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Simple Summary: Extensive data exist regarding the importance of major histocompatibility complex
(MHC) class I in the tumor microenvironment, but data on MHC class II (MHC-II) are lacking. Using
multiplex immunohistochemistry and spatial modeling, we demonstrate that MHC-II expression
impacts both the relationships of cells traditionally associated with T lymphocyte priming and spatial
interactions of cytotoxic lymphocytes and tumor cells in colorectal cancer.

Abstract: Despite advances in therapy over the past decades, metastatic colorectal cancer (mCRC)
remains a highly morbid disease. While the impact of MHC-I on immune infiltration in mCRC
has been well studied, data on the consequences of MHC-II loss are lacking. Multiplex fluorescent
immunohistochemistry (mfIHC) was performed on 149 patients undergoing curative intent resection
for mCRC and stratified into high and low human leukocyte antigen isotype DR (HLA-DR) expressing
tumors. Intratumoral HLA-DR expression was found in stromal bands, and its expression level was
associated with different infiltrating immune cell makeup and distribution. Low HLA-DR expression
was associated with increased intercellular distances and decreased population mixing of T helper
cells and antigen-presenting cells (APC), suggestive of decreased interactions. This was associated
with less co-localization of tumor cells and cytotoxic T lymphocytes (CTLs), which tended to be in
a less activated state as determined by Ki67 and granzyme B expression. These findings suggest
that low HLA-DR in the tumor microenvironment of mCRC may reflect a state of poor helper T-cell
interactions with APCs and CTL-mediated anti-tumor activity. Efforts to restore/enhance MHC-II
presentation may be a useful strategy to enhance checkpoint inhibition therapy in the future.

Keywords: colon cancer; multiplex immunohistochemistry; immuno-oncology

1. Introduction

In metastatic colorectal cancer (mCRC), the tumor microenvironment (TME) is com-
posed of a combination of both proinflammatory and immunosuppressive cells, the propor-
tion and distribution of which influences the overall immune state of the tumor [1]. Patients
with a greater population of cytotoxic lymphocytes (CTLs) tend to have more favorable
outcomes relative to those with a higher proportion of suppressive cells, who succumb
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to earlier disease recurrence [2,3]. Multiple factors influence the activity of CTLs in the
microenvironment. Major histocompatibility complex class I (MHC-I) is one such factor
and must be present on the cell surface to allow for recognition of an antigen by the T-cell
receptor. Partial or total loss of MHC-I is a common tumor escape mechanism with absence
on the cell surface rendering tumor cells less susceptible to immune clearance [4–6]. In
primary CRC, loss or aberrant MHC-I expression is present in up to 74% of tumors [7,8], and
low levels of expression of MHC-I are an independent predictor of poor prognosis [9,10].
In CRC liver metastases and primary tumors, high levels combined with high intratumoral
T-cell infiltration are associated with improved survival [10,11].

A second and equally important component of immune cell recognition is major
histocompatibility complex II (MHC-II), which is expressed on the surface of antigen-
presenting cells (APCs) and can be upregulated on nucleated cells, including cancer cells,
in response to interferon stimulation. MHC-II serves as the primary cell surface display
machinery for phagocytized proteins. MHC-II, including human leukocyte antigen isotype
DR (HLA-DR), one of the three heterodimer polypeptide subtypes that compose MHC-
II, is essential for effective antigen presentation to CD4+ T helper cells, and subsequent
priming of naïve CD8+ T cells to CTLs. MHC-II expression is also variable in primary
CRC [12], with expression in the microenvironment of two-thirds of tumors [13]. In primary
CRC, increased MHC-II expression is associated with both improved prognosis [13–16]
and increased tumor-infiltrating lymphocytes [14], and its expression portends a survival
benefit when expressed in the colorectal carcinoma epithelium and adjacent non-carcinoma
epithelium [16]. While the impact of MHC-I expression on immune infiltration and function
in the tumor microenvironment has been studied in CRC liver metastases, there is a paucity
of data on MHC-II expression.

We and others have shown that multiplex fluorescent immunohistochemistry (mfIHC)
is used for both phenotype cells and provides a spatial context in the TME, allowing for
measurement of cell-to-cell proximity and contact [17–21]. Prior application of mfIHC to
CRC demonstrates that increased mixing of tumor cells and CTLs is associated with a
proinflammatory TME with a higher engagement of CTLs, as well as enhanced interactions
with APCs and T helper cells [18]. Interestingly, tumors with increased mixing of tumor
cells and CTLs have immunosuppressive elements, including elevated expression of pro-
grammed death receptor ligand (PD-L1+)-positive APCs, which is likely a compensatory
phenomenon [18]. We sought to use mfIHC to better elucidate the impact of MHC-II expres-
sion in the TME of CRC liver metastases in the hopes of identifying novel immune-based
approaches to therapy.

2. Materials and Methods
2.1. Patient Selection

The study population consisted of 195 patients who underwent consecutive curative
intent resections of colorectal liver metastasis. Studies were approved by an Institutional
Review Board, and patient and tumor characteristics were securely maintained. A gastroin-
testinal pathologist reviewed whole tissue samples and selected 0.6 mm-diameter cores in
triplicate to create a tissue microarray (TMA). Because of tissue folding or core drop-out,
46 tumor samples were not suitable for analysis. As a result, 149 patients were included
in the final analysis. Patients who received preoperative chemotherapy received standard
treatment as previously described [22]; no patients received immunotherapy, and adjuvant
chemotherapy regimens were not routinely recorded.

2.2. Histological Analysis

Tissue samples were fixed overnight in neutral-buffered formalin, dehydrated, and
embedded in paraffin. Tissue sections were cut at five-microns, deparaffinized, and rehy-
drated through a gradient of xylene and ethanol baths. Tissues were then stained with
hematoxylin and eosin for light microscopic examination.
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2.3. Multiplexed Fluorescent Immunohistochemistry Staining and Imaging

Five-micron slices were cut from the TMA onto charged slides for processing. Slides
were backed at 60 ◦C for 1 h and underwent deparaffinization and rehydration followed
by staining as previously described [17]. In brief, after rehydration, TMA slides were
fixed with formalin and subjected to the first round of antigen retrieval buffer with a
pH of 9 (AR9, Akoya Biosciences, Marlborough, MA, USA). Multiple rounds of staining
were performed and separated by antigen retrieval steps using an antigen retrieval buffer
with a pH of 6 and pH of 9 (AR6 and AR9, Akoya Biosciences). Each antigen retrieval
was followed by primary and secondary antibody and fluorescent tyranamide signal
amplification (TSA, Akoya Biosciences). This allowed for the removal of the prior primary
and secondary antibody, while the fluorophore remained covalently bonded to the tissue
antigen, ultimately forming a multiplex. The primary antibodies used included CD3, CD8,
FoxP3, CD163, PD-L1, pancytokeratin, HLA-DR, granzyme B, and Ki-67 (Opal polymer,
Akoya Biosciences) (details on antibodies included in Table S1). Spectral 4′-6-diamidino-2-
phenylindole (DAPI) was used as a counter stain as previously described [17]. Slides were
mounted, cover-slipped, and dried overnight. Cores were then imaged using the Mantra
Quantitative Pathology Workstation at 20 times magnification with the following channels:
DAPI, FITC, CY3, CY5, CY7, Texas Red, and Qdot with an exposure of 250 milliseconds.

2.4. Image Analysis: Phenotyping and Cell-To-Cell Interactions

Images were analyzed using the inForm Cell Analysis software (Akoya Biosciences).
Images were stratified based on the percentage of cores that expressed HLA-DR into high
HLA-DR expression (above the mean, n = 75) or low HLA-DR expression (below the
mean, n = 74). Normality of distribution was assessed with a Shapiro–Wilk test. Because
the threshold of a biologically important level of expression of HLA-DR is unknown,
utilization of the mean avoided potential bias of results. Simple and complex phenotyping
was performed, and cell-to-cell interactions, including the distance of a cell to its nearest
neighbor and the number of cells engaged with other cells within a set radius, were
calculated as previously described [17]. The following phenotypes were assigned: T cell
(CD3+), antigen-presenting cell (CD163+), epithelial cell (EC) (pancytokeratin+), and other
cells (CD3− CD163− pancytokeratin−). Additionally, cytotoxic T cells (CD3+ CD8+), helper
T cells (CD3+ CD8− FoxP3−), and regulatory T cells (CD3+ CD8− FoxP3+) were defined.

2.5. Image Analysis: Spatial G-Function and Engagement

A G-function was calculated to quantify the spatial relationships and interactions
among two or more types of cells in the TME, as previously described [18]. In brief, the
G-function was a function of distance and computed the probability of having a non-
reference cell type within a certain distance of a reference cell type. It can be mathematically
expressed using the following equation:

G(r)x,y = 1− e−λyπr2

where the subscripts ‘x’ and ‘y’ indicate that the spatial distribution of cell type ‘y’ relative
to the cell type ‘x’ is being computed, ’r’ refers to the distance from the reference cell
type, and λy the overall density of cell type ‘y’ on the slide. To correct for edge effects,
Kaplan–Meier correction is applied to the computed G-function. The area under the curve
(AUC) metric was used to characterize the rate at which the G-function rose, which was
shown to be prognostic of outcomes in non-small cell lung cancer [19] and intraductal
mucinous neoplasms [20]. The AUC was calculated using a radius of 60 microns.

2.6. Statistical Analysis

Statistical analyses were performed with JMP Pro 13.2.0 unless otherwise stated. Dif-
ferences in cell phenotype, intercellular distance, cell engagement, or AUC were evaluated
by a two-sided analysis of variance (ANOVA). Data that were not normally distributed
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were evaluated by non-parametric Wilcoxon rank-sum. Categorical variables were an-
alyzed with Fisher’s exact test. p ≤ 0.05 was considered significant and was adjusted
for multiple testing using the Benjamini–Hochberg false discovery rate procedure when
necessary. For survival analysis, Kaplan–Meier plots were drawn, and statistical differences
were determined by log rank.

3. Results
3.1. High HLA-DR Expression Was Associated with Decreased Distance between T Helper Cells
and Antigen-Presenting Cells

To study the effect of MHC-II expression on the immune microenvironment in mCRC,
IHC for HLA-DR was performed on 149 colorectal liver metastases from patients who
underwent curative intent resection (Figure 1A). Patients were stratified into two groups:
high expression of HLA-DR (above the mean, n = 75) and low expression of HLA-DR
(below the mean, n = 74). No significant difference was found with respect to sex, age,
mean tumor size, tumor number, disease-free interval, clinical risk score, N stage, extra-
hepatic disease, or use of preoperative chemotherapy between the two groups (Table 1).
Kaplan–Meier analysis revealed no significant difference in overall survival (Figure S1A).
Assessment of microsatellite instability (MSI) was performed by IHC for MLH1, MSH2,
MSH6, and PMS2. Patients that were deemed MSI high had significantly greater surface
area positive for HLA-DR (Supplemental Figure S1B). Samples were then subjected to
mfIHC for the markers CD3, CD8, FoxP3, CD163, pancytokeratin, and PD-L1. InForm
software (Akoya Bioscience) analysis was used to phenotype immune and tumor cells
in the microenvironment and assign each cell a unique spatial location. These data were
then used to calculate intercellular distances. A representative example of an H&E, mfIHC
composite imaging, cellular phenotyping, and measurement of intercellular distance is
shown in Figure 1, with representative examples of high HLA-DR expression in Figure 1A
and low HLA-DR expression in Figure 1B. To determine the impact of HLA-DR expression
on the spatial relationships of T cells and APCs, intercellular distances were reported.
Patients with high HLA-DR expression demonstrated a lower mean distance from T cells
to the nearest APC with a mean distance of 46.01 µM compared to 61.65 µM in the low
expressing cohort (p = 0.0033, Figure 1C). More specifically, there is a shorter mean distance
from helper T cells to APCs (50.43 µM in HLA-DR high tumors vs. 66.01 µM in HLA-DR
low tumors, p = 0.0039, Figure 1D). When stratified by the surface area of expression,
there was a direct correlation between HLA-DR-positive surface area and the intercellular
distances of APCs to T cells (R = 0.1381, p < 0.0001, Figure 1E) and helper T cells (R = 0.1156,
p < 0.0001, Figure 1F).

Table 1. Demographic data on patients with high and low HLA-DR-expressing tumors.

Demographic High HLA-DR (n = 74) Low HLA-DR (n = 75) p-Value
Gender (%M/F) 61/39 54/46 0.4072
Age (mean years) 58.9 62.2 0.1151
Tumor size (mean) 4.7 4.7 0.7371
Number (<3/≥3) 73/27 68/32 0.5868
DFI (mean mos) 19.1 16.7 0.4166
CRS

1
2
3
4
5

36
39
19
5
1

36
37
14
13
0

0.3981

N Stage
0
1
2

39
38
23

29
47
24

0.3750

Pre-op chemo 68% 65% 0.7305
Extra-hepatic
metastases 16% 10% 0.3278

MSI high 8% 4% 0.1481
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Figure 1. High HLA-DR expression is associated with decreased distance between T helper cells 
and antigen-presenting cells (APCs). (A) Representative example of a tumor with high HLA-DR 
expression (Left to right: (a) immunohistochemistry for HLA-DR, (b) composite multiplex immuno-
histochemistry image stained for CD3—green, CD163—orange, CD8—yellow, pancytokeratin—
white, FoxP3—red, PD-L1—magenta, and DAPI—blue, (c) phenotypic map depicting the location 
of CD3+ T cells (blue), pancytokeratin-positive epithelial cells (pink), CD163+ APCs (orange) and 
other cells (gray), (d) nearest neighbor analysis between APCs (red) and T helper cells (blue). (B) 
Representative example of a tumor with low HLA-DR expression with images as described above. 
ANOVA analysis of the mean intercellular distance between (C) APCs and T cells and (D) APCs 
and T helper cells. Bivariate comparison of percentage of HLA-DR positivity by surface area and 
intercellular distances between (E) APCs and T cells and (F) APCs and T helper cells. 

Figure 1. High HLA-DR expression is associated with decreased distance between T helper cells
and antigen-presenting cells (APCs). (A) Representative example of a tumor with high HLA-DR
expression (Left to right: (a) immunohistochemistry for HLA-DR, (b) composite multiplex immuno-
histochemistry image stained for CD3—green, CD163—orange, CD8—yellow, pancytokeratin—white,
FoxP3—red, PD-L1—magenta, and DAPI—blue, (c) phenotypic map depicting the location of CD3+

T cells (blue), pancytokeratin-positive epithelial cells (pink), CD163+ APCs (orange) and other cells
(gray), (d) nearest neighbor analysis between APCs (red) and T helper cells (blue). (B) Representative
example of a tumor with low HLA-DR expression with images as described above. ANOVA analysis
of the mean intercellular distance between (C) APCs and T cells and (D) APCs and T helper cells.
Bivariate comparison of percentage of HLA-DR positivity by surface area and intercellular distances
between (E) APCs and T cells and (F) APCs and T helper cells.
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3.2. High HLA-DR Expression Was Associated with Greater Engagement between T Cells
and APCs

While intercellular distance describes the overall spatial relationships between cells,
cellular engagement better represents the physical interaction between cells and, therefore,
receptor/MHC contact [17]. To determine cellular engagement, we identified circumstances
in the TME in which a T cell was within 40 µm of the center of an APC. Representative
images of an H&E, mfIHC composite image, cellular phenotype, and map of intercellular
engagement are shown in Figure 2. Representative maps of intercellular engagement
showed increased overlap of APCs and helper T cells in a tumor with high HLA-DR
expression (Figure 2A) relative to one with low HLA-DR expression (Figure 2B). Calculating
intercellular engagement across the entire cohort, we found increased engagement of APCs
and T cells (64.34% of T cells in HLA-DR high tumors vs. 50.66% of T cells in HLA-DR
low tumors, p = 0.0004, Figure 2C) and more specifically engagement of helper T cells and
APCs (59.89% of helper T cells in HLA-DR high tumors vs. 47.51% of helper T cells in
HLA-DR low tumors, p = 0.0007, Figure 2D). Similarly, the percent of APCs engaged with
helper T cells positively correlated with the percent positive area of HLA-DR expression
(R = 0.1752, p < 0.0001, Figure 2E). When looking at each T helper cell that was engaged,
cells tended to be in contact with a greater number of APCs simultaneously when HLA-DR
expression was high (R = 0.1628, p < 0.0001, Figure 2F). Taken together, these findings
suggest that increased HLA-DR expression is associated with decreased distance and
increased engagement between T cells, specifically helper T cells, and APCs.

3.3. HLA-DR Expression Is Associated with Changes in the Spatial Relationship of Cells Not
Associated with Traditional MHC-II Interactions

MHC-II expression is essential for the effective presentation of antigens to T helper
cells, which are subsequently integral in the priming of naïve CD8+ T cells into CTLs. To
determine the impact of HLA-DR expression on the interaction of tumor epithelial cells
(ECs) and T cells in the TME, the intercellular distance and engagement among T cells
and ECs were described. HLA-DR expression was associated with a lower mean distance
between all T cells and ECs (75.30 µM in high HLA-DR tumors vs. 93.04 µM in low HLA-DR
tumors, p = 0.0015, Figure 3A). Similarly, the percent of ECs engaged with T cells positively
correlated with the percent expression of HLA-DR (R = 0.3473, p < 0.0001, Figure 3B).

As engagement of CTLs with tumor ECs was associated with improved survival [17],
we set to specifically determine the impact of HLA-DR expression on the interaction of
these two cell phenotypes. This was of particular interest as CTL surface receptors typically
interact with MHC-I and not MHC-II antigen-presenting machinery. HLA-DR expression
was associated with improved interaction among CTLs and tumor ECs, as evidenced by
both lower mean intercellular distance (156.50 µM in high HLA-DR tumors vs. 220.37 µM
in low HLA-DR tumors, p < 0.0001, Figure 3C) and increased cellular engagement (23.19%
and 14.19% of CTLs in high HLA-DR and low HLA-DR, respectively, p = 0.0003, Figure 3D).
To assess the contribution of APC/helper T-cell interaction to this finding, a bivariate
analysis was performed and revealed a strong correlation between their engagement
and that of tumor cells and CTLs (Figure 3E). We next looked at the association of HLA-
DR expression on T regulatory cells (Treg). Paradoxically, tumors with high HLA-DR
expression showed greater engagement between Tregs and CTLs and less intercellular
distance (Supplemental Figure S1C,D).



Cancers 2022, 14, 4092 7 of 17Cancers 2022, 14, x FOR PEER REVIEW 7 of 18 
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present cells (APCs). (A) Representative example of a tumor with high HLA-DR expression (Left to 
right: (a) immunohistochemistry for HLA-DR, (b) composite multiplex immunohistochemistry im-
age stained for CD3—green, CD163—orange, CD8—yellow, pancytokeratin—white, FoxP3—red, 
PD-L1—magenta and DAPI—blue, (c) phenotypic map depicting the location of CD3+ T cells (blue), 
pancytokeratin-positive epithelial cells (pink), CD163+ antigen-presenting cells (orange) and other 
cells (gray), (d) cell engagement analysis between antigen-presenting cells (red) and T helper cells 
(blue) with the shaded area representing engaged cells.) (B) Representative example of a tumor with 
low HLA-DR expression with images as described above. ANOVA analysis of the percent of APCs 
engaged with (C) T cells and (D) T helper cells. Bivariate comparison of the percentage of HLA-DR 
positivity by surface area and engagement with (E) T cells and (F) T helper cells. 

Figure 2. High HLA-DR expression is associated with increased engagement of T cells and antigen
present cells (APCs). (A) Representative example of a tumor with high HLA-DR expression (Left
to right: (a) immunohistochemistry for HLA-DR, (b) composite multiplex immunohistochemistry
image stained for CD3—green, CD163—orange, CD8—yellow, pancytokeratin—white, FoxP3—red,
PD-L1—magenta and DAPI—blue, (c) phenotypic map depicting the location of CD3+ T cells (blue),
pancytokeratin-positive epithelial cells (pink), CD163+ antigen-presenting cells (orange) and other
cells (gray), (d) cell engagement analysis between antigen-presenting cells (red) and T helper cells
(blue) with the shaded area representing engaged cells.) (B) Representative example of a tumor with
low HLA-DR expression with images as described above. ANOVA analysis of the percent of APCs
engaged with (C) T cells and (D) T helper cells. Bivariate comparison of the percentage of HLA-DR
positivity by surface area and engagement with (E) T cells and (F) T helper cells.
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Figure 3. HLA-DR expression influences the spatial relationship of immune and epithelial cells (ECs).
(A) ANOVA analysis of the intercellular distance between ECs and T cells in high and low HLA-DR
expressing tumors. (B) Bivariate comparison of HLA-DR-positive surface area and engagement
between EC and T cells. ANOVA analysis of (C) intercellular distance and (D) engagement between
T helper cells and ECs. ANOVA analysis of (E) intercellular distance and (F) engagement between
cytotoxic T cells (CTL) and ECs relative to HLA-DR expression. (G) Bivariate analysis comparing
engagement of CTLs and ECs with APCs to T helper cells. ANOVA analysis of engagement between
CTLs and (H) PD-L1− and (I) PD-L1+ relative to HLA-DR expression.
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Programmed death receptor-1 (PD-1) and its ligand (PD-L1) inhibit the response of T
cells and impact their spatial relationships with tumor cells. To determine if interactions
were even more pronounced in tumors lacking PD-L1, cells were stratified by expression.
CTL engagement with PD-L1− ECs was increased in tumors with high HLA-DR expression
(18.39% of CTLs in high HLA-DR tumors vs. 6.49% in low HLA-DR tumors, p = 0.0001,
Figure 3F), but this effect was lost with PD-L1+ ECs where there was no difference in
CTL engagement by HLA-DR expression (p = 0.7589, Figure 3G). These data suggest that
MHC-II expression plays an integral role in not only the classical interactions of APCs
and helper T cells but the engagement of CTLs and tumor ECs in the TME of mCRC. The
abrogation of this finding with PD-L1+ ECs supports the hypothesis that HLA-DR may
prime traditional CTLs for more effective function.

In addition to influencing CTLs interactions with tumor ECs, there was a significantly
higher interaction between CTLs and APCs in the TME of tumors with high HLA-DR
expression (32.8% of CTLs in high HLA-DR tumors vs. 14.3% in low HLA-DR tumors,
p < 0.0001, Figure 3H).

3.4. HLA-DR Expression Is Associated with Greater Infiltration of Immune Cells in the TME

The infiltration of both CTLs [23] and T helper cells [24] in the TME favor local
immune activation and are thought to correlate positively with the outcome. We, therefore,
assessed the influence of HLA-DR expression on the infiltration of immune cells. HLA-DR
expression was associated with an increased proportion of immune cells among all cells in
the TME (17.06% in high HLA-DR tumors vs. 7.78% in low HLA-DR tumors, p < 0.0001,
Figure 4A). This relationship held true when specifically assessing the percentage of T
cells (6.6% vs. 2.67% in high HLA-DR and low HLA-DR tumors, respectively, p < 0.0001,
Figure 4E), as well as T helper cells (4.16% in high HLA-DR tumors vs. 2.21% in low HLA-
DR tumors, p = 0.0007, Figure 4B) and CTLs (1.6% in high HLA-DR tumors vs. 0.19% in low
HLA-DR tumors, p = 0.0002, Figure 4F). Stated another way, when stratified by the degree
of T helper cell infiltration, tumors with high infiltration of T helper cells were associated
with an increased degree of HLA-DR surface staining (28.12% in high infiltration vs. 10.43%
in low infiltration tumors, p = 0.0003, Figure 4C). The percentage of T helper cells of all
cells in the TME was positively correlated with the degree of HLA-DR staining (R = 0.1426,
p < 0.0001, Figure 4D). Additionally, the ratio of CTLs to Tregs was increased in tumors with
high HLA-DR expression (24.9 vs. 6.2 in low HLA-DR tumors, p = 0.0234, Figure 4G). These
data may suggest that HLA-DR expression is integral to the infiltration of immune cells,
including both T helper cells and CTLs, in the microenvironment of mCRC. However, it
should be noted that immune cells, particularly APCs and activated T helper cells, express
HLA-DR, and, therefore, these observations may simply relate to the infiltration of a greater
number of HLA-DR expressing cells.

3.5. HLA-DR Expression Level Is Associated with Distinct Cell Population Mixing in the TME

G-function is established as a method to describe the population-level mixing of
two or more cell types in the TME [18–20]. The rate of rising of the G-function can be
used as a surrogate to measure the degree of cellular mixing, and the area under the
curve (AUC) metric can therefore be used to compare differences in cellular mixing at
a fixed radius from individual cells, where a high AUC correlates to a high degree of
mixing [18]. Figure 5 shows a representative cellular phenotype map of a high HLA-DR
expressing tumor (Figure 5A) with abundant mixing of helper T cells and APCs and a
low HLA-DR expressing tumor with little mixing (Figure 5B). After calculating G-function
curves for these two cell types, we found significantly greater population mixing in high
HLA-DR expressing tumors (G-function AUC = 1.21 vs. 0.36 in low HLA-DR tumors,
p = 0.0013, Figure 5C). Additionally, representative images of high (Figure 5D) and low
(Figure 5E) HLA-DR tumors demonstrated that high HLA-DR expression was associated
with increased cellular mixing among tumor ECs and CTLs (G-function AUC = 2.71 in high
HLA-DR tumors vs. 0.63 in low HLA-DR tumors, p = 0.0004, Figure 5F).
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3.6. HLA-DR Expression Influences the Proportion of Activated Immune Cells in the TME

Ki67 is a nuclear protein that is used to identify cellular proliferation and can serve
as a marker of T-cell activation. Similarly, staining for granzyme B (GZMB), one of the
functional elements of cytotoxic CD8+ T cells, can be utilized to identify activated CTLs. To
assess the influence of HLA-DR on T helper and CTL activity, mfIHC was performed on
the tumor cohort for CD3, CD8, Ki67, GZMB, and pancytokeratin (representative image,
Figure 6A). Tumors with high HLA-DR expression had a similar proportion of activated
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T cells (GZMB+Ki67+) with 3.52% activated compared to 2.26% in HLA-DR low tumors
(p = 0.7673, Supplemental Figure S1E). Interestingly, there was an increased engagement
of tumor ECs with activated CTLs (19.31% in high HLA-DR tumors vs. 9.84% in low
HLA-DR tumors, p = 0.0039, Figure 6B). The proportion of activated T helper cells was also
increased with HLA-DR expression (5.78% vs. 3.76% in high HLA-DR vs. low HLA-DR
tumors, respectively, p = 0.0364, Figure 6C), and the proportion of activated T helper cells
positively correlated with the degree of HLA-DR staining (R = 0.0388, p = 0.0188, Figure 6D).
Additionally, HLA-DR expression was associated with an increase in the engagement of
APCs to activated T helper cells (9.11% vs. 3.90% of activated helper T cells in high HLA-DR
vs. low HLA-DR tumors, respectively, p = 0.0137, Figure 6E). To determine the impact of
APC/helper T-cell engagement on CTL function, patients were dichotomized around the
median into high and low. Tumors with high engagement had significantly greater CTL
activity, as evidenced by increased engagement of epithelial cells to activated CTLs (21.3%
in high APC/helper T-cell engagement vs 9.3% in the low group, p = 0.0002, Figure 6F).
These data suggested that MHC-II expression was associated with increased infiltration
and proportion of activated immune cells in the TME of mCRC.
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tumor microenvironment (CD3—green, CD163—magenta, CD8—yellow, pancytokeratin—blue,
granzyme B (GZMB)—cyan, and DAPI—white). (B) ANOVA analysis of epithelial cells (EC) engaged
with activated cytotoxic lymphocytes (Ki67+GZMB+CD3+CD8+) in tumors with high and low HLA-
DR expression. (C) Relative abundance of activated (Ki67+) T helper cells. (D) Bivariate analysis
of activated T helper cells and percent HLA-DR-positive surface area in tumor cores. (E) ANOVA
analysis of macrophage engagement with activated T helper cells in high and low HLA-DR expressing
tumors. (F) ANOVA analysis of EC and activated CTL engagement in tumors with high and low
engagement of antigen-presenting and T helper cells.

4. Discussion

Metastatic colorectal cancer remains a highly morbid and fatal disease that is rarely
cured, despite significant advances in therapy over the past decades. Immune-based thera-
pies have been effective only for a small subset of patients with mCRC [25], highlighting the
need to better understand the immune microenvironment. Prior studies of the immune mi-
croenvironment have primarily investigated only the predominant cell type and proportion
of infiltration, establishing that greater numbers of proinflammatory cells greatly impact
survival [2,26]. Greater infiltration of CTLs is associated with both anti-tumor activity [27]
and a favorable prognosis [21]. As is true for most tumor types, effective CTL infiltration
and function depends on many factors, including local cytokines/chemokines, presence of
surrounding suppressive elements, and proper processing and display of peptides by both
tumor cells and professional antigen-presenting cells such as macrophages and dendritic
cells. Expression of the primary presenting molecules for CTLs via MHC-I is necessary for
activation of CTLs, and partial or total loss of MHC-I is thought to be a common tumor
escape mechanism [4]. The impact of MHC-I expression on the cellular makeup of the TME
in mCRC has been studied with a low level of expression portending a poor prognosis,
while high levels of expression are associated with greater T-cell infiltration and overall
survival [11]. While MHC-I is primarily responsible for recognition and activation by CTLs,
MHC-II molecules, displaying peptides from phagocytized extracellular proteins, bind to
cognate receptors on helper T cells resulting in cytokine release, which primes CTL function.
Although its expression is known to be variable in CRC [12] and increased expression is
associated with an improved overall prognosis [13–15], there is a paucity of data on the
impact of MHC-II expression on the immune composition of the CRC TME.

Much of the prior work evaluating the TME in mCRC utilized either flow cytometry or
standard IHC to describe the relative abundance or scarcity of cell types [28–30]. The former
allows for robust multiantigen cell phenotyping, but reliance on single cell suspension
ignores key spatial data, which can be crucial for context. IHC captures cell positioning
but suffers from an inability to distinguish co-localized antigens making more complex
cellular phenotyping impossible. We and others have shown that mfIHC provides the
ability to perform multiantigen phenotyping of cells while preserving important spatial
data to evaluate the context in which immune cells interact in the TME [17–20]. Using
mfIHC, we have previously demonstrated that engagement and population-level mixing of
CTLs with tumor ECs in mCRC is associated with both immune activation and improved
disease-specific outcomes [17,18].

In this study, we sought to better define the role of MHC-II in shaping the immune TME
by performing mfIHC on a large cohort of patients undergoing curative intent resection for
colorectal liver metastases. By utilizing a patient subset that had all macroscopic disease
removed, each individual began with the same disease burden eliminating an important
confounder for disease-specific outcomes. Tumors were dichotomized around the mean
expression of HLA-DR, an isotype of MHC-II, as has been previously performed for MHC-
I [11]. Multiantigen phenotyping and analysis of spatial relationships allowed us to explore
two important phenomena in the TME, the role of MHC-II expression in APC/helper T-cell
interaction and the subsequent priming of CTLs to better recognize tumor cells.

Multiple prior studies have investigated the association between MHC-II expression
and survival. Sconocchia et al. studied 1000 primary CRC tumor samples and identified that
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23% of patients with positive HLA-DR staining had favorable disease-specific outcomes [31].
Similarly, Dunne et al. found that patients with HLA-DR-positive tumors had double the
survival of those lacking expression [16]. Interestingly, they also found that expression
declined with increasing primary cancer stage, which may explain the relatively low level
of expression we found in the metastases of patients in our cohort. In our samples, the
mean surface area expression of HLA-DR was only 9%, with a range of 0.07–70.92%.
Contrary to prior studies, we found no relationship between HLA-DR expression and
survival. We hypothesize two potential explanations for this: (1) the microenvironment of
metastatic tumors and the role of various cell types differ significantly between metastases
and primary tumors (highlighted by the relatively low level of HLA-DR expression in
our cohort) or (2) HLA-DR expression in primary tumors may impact metastatic ability,
which drives differences in survival seen in the previous studies. The fact that prior reports
described decreased HLA-DR expression in later stages supports both hypotheses.

While these prior studies focused on prognosis, there are limited data on the asso-
ciations of MHC-II expression and the cellular makeup and interactions in the TME. In
a study of 76 primary colon cancers, expression was associated with increased T-cell in-
filtration, but this included tumors presenting at various stages, which may confound
results [32]. Similarly, we found that tumors with higher MHC-II expression had greater
infiltration of T cells, including both helper T cells and CTLs. We further demonstrated that
in high-expressing tumors, the helper T cells were more engaged with professional APCs,
suggesting that intact peptide display machinery may aid in antigen recognition.

One of the key functions of helper T cells is the production of a cytokine milieu that
primes CTLs for activation and clearance of abnormal cells. Phenotyping multiple cell types
within the same microenvironment allow the assessment of the impact of one set of cellular
interactions on another. This enabled us to demonstrate a strong association between
APC/helper T-cell engagement and the activity of CTLs. Co-staining for CD3, CD8, and
the intracellular activation markers GZMB and Ki67 revealed the importance of intact
MHC-II in the TME on CTL effector function. While these relationships are well known
biologically, these are the first data demonstrating that impairment of MHC-II expression
impacts the association of putative MHC-I expressing cells and CTLs. This could have
important implications for future designs of immunotherapeutics as strategies to increase
MHC-II expression and, therefore, helper T-cell activation may improve the efficacy of
therapies aimed to support CTL function [33]. Indeed, experimental overexpression of
the MHC-II gene promoter (CIITA) in tumor cells results in robust immune activation
and tumor rejection [34]. Depletion of helper T cells in these studies abrogated tumor
rejection highlighting the importance of MHC-II antigen processing and presentation in
tumor immunity. Clinically, interferon alpha, a powerful inducer of both MHC-I and
II expression, was used for decades to treat melanoma. Similarly, vaccines designed to
be expressed by MHC-II molecules have been effective in mediating tumor clearance
in some murine models of cancer [35]. Combinations of therapies aimed at increasing
activation of both helper T cells and CTLs through enhancement of MHC-II expression and
checkpoint blockade inhibition, respectively, could represent a promising strategy for this
difficult-to-treat disease.

While greater HLA-DR expression was generally associated with a proinflammatory
environment, there was a paradoxical increase in regulatory T-cell engagement with CTLs.
One potential explanation for this is a compensatory increase in immune suppression that
often coincides with inflammation. We previously reported a similar pattern with increased
suppressive PD-L1+ APC infiltration in metastatic tumors with high CTL activity [17].
The impact of increased regulatory T cells on the TME and potentially survival warrants
further investigation. Of note, the ratio of CTLs to regulatory T cells was higher in HLA-DR
high tumors, supporting a more proinflammatory microenvironment exists with increased
HLA-DR expression.

While this article examined the role of MHC-II expression on T-cell engagement and
function with APCs and tumor cells, emerging evidence suggests that B cells and tertiary
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lymphoid structures (TLSs) also play a role in shaping the TME in mCRC. B cells, and
regulatory B cells, in particular, have been shown to influence the inflammatory response
in cancer through the secretion of anti-inflammatory mediators [36]. Antigen presentation
by B cells via MHC-II is required for optimal effector T-cell function [37,38], and MHC-II
molecules appear to be integral for B cell interaction with activated T cells [39]. Additionally,
the role of TLSs, aggregates of immune cells in non-lymphoid tissues at sites of chronic
inflammation, in shaping the TME in cancer [40] and colorectal cancer specifically [41]
is an area of active investigation. Interestingly, TLSs surrounding tumors with increased
densities of T helper cells were associated with relapse of advanced colorectal cancer [42].
Thus, the role of MHC-II expression on B cells and in TLS function in the TME of mCRC
requires further investigation.

Another unexpected finding from our study was an association between HLA-DR
expression and MSI status of tumors. While HLA-DR high tumors were not more likely to
be MSI high, there was a greater surface area positivity in this cohort. This finding is not due
simply to increased APC infiltration, as we have previously demonstrated a lack of associa-
tion with MSI status [17]. A possible explanation is that the CTL infiltration associated with
MSI-high tumors leads to increased interferon in the TME and subsequent upregulation
of MHC-II. Further in vitro and in vivo study is needed to precisely understand this and
other associations that have been identified.

An important limitation of our study is the inability to precisely determine the cellular
source of HLA-DR expression in our samples. Both tumor and immune cells are known to
express this on the surface, and biological implications of differential expression or loss
in either cell type are unknown and require further investigation. Additionally, mfIHC is
limited by the ability to query six antibodies per tissue section, which limits the number
of cells that can be phenotyped. This prevents the investigation of super-specialized cells,
including polarized dendritic cells and B lymphocytes.

5. Conclusions

Spatial characterization of immune cells in CRC liver metastases resected in a large
cohort of patients demonstrated that intra-tumoral HLA-DR expression was associated
with distinct makeup and distribution of immune cells in the tumor microenvironment.
High expression of HLA-DR was associated with increased immune cell infiltration and
increased proximity between T cells, APCs, and cancer cells. Further work aiming to
increase MHC-II expression may be valuable to enhance the effectiveness of currently
available CTL-based therapies.
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