Fig. 6). While PEPCK and ArgK recovered the four major

holometabolous insect orders as monophyletic, wingless failed to

group the hymenopteran taxa in a monophyletic clade, and the

Coleoptera were paraphyletic in the 18S phylogeny, as had been

reported earlier [44]. Relative rate tests yielded no evidence for

higher substitution rates in Hymenoptera for the any of the four

nuclear genes (Table 1). For both wingless and 18S rRNA, the

observed differences in relative rates between hymenopteran and

non-hymenopteran taxa were due to lower rather than higher

rates in Hymenoptera (all 42 and 506 significant differences for

wingless and 18S rRNA, respectively). These results are in contrast

to an earlier study suggesting that both mitochondrial and nuclear

Figure 5. Principal components analysis of base frequencies among mitochondrial genome sequences. A Plot of the first principal
component against the second principal component (explaining 93% and 5% of the variability, respectively). B Boxplot of PC1 according to insect
orders. An ANOVA of the first principal component shows that the base composition in Hymenoptera is significantly biased relative to the other
orders (P,0.01 for all pairwise comparisons involving Hymenoptera), due to very high AT frequencies. Samples are color-coded based on order-level
taxonomic affiliations (see Fig. 2).
doi:10.1371/journal.pone.0032826.g005
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genes exhibit elevated substitution rates [21]. However, other

phylogenetic analyses of the extant hexapod orders based on

nuclear genes did not comment on conspicuously elevated

substitution rates in Hymenoptera as compared to other hexapod

lineages (see [44,79], but Whiting et al. [80] comment briefly on

long branches in Hymenoptera) or found even shorter phyloge-

netic branches leading to Hymenoptera than other insect orders

[76], which agrees with our results for wingless and 18S rRNA.

Comparison of mitochondrial and nuclear phylogenies
Our results indicate that substitution rates in Hymenoptera as

compared to other holometabolous insect orders are significantly and

consistently elevated for mitochondrial (with the exception of the

LSU rRNA) but not for any of the four nuclear genes under

investigation (Table 1). Interestingly, the inclusion of several non-

apocritan Hymenoptera (Perga, Cephus, Orussus) provides evidence for

elevated mitochondrial substitution rates also in Orussus, to a lesser

extent in Cephus, and possibly even in Perga. Thus, either substitution

rates of mitochondrial genes already started to increase within the

paraphyletic suborder Symphyta prior to the origin of the Apocrita,

or the elevated rates evolved independently in the Apocrita and in the

only ectoparasitic group within the Symphyta, the Orussoidea, as has

been suggested previously by Dowton and Austin [18]. However, the

intermediate to high branch lengths and the significantly elevated

Figure 6. Phylogenetic trees from analyses of four nuclear genes for representative taxa of the four major holometabolous insect
orders. Sequences for the analysis of wingless, PEPCK, and ArgK were obtained from the NCBI database, the 18S dataset represented a reduced
dataset from the analysis of Whiting (2002) that was supplemented with some additional taxa of Apidae from the NCBI database. Hymenopteran taxa
are highlighted by yellow branches.
doi:10.1371/journal.pone.0032826.g006
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substitution rates found for Cephus in our analyses provide support for

the former hypothesis (see Table 1, Fig. 2 and S1).

Mechanistically, substitution rates are determined by the

mutation rate and the probability that a given mutation reaches

fixation [81]. Although analyses based on sequence comparisons

fail to record mutations that never reach fixation and generally

do not distinguish between the effects of mutation rate and

probability of fixation, it is important to consider these as two

distinct evolutionary factors affecting substitution rates [82].

Mutation rates are generally thought to be positively correlated

with metabolic rate and mutational pressure (e.g. mutagens,

oxidative stress), but negatively with the efficiency of the DNA

repair machinery. Fixation rates, on the other hand, depend on

the effective population size, cladogenesis rate, and the selective

pressures acting upon the gene of interest [83]. In many of these

factors, mitochondrial and nuclear genomes differ markedly,

which may explain the generally higher substitution rates

observed in mitochondrial as compared to nuclear genomes

[84,85]. Additionally, Oliveira et al. [70] proposed the compen-

sation-draft-feedback model to explain the high substitution rates

in Nasonia spp. mitochondrial genomes: Due to the lack of

recombination in mitochondria, any fixation of an adaptive

mitochondrial mutation can drag along mildly deleterious

substitutions in the same haplotype. Compensatory mutations

in the same or in interacting mitochondrial genes would then be

selected for, which can lead to a second selective sweep to

fixation. Thus, this mechanism could potentially result in a

cascade of adaptive and non-adaptive mutations in mitochondrial

but not nuclear genes, because recombination impedes the

compensation-draft-feedback mechanism [70]. However, the

available mechanistic models fail to explain the exceptionally

high substitution rates observed in mitochondrial genomes of

Hymenoptera as compared to other holometabolous insect

orders.

Previously, an ecological hypothesis has been proposed to

account for the high mt-substitution rates in Hymenoptera as well

as in lice (Phthiraptera) [15,16] and mites [19]: In all three taxa,

ectoparasitism is deemed to be the current (lice and mites) or

ancestral (apocritan Hymenoptera) lifestyle [86,87], which entails

short generation times and frequent founder events with small

effective population sizes. Since these factors are known to be

associated with increased substitution rates, the parasitic lifestyle

has been hypothesized to be responsible for the elevated

evolutionary rates in these insect lineages [16,18,19,21]. A priori,

however, the hypothesis predicts elevated substitution rates in both

mitochondrial and nuclear genes, and we fail to find evidence for

the latter in our nuclear gene phylogenies of Hymenoptera. In

addition, it has been noted earlier that several parasitic lineages do

not show elevated mitochondrial substitution rates or higher

numbers of gene rearrangements [21,88,89]. Furthermore, our

analyses suggest that mitochondrial substitution rates already

began to increase in a non-parasitic ancestor before the origin of

the Apocrita and continue to do so in the extant apocritan families,

despite the fact that several of them are not parasitic anymore

(Fig. 2).

In conclusion, our results do not provide support for the

hypothesis that the parasitic lifestyle alone can explain the pattern

of evolutionary rates observed in insect mitochondrial genomes.

Considering the immense ecological diversity of Hymenoptera, it

seems possible that elevated mitochondrial mutation rates evolved

originally as a pleiotropic or epistatic side-effect of an adaptive

(mitochondrial or nuclear) mutation. Subsequent processes like the

compensation-draft feedback may have led to an increase in

fixation rates and a further accumulation of mutations, thus

resulting in the strongly elevated substitution rates in Hymenop-

tera that we observe today.
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