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Abstract

Heterogeneity of cancer means many tumorigenic genes are only aberrantly expressed in a

subset of patients and thus follow a bimodal distribution, having two modes of expression

within a single population. Traditional statistical techniques that compare sample means

between cancer patients and healthy controls fail to detect bimodally expressed genes. We

utilize a mixture modeling approach to identify bimodal microRNA (miRNA) across cancers,

find consistent sources of heterogeneity, and identify potential oncogenic miRNA that may

be used to guide personalized therapies. Pathway analysis was conducted using target

genes of the bimodal miRNA to identify potential functional implications in cancer. In vivo

overexpression experiments were conducted to elucidate the clinical importance of bimodal

miRNA in chemotherapy treatments. In nine types of cancer, tumors consistently displayed

greater bimodality than normal tissue. Specifically, in liver and lung cancers, high expression

of miR-105 and miR-767 was indicative of poor prognosis. Functional pathway analysis

identified target genes of miR-105 and miR-767 enriched in the phosphoinositide-3-kinase

(PI3K) pathway, and analysis of over 200 cancer drugs in vitro showed that drugs targeting

the same pathway had greater efficacy in cell lines with high miR-105 and miR-767 levels.

Overexpression of the two miRNA facilitated response to PI3K inhibitor treatment. We dem-

onstrate that while cancer is marked by considerable genetic heterogeneity, there is

between-cancer concordance regarding the particular miRNA that are more variable.

Bimodal miRNA are ideal biomarkers that can be used to stratify patients for prognosis and

drug response in certain types of cancer.

Author summary

Bimodal genes can be defined as those having two modes of expression within the same

population. A variety of statistical methodologies have been employed to assess bimodal

gene expression, but current methods and their applications have been limited. Given the

advances in next-generation sequencing as well as the extensive regulatory role of
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miRNA, assessing bimodality in miRNA-seq data can greatly broaden our understanding

of factors underlying tumor progression. The goal of the current study was to utilize a

novel mixture modeling approach to identify bimodal miRNA and then demonstrate

their importance in cancer by evaluating their ability to predict overall survival and drug

response. Our results showed that high levels of bimodal miRNA expression was charac-

teristic of cancer. Additionally, several bimodal miRNA were common to multiple cancer

types, suggesting that certain miRNA consistently account for tumor heterogeneity and

may be involved in general oncogenic processes. Our study points to the potential of

bimodal miRNA to facilitate precise prognostic evaluation and effective treatment

strategies.

Introduction

Cancer is classically characterized by genomic instability and mutations which drive uncon-

trolled cellular growth, heightened angiogenesis and metastasis, and metabolic abnormalities

[1]. However, mutational and transcriptomic profiles are tumor-specific, resulting in a high

degree of heterogeneity among cancer patients. Not only is there considerable heterogeneity

between cancer types, but even two tumors within the same cancer type and stage often display

very different genetic profiles. Transcriptomic heterogeneity is exemplified by bimodal gene

expression. Bimodal genes can be defined as those having two modes of expression within the

same population. Bimodal genes act as molecular switches that define cancer subtypes. One

example of bimodal gene expression is the estrogen receptor (ESR1) in breast cancer. In

regards to ESR1 expression, breast tumors have one of the two molecular subtypes, one that

expresses ESR1 and the other shuts down expression (ER-). These discoveries have been partic-

ularly informative not only in prognostic prediction but also in guiding treatment regimens

and understanding the efficacy of hormone-based therapies and drugs that target specific

receptors [2–4]. Thus, bimodal genes represent a set of tumorigenic genes which can motivate

effective therapeutics.

A variety of statistical methodologies have been employed to assess bimodal gene expres-

sion, including test statistics that reflect significant outliers and spacing of data as well as heu-

ristic clustering [5–7]. Model-based clustering has been an effective tool for evaluating

bimodality. Teschendorff et al. proposed mixture modeling as a method to define major sub-

groups of a population [8]. First, the expectation-maximization (EM) algorithm was used to

estimate the parameters of a Gaussian mixture model and then the Bayesian information crite-

rion (BIC) was employed to choose between unimodal and bimodal models. Next, genes were

further filtered based on kurtosis. This method was modified by Wang et al. by using Markov

chain Monte Carlo methods instead of the EM algorithm [9]. As opposed to kurtosis, the

bimodality index (BI) was also introduced as a metric which considers the mean and propor-

tion of observations within each cluster to rank genes based on bimodality.

While mixture modeling has been pivotal for identifying and understanding bimodal

genes, current methods and their applications have been limited. First, current methods do

not take into account the underlying distribution of a gene and are thus prone to false posi-

tives. There is no method that compares the gene expression distributions in tumor and con-

trol tissue. Thus, genes that are bimodally expressed in healthy tissue and unlikely contribute

to tumorigenesis are not controlled. Additionally, only a handful of studies have applied mix-

ture modeling to assess high-throughput sequencing data [10] and microRNA (miRNA)

expression [11]. Given the advances in next-generation sequencing as well as the extensive
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regulatory role of miRNA, assessing bimodality in miRNA-seq data can greatly broaden our

understanding of factors underlying tumor progression.

The goal of the current study was to utilize a novel mixture modeling approach to identify

bimodal miRNA (Fig 1A) and then demonstrate their importance in cancer by evaluating

their ability to predict overall survival and drug response (Fig 1B). First, we analyzed miRNA-

seq data across nine types of cancer and quantified bimodal miRNA to characterize oncogenic

miRNA that could represent a novel set of clinically-relevant tumor biomarkers. Specifically,

we used bimodal miRNA to stratify patients into two distinct categories and examined group

differences in survival and drug response. In identifying important tumorigenic miRNA, we

not only provide foundational insight into the major miRNA contributors to tumor variability,

but also point to the potential of bimodal miRNA to facilitate precise prognostic evaluation

and effective treatment strategies.

Results

Controlled mixture modeling validation

We first sought to validate a method that could reliably identify bimodal expression. In order

to reduce false positives and focus only on genes that are relevant to cancer, bimodality was

assessed using model-based clustering in both the cancer and control samples. Normalized

RNA-seq data from breast tumors and non-tumor mammary tissue was downloaded from

Genomic Data Commons (GDC, formerly TCGA). The data was then log2 transformed for

further analysis. All stages were included in the analysis for a total of 1,102 tumor samples and

113 non-tumor samples.

For each of the 60,483 genes, we first performed mixture modeling on the tumor samples to

decide whether a one-component or two-component model was the better fit. From the genes

that were better fit by a two-component model, k-means was then used to re-cluster the tumor

samples. The same steps were performed on the control samples. Finally, genes were ranked

using the calculation of the bimodality index. If control samples were bimodally distributed, a

penalty was imposed in the calculation of the bimodality index (see methods). This yielded a

method that we refer to as controlled mixture modeling (CM). In order to show that the addi-

tion of control samples was beneficial, we compared our CM model to a mixture model with-

out controls (MM). For each model, the bimodality index was calculated and genes were

ranked highest to lowest.

First, we visually inspected the top bimodal genes identified using MM and CM. MM and

CM both tended to favor genes in which a subset of patients had no expression and a second

subset of showed higher expression (Fig 2A and 2B). MM and CM methods identified similar

top three bimodal genes. The top three genes using MM were SCGB2A2 (BI = 2.20), SCGB1D2
(BI = 2.03), and TFF1 (BI = 1.92; Fig 2A). The top bimodal gene using CM was TFF
(BI = 1.92), and the second was a lncRNA (BI = 1.81). CM also identified SCGB2A2 but the BI

was penalized; thus the gene was ranked third (BI = 1.81; Fig 2B).

As expected, the addition of control samples reduced the number of genes at all bimodality

index thresholds (Table 1). We hypothesized that by filtering genes using control samples, we

could reduce false positives and focus on important tumorigenic genes. To test this hypothesis,

we examined known bimodal genes that were relevant to disease progression in breast cancer,

including ESR1,HER2, and progesterone receptor (PGR) [9]. The use of control samples was

particularly beneficial in identifying bimodality in ESR1 and PGR. CM ranked ESR1 25th com-

pared to MM which ranked it 47th (Table 1). Our algorithm also ranked PGR 62nd. This was

better than MM which ranked it 137th. Interestingly, HER2 was not ranked highly by either
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Fig 1. Strategies for identification of bimodal miRNA and evaluation of their clinical relevance. (A) Controlled mixture

modeling (CM) was employed to identify bimodal miRNA. Gaussian mixture modeling was performed to identify one- and two-

component miRNA. The distributions of two-component miRNA were then compared to control tissue before calculation of the

bimodality index. (B) To assess the clinical relevance of bimodal miRNA, CM was used to identify bimodal miRNA across nine

cancer types. Groups of concurrently expressed miRNA that were common to multiple cancer types were then further investigated

for their role in patient prognosis and drug response.

https://doi.org/10.1371/journal.pcbi.1010109.g001
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Fig 2. Methodology validation. Breast cancer RNA-seq data were clustered using (A) mixture modeling (MM) and (B) controlled

mixture modeling (CM). The bimodality index was calculated and the top three genes using each method are reported. (C) ESR1,

HER2, and PGR are known to follow a bimodal distribution among breast cancer patients. The plots show gene expression in

log2(RPKM) on the x-axis. Density is represented by the red line (left y-axis) and frequency is represented by the gray bars (right y-

axis). (D) CM excluded genes with similar distributions in cancer and control.GSTM1, IGHV3-30, and RPL10P9 were identified by

MM but excluded by CM at BI> 1. Density is shown for cancer (red) and control (blue) samples.

https://doi.org/10.1371/journal.pcbi.1010109.g002
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algorithm, but upon closer examination of the distribution, we found that in this particular

dataset theHER2 distribution that was rather ambiguous (Fig 2C).

Additionally, we visualized genes that were identified by MM but excluded by CM at a

BI> 1. These genes had distributions that were very similar between cancer and control

(Fig 2D). Of the 100 genes with BI> 1 that were identified by MM but excluded by CM, 33

coded for immunoglobulin chains. This finding is reflective of the high sequence variation

observed in these genes within the general population [12]. Another gene excluded by CM at

BI> 1 was glutathione S-transferase mu 1 (GSTM1) which is known to have variable enzy-

matic activity in the general population due to polymorphic deletions [13].

Bimodal miRNA across cancers

After validating our methodology on breast cancer RNA-seq data, we applied the model to

find bimodal miRNA. First, we downloaded miRNA-seq data from GDC for nine types of can-

cer and normal tissue. Due to data availability, we narrowed our investigation to cancers that

had at least 30 non-tumor control samples. Each tissue type was individually assessed. We

applied the MM approach on cancer and control tissue using bootstrapped samples of same

size as normal tissue in order to account for differences in sample size. We found that cancer

tissue had more bimodal miRNA than control when considering all sources of bimodality

(bimodality index > 0, Fig 3A). This trend was less clear at higher BI thresholds (S1 Fig). Next,

we looked at bimodality in cancer samples using CM. We set the bimodality index threshold

to 1.2, 1.3, 1.4, and 1.5 and saw a decrease in the number of bimodal miRNA (Fig 3B). At a

bimodality index threshold of 1.4, kidney cancer had the most bimodally expressed miRNA

(n = 56), while prostate and breast cancer had the least (n = 11 and n = 14, respectively; Fig

3C). This trend was also observed at thresholds of 1.3 and 1.5. Additionally, our findings sup-

ported the results from the methodology validation by showing that the top-ranked miRNA

from each cancer type had fairly evenly partitioned components and non-trivial expression,

rather than miRNA with very few outliers (Fig 3D).

Next, we examined the concurrent expression of bimodal miRNA. We postulated that mod-

ules of concurrently expressed miRNA would have a greater functional impact than single

miRNA. Pearson correlation coefficients were calculated between miRNA pairs. Only miRNA

with bimodality indices > 1.4 were considered, as previous studies have shown that a bimodal-

ity index threshold of 1.4 returns a 0–1.2% false positive rate using a sample size of 50 and a

0% false positive rate when the sample size is� 200 [9]. Groups of at least three miRNA were

considered to be a module if all pairwise correlations were greater than 0.5. Size and number

Table 1. Methodology performance. Methods were tested on breast cancer RNA-seq data and compared with

regards to the number of genes identified at various bimodality index (BI) thresholds and ranking of known bimodally

expressed genes (ESR1,HER2, and PGR). CM: controlled mixture modeling, MM: mixture modeling.

Parameter MM CM

Number with BI > 0 12417 6694

Number with BI > 1 188 88

Number with BI > 1.4 26 13

Number with BI > 1.5 14 7

Number with BI > 2.0 2 0

BI rank of ESR1 47 25

BI rank of HER2 471 503

BI rank of PGR 137 62

https://doi.org/10.1371/journal.pcbi.1010109.t001
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Fig 3. Bimodal miRNA across cancers. (A) Bimodally expressed miRNA were examined in nine types of cancer and control tissue using

mixture modeling (MM). Bimodality was also examined in cancer tissue using controlled mixture modeling (CM), and (B) the number of

bimodal miRNA at various bimodality index thresholds are reported, as well as (C) a more detailed report of bimodal miRNA having a

bimodality index (BI)> 1.4. (D) The top-ranked bimodal miRNA from each cancer type were visually inspected for bimodality. (E) Within

each cancer type, correlations were calculated between bimodal miRNA in order to identify modules of concurrently expressed bimodal

miRNA. High correlations are represented in red. (F) Four concurrent expression modules were common to multiple cancer types.

https://doi.org/10.1371/journal.pcbi.1010109.g003
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of co-expression modules varied between cancers (Fig 3E). Kidney cancer had the largest num-

ber of co-expression modules (n = 5) containing a total of 31 miRNA (S1 Table). The largest

module contained 14 miRNA and was observed in thyroid cancer. Liver, lung, stomach,

uterus, and head and neck cancers had moderately sized modules containing three to six

miRNA each. Additionally, prostate cancer had no modules, suggesting that its 11 bimodal

miRNA were expressed independently of each other. Bimodal modules for each cancer are

listed in S1 Table.

We then focused on modules of bimodal miRNA that were common across cancers. Just as

certain oncogenes and tumor suppressor genes widely contribute to tumorigenesis (e.g. p53,

KRAS, PIK3CA, etc.), we hypothesized that particular miRNA broadly regulate cancer pro-

gression. Thus, we found four modules that were common to multiple cancer types (Fig 3F).

The most common module was found in head and neck, liver, lung, and stomach cancer and

consisted of miR-105-1, miR-105-2, and miR-767. The second most common module con-

sisted of miR-9-1, miR-9-2, and miR-9-3 and was present in head and neck, lung, and uterine

cancer. miR-96, miR-182, and miR-183 were bimodal modules in kidney and liver cancer.

Head and neck and stomach cancer also shared the bimodal expression of miR-1-1, miR-133a-

1, miR-133a-2, and miR-133b.

Survival analysis

After identifying bimodal miRNA, we next investigated whether they could be used to predict

patient outcome. We first examined whether multiple miRNA modules were sufficient to strat-

ify patients based on overall survival. Using all of the co-expression modules within each can-

cer type, hierarchical clustering was performed using Manhattan distance as the dissimilarity

measure and complete linkage. Dendrograms were cut to yield two groups (Fig 4A–4H).

Using the two groups, a Cox proportional hazards regression was fit and hazard ratio (HR)

and median survival time were calculated (Fig 4I–4P, S2 Table). Overall, we found that multi-

ple modules of concurrently expressed miRNA were successful at predicting patient outcome

in head and neck (HR: 0.54, 95% CI: 0.41–0.70, p = 5.21 x 10−4), kidney (HR: 0.73, 95% CI:

0.56–0.96, p = 0.023), liver (HR: 0.46, 95% CI: 0.32–0.65, p = 1.10 x 10−5), thyroid (HR: 0.32,

95% CI: 0.21–0.86, p = 0.025), and uterine cancer (HR: 0.62, 95% CI: 0.40–0.97, p = 0.034).

Additionally, there was a trend for significance in stomach cancer (HR: 0.74, 95% CI: 0.54–

1.03, p = 0.077).

We then sought to determine whether single modules of bimodal miRNA could also be

used to stratify patients based on overall survival. For this analysis, we used modules that were

common to multiple cancer types. The most common co-expression module included miR-

105-1, miR-105-2, and miR-767. These three miRNA are located on the X chromosome in the

first intron of GABA A receptor alpha 3 (GABRA3) (Fig 5A). Patients were divided into high

and low expressers. Wald test showed a significant difference in survival time between groups

in liver cancer, such that higher miR-105 and miR-767 expression resulted in an HR of 2.37

compared to low expression (95% CI: 1.61–3.48, p< 0.001; Fig 5B). In lung cancer, this trend

was also observed (HR: 1.26, 95% CI: 1.03–1.56, p = 0.028; Fig 5C). In head and neck and

stomach cancer, there was no difference between high and low miRNA expression groups

(p = 0.71 and p = 0.52, respectively; S1 Fig). We also looked at the tumor node metastasis

(TNM) staging of both high- and low-expressing patients and compared distributions using

Chi square tests. In liver cancer, each TNM stage contained even numbers of high- and low-

expressing individuals, suggesting that stage and miRNA provide two distinct stratifications

(p = 0.28; Fig 5D). In lung cancer, high expressers tended to fall into stage III (p = 0.021).

These findings were supported by in vitro experimentation in liver cancer (HepG2) and lung
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cancer (A549) cell lines. Cells were treated with miR-105 and miR-767 mimics, and cell viabil-

ity was measured via WST-1 assay. A 74% increase in cell viability was observed in HepG2

cells, and a 20% increase in cell viability was observed in A549 cells (Fig 5E). Furthermore,

miRNA-treated HepG2 and A549 cells also had elevated expression of the cellular proliferation

marker, Ki-67 (Fig 5F and 5G).

The three other miRNA modules that were common to multiple cancer types were investi-

gated for their ability to predict patient survival. Notably, high miR-9 was associated with

shorter survival in head and neck cancer (HR: 0.72, 95% CI: 0.53–0.97, p = 0.033), but not in

lung and uterine cancers (p = 0.31 and p = 0.36, respectively; S3 Fig). High miR-96, miR-182,

and miR-183 were beneficial to overall survival in kidney cancer (HR: 0.65, 95% CI: 0.49–0.87,

p = 0.003), but not in liver cancer (p = 0.85; S4 Fig). Head and neck and stomach cancer shared

Fig 4. Patient stratification and survival analysis using bimodal miRNA modules. (A-H) Hierarchical clustering

was performed using bimodal miRNA co-expression modules, and patients were divided into two groups. (I-P) Using

the two groups, a Cox proportional hazards regression was fit for each cancer type. The reported hazard ratio (HR)

denotes the risk of death in Group 2 (purple) compared to Group 1 (green). The statistical significance (p-value) of

each HR was determined using a Wald test.

https://doi.org/10.1371/journal.pcbi.1010109.g004
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Fig 5. miR-105 and miR-767 are associated with overall survival and cellular proliferation in liver and lung cancer. (A)

genomic location of miR-105-1, miR-105-2, and miR-767. (B) Liver and (C) lung cancer patients were divided into low and

high miRNA expressers. For each cancer type, a Cox proportional hazards regression was fit. The reported hazard ratio (HR)

and 95% confidence interval (CI) denote the risk of death in the high expression group compared to the low expression group.

Median survival time is given in days with a 95% CI. (D) The relationship between miRNA expression and TNM stage. Graphs

show the proportion of individuals with high (red) and low (blue) miR-105 and miR-767 expression within each stage.

Differences in TNM staging between high and low expressers was tested using Chi square tests. �p<0.05. (E) HepG2 and A549

cells were treated with miR-105 and miR-767 mimics or a negative control. Cell proliferation marker Ki-67 in (F) HepG2 and

(G) A549 cells. Representative images show nuclear staining with Hoechst (blue) and Ki-67 staining (green). N = 3, �p< 0.05.

https://doi.org/10.1371/journal.pcbi.1010109.g005
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a bimodal module consisting of miR-1-1, miR-133a-1, miR-133a-2, and miR-133b. High

expression was detrimental to overall survival in both cancer types (head and neck: HR: 1.41,

CI: 1.08–1.85, p = 0.012; Stomach: HR: 1.39, CI: 1.01–1.91, p = 0.044; S5 Fig).

Drug sensitivity in high miR-105 and miR767-expressing tumors

After showing that bimodal miRNA could be used to stratify patients based on overall survival,

we then aimed to determine whether bimodal miRNA were also beneficial in predicting drug

response. Instead of taking a comprehensive approach, we instead focused on the most com-

mon co-expression module, consisting of miR-105-1, miR-105-2 and miR-767. In head and

neck, liver, lung, and stomach cancer, all three miRNA were expressed at very low levels in

most tumors while a small number of patients had very high levels of expression (S6 Fig).

Despite being located on the X chromosome, there was no difference in expression of miR-

105-1, miR-105-2, and miR-767 between sexes (S7 Fig).

We found that high expression of miR-105-1, miR-105-2, and miR-767 resulted in earlier

death among liver and lung cancer patients as well as higher cell proliferation in vitro. There-

fore, tumors with high miR-105 and miR-767 expression appear to be particularly dangerous,

and uncovering an effective treatment for this patient population is critical. In order to find

effective drug treatments for high miR-105 and miR-767-expressing tumors, two steps were

taken. First, we examined gene targets of miR-105 and miR-767. Secondly, we screened cancer

drugs to see which were more effective on high miRNA-expressing cell lines. To understand

the role of miR-105 and miR-767 in regulating gene expression, functional pathway analysis

was performed on the top 1,000 predicted target genes of miR-105 and miR-767. It is impor-

tant to note that miR-105-1 and miR-105-2 have the same seed sequence and thus the same

putative targets. The PI3K-AKT signaling pathway was significantly enriched (false discovery

rate p-value < 0.05; Fig 6A).

Confirmation of the gene targets within the PIK3-AKT pathway was performed by overex-

pressing miR-105 and miR-767 in HepG2 cells and measuring gene expression using qPCR

(Fig 6B). Specifically, we measured genes that were predicted targets of miR-105 and miR-767

and/or play crucial roles in the PI3K-AKT signaling pathway. Out of the 44 genes tested, 12

were significantly downregulated after miRNA treatment, including Rho GTPase activating

protein 35 (ARHGAP35), calcium/calmodulin dependent protein kinase 2 (CAMKK2), cyclin

D2 (CCND2), cAMP responsive element binding protein 5 (CREB5), fibronectin 1 (FN1), fork-

head box O3 (FOXO3), insulin receptor substrate 1 (IRS1), mitogen-activated protein kinase 1

(MAPK1), NRAS GTPase proto-oncogene (NRAS), PI3K catalytic subunit type 3 (PIK3C3),

3-phosphoinositide dependent protein kinase 1 (PDK1), and 6-phosphofructo-2-kinase/fruc-

tose-2,6-bisphosphatase 4 (PFKFB4). Two other genes, insulin-like growth factor 1 receptor

(IGF1R) and KRAS GTPase proto-oncogene (KRAS), showed a trend for reduction by miRNA

treatment (p< 0.1). Tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation pro-

tein epsilon (YWHAE) and PI3K catalytic subunit type 2 beta (PIK3C2B) were the only genes

whose expression significantly increased with miRNA treatment.

Next, we investigated the relationship between miRNA levels and drug response. We first

screened 13 cancer cell lines for miR-105 and miR-767 expression. To confirm the expression

pattern of miR-105 and miR-767, we replicated results from patient samples by observing con-

current expression of miR-105 and miR-767 in vitro (S8 Fig). As a control, we also confirmed

that miR-105 and miR-767 expression was not correlated with a random miRNA (miR-9; S8

Fig). We investigated drug response by pooling data from the Genomics of Drug Sensitivity in

Cancer (GDSC) and Cancer Cell Line Encyclopedia (CCLE) databases. For each drug in each

cell line, we downloaded the IC50 value, representing the drug concentration necessary to
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Fig 6. miR-105 and miR-767 target genes in the PI3K-AKT pathway. (A) KEGG pathway analysis was performed on the top 1,000

predicted gene targets of miR-105 and miR-767. False discovery rate corrected p-values are reported. (B) miR-105 and miR-767 were

overexpressed in HepG2 cells. qPCR was used to measure expression of genes that were putative targets of both miR-105 and miR-767

and/or played a crucial role in the PI3K-AKT signaling pathway. �p< 0.05. (C) The heat map shows correlations between miR-105/

767 expression and drug IC50 values. Blue represents negative values while red denotes positive values. The top 15 drugs with the most

negative correlation between miRNA and IC50 represent drugs that are most effective at killing high miR-105 and miR-767-expressing

cell lines. Drug names are reported on the left and their putative protein targets are given on the right.

https://doi.org/10.1371/journal.pcbi.1010109.g006
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inhibit cell viability by 50%. We then computed Pearson correlations for each drug log(IC50)

and miRNA expression (Fig 6C).

Low IC50 is indicative of greater drug potency; thus, drugs with a positive correlation

between miRNA expression and IC50 (high miR-105/767 and high IC50) are less effective on

high miR-105 and miR-767-expressing cells. Among the least effective drugs were two poly

ADP-ribose polymerase (PARP) inhibitors (talazoparib and olaparib), the EGFR inhibitor

gefitinib, and the sarcoplasmic/endoplasmic reticulum Ca2+ ATPase (SERCA) inhibitor thap-

sigargin (S3 Table).

Conversely, drugs with a negative correlation between miRNA expression and IC50 (high

miR-105/767 and low IC50) are effective in treating high miR-105 and miR-767-expressing

cells. Out of the top 15 drugs which all had a correlation less than -0.4, eight directly targeted

either PI3K (Idelalisib, ZSTK474, pictilisib, AZD6482, and AS605240), AKT (AKT inhibitor

VIII and MK-2206), or AMPK (AICA ribonucleotide; Fig 6C). An additional three of the

drugs targeted components of the PI3K-AKT and AMPK pathways, including cyclin depen-

dent kinase (CDK4) (PD-0332991), CDK6 (palbociclib) and mammalian target of rapamycin

complex 1 and 2 (mTORC1 and mTORC2) (AZD8055). Collectively, both the analysis of

miRNA gene targets as well as the investigation of drug/miRNA correlations point to an inter-

action between miR-105/767 and the PI3K pathway. Therefore, we hypothesized that the PI3K

pathway is a therapeutic target for high miR-105 and miR-767-expressing tumors.

Given the importance of the PI3K pathway, we next utilized in vitro assays to uncover

whether high expression of miR-105 and miR-767 facilitated sensitivity to PI3K inhibiting

drugs. We specifically used ZSTK474, a class I PI3K inhibitor that competitively binds the

ATP binding site of PI3K. A549 cells were treated either with miR-105 and miR-767 mimics

or with scrambled miRNA sequence as a control. After 24 hours of miRNA treatment, cells

were treated with one of eight different concentrations of ZSTK474 and allowed to incubate

for another 24 hours. Cell viability was measured using a WST-1 assay. When combined with

the two miRNA, ZSTK474 more effectively reduced cell viability at low drug concentrations

(0.16, 0.31, 0.63, and 1.25 μM; Fig 7A), but IC50 was not statistically lower in the miR-treated

cells.

We then sought to determine the physiological processes mediating the decrease in cell via-

bility. A549 cells were treated with concentrations of ZSTK474 ranging from 0 to 0.8 μM.

After 8 hours of incubation, the cell cycle was measured using flow cytometry (Fig 7B). As

ZSTK474 concentration increased, the percentage of cells in the S phase decreased while the

percentage of cells undergoing G1 arrest increased (Fig 7C). Treatment with miR-105 and

miR-767 mimics resulted in no difference in cell cycle progression compared to control (Fig

7D). Apoptosis was also quantified using five doses of ZSTK474 (Fig 7E). Measurements were

taken at 4, 8, 12, and 16 hours after drug treatment. The total number of apoptotic cells was

summed over all the time points and the fraction of cells in apoptosis was calculated (Fig 7F).

Compared to control, miRNA treatment decreased the number of cells in early and late apo-

ptosis when no ZSTK474 was present, but miRNA increased the number of cells in apoptosis

at 0.1, 0.2, 0.4, and 0.8 μM ZSTK474 concentrations (Fig 7G and 7H). It is unclear why the per-

centage of cells in early apoptosis decreased at the highest drug concentration (0.8 μM). It is

possible that this dose of ZSTK474 immediately induced apoptosis, and while we were able to

capture late apoptosis, we missed the maximal early apoptotic effect.

We next investigated the molecular mechanisms underlying the miRNA-mediated increase

in ZSTK474 sensitivity. First, PI3K and AKT gene expression were measured in response to

miR-105 and miR-767 treatment alone, ZSTK474 alone, and the combination of miRNA and

drug (ZSTK474+miR). miRNA treatment did not significantly inhibit any PI3K or AKT genes,

but there was a trend for a reduction in AKT1 expression (p = 0.056; S9 Fig). There was a
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Fig 7. miR-105 and miR-767 facilitate sensitivity to ZSTK474. (A) ZSTK474 effects in A549 cells with miR-105 and miR-767

mimics or a negative control miRNA. Values are normalized to cells treated with 0 μM ZSTK474. IC50 values represent the ZSTK474

concentration that results in a half-maximal response. (B, C) Cell cycle analysis by flow cytometry. (D) The percentage of cells in the

G1 phase. (E, F) Apoptosis was quantified using flow cytometry. Representative density plots show cells that are alive (lower left

quadrant), in early apoptosis (lower right quadrant), in late apoptosis (upper right quadrant), and necrotic (upper left quadrant). miR-

105 and miR-767 upregulate (G) early apoptosis and (H) late apoptosis upon ZSTK474 treatment. Data are presented as mean ± SEM.
�p< 0.05.

https://doi.org/10.1371/journal.pcbi.1010109.g007
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significant effect of ZSTK474 on PIK3CA, PIK3R1, PIK3R3, and AKT1 expression. Any change

in gene expression was independent of miRNA treatment, suggesting that a reduction in PI3K

and AKT expression were not responsible for the observed physiological differences between

the ZSTK474 and ZSTK474 + miR conditions.

While major players of the PI3K pathway did not appear to account for the miRNA-

induced increase in drug response, we hypothesized that proteins related to negative feedback

and pathway crosstalk may impact drug sensitivity. We first performed a time-course experi-

ment in which cells were incubated with miR-105 and miR-767 mimics for 24 hours and then

treated with ZSTK474. Before drug treatment (0 hours) and at 0.5, 1, 2, and 4 hours after drug

treatment, we measured proteins involved in negative feedback (IRS1 and FOXO3), proteins

mediating PI3K signaling (PDK1), and proteins in the MAPK pathway (ERK and KRAS;

Fig 8A). We also activated the PI3K pathway with insulin and measured protein levels after 2

hours of treatment (Fig 8B).

As expected, ZSTK474 treatment steadily reduced p-AKT levels over 4 hours (p = 6.3 x

10−4; Fig 8C). The converse was also true upon insulin treatment, as higher levels of p-AKT

were observed (p = 2.01 x 10−9). Treatment with miRNA had no impact on p-AKT levels

(p = 0.77). There was no change in total AKT levels with miRNA, ZSTK474, or insulin treat-

ment (p = 0.25, p = 0.13. p = 0.37, respectively).

Activation of the PI3K pathway is controlled by negative feedback. mTOR and S6K can

phosphorylate IRS1 and inactivate it [14–17]. Indeed, activation of the PI3K pathway with

insulin treatment resulted in an increase in repressive phosphorylation of serine 302 on IRS1

(p = 8.9 x 10−5; Fig 8C). Conversely, ZSTK474-mediated downregulation of p-AKT was

accompanied by loss of phosphorylated IRS1 (p-IRS1; p = 1.3 x 10−3). miRNA treatment did

not impact p-IRS levels (p = 0.38), but did reduce total IRS1 protein expression (p = 1.4 x

10−2). Total IRS1 levels were also reduced by ZSTK474 (p = 1.8 x 10−3) and upregulated by

insulin (p = 4.6 x 10−4). Negative feedback in the PI3K pathway is also achieved by FOXO3, a

transcription factor that upregulates receptor tyrosine kinase (RTK) gene expression. AKT-

mediated phosphorylation of FOXO3 (p-FOXO3) prevents translocation to the nucleus and

consequently inhibits RTK expression [18]. Surprisingly, ZSTK474 treatment did not signifi-

cantly reduce the levels of p-FOXO3 (p = 0.30). miR treatment had no effect on p-FOXO3 lev-

els but a reduction in total FOXO3 was observed (p = 0.012).

Due to extensive crosstalk between the PI3K and MAPK pathways, we next measured

MAPK pathway activation. ZSTK474 treatment immediately upregulated levels of phosphory-

lated ERK (p-ERK; p = 6.2 x 10−4; Fig 8C). This upregulation of p-ERK was partially attenuated

by miR-105 and miR-767 (p = 4.4 x 10−2). We also measured PDK1 and KRAS, two proteins

in the PI3K and MAPK pathways that were predicted targets of miR-105 and miR-767. While

drug treatment reduced PDK1 levels (p = 3.5 x 10−2), miRNA treatment had no effect on pro-

tein levels. miRNA treatment also had no impact on KRAS expression.

Because protein levels of total FOXO3 and IRS1 were downregulated by miR-105 and miR-

767, we examined whether the two miRNA mediated protein changes by directly binding the

genes. FOXO3, IRS1, and PDK1 were predicted targets of both miR-105 and miR-767

(Fig 9A). We first measured mRNA expression and found decreased levels of FOXO3, IRS1,

and PDK1 after miRNA treatment (p = 2.8 x 10−2, p = 8.7 x 10−3, and p = 3.6 x 10−4, respec-

tively; Fig 9B). Although ZSTK474 significantly reduced PDK1 expression (p = 0.030), there

was no effect of ZSTK474 treatment on FOXO3 or IRS1 expression. Thus, it appeared as

though downregulation of FOXO3, IRS1, and PDK1 was primarily miRNA-dependent rather

than drug-dependent. In order to test whether FOXO3, IRS1, and PDK1 were direct targets of

miR-105 and/or miR-767, RNA immunoprecipitation was performed after miRNA treatment.

When miRNA binds to mRNA, Argonaute 2 (AGO2) is recruited to catalyze endonuclease
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Fig 8. Expression of PI3K and MAPK pathway proteins are mediated by miR-105 and miR-767. (A) A549 cells were treated with

negative control miRNA (Control) or miR-105 and miR-767 mimics (miR) for 24 hours, followed by 0.3 μM ZSTK474. Cells were

collected at 0, 0.5, 1, 2, and 4 hours after drug treatment. (B) Control and miR-treated A549 cells were incubated with insulin for 2 hours

and protein expression was measured. (C) Protein expression was quantified using three replicates per treatment condition. ANOVA

was performed and the p-values of main effects of miRNA, ZSTK474, and insulin are reported. Data are normalized to Control and

presented as mean ± SEM.

https://doi.org/10.1371/journal.pcbi.1010109.g008
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Fig 9. miR-105 and miR-767 directly target genes in the PI3K pathway that mediate crosstalk with the MAPK pathway. (A)

Mature miR-105 and miR-767 sequences are predicted to bind complementary sequences in the 3’-UTRs of FOXO3, IRS1, and PDK1.

(B) A549 cells were treated with miR-105 and miR-767 mimics and ZSTK474. Gene expression was measured using qPCR and

normalized to L7a. Each treatment condition included three replicates. ANOVA was performed. The p-values for the main effect of

miRNA and ZSTK474 as well as their interaction are reported. (C) RNA immunoprecipitation measured binding between AGO2

protein and FOXO3, IRS1, PDK1 mRNA. Data are presented as mean ± SEM. �Denotes a significant difference between Control and

miR (p< 0.05). (D) Crosstalk between the PI3K and the MAPK pathways arises from AKT inhibition of RAF, IRS1 activation of RAS,

and FOXO3-mediated transcription of RTKs. miR-105 and miR-767 overexpression resulted in direct binding to IRS1, PDK1, and
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cleavage. Higher levels of FOXO3, IRS1, and PDK1mRNA were bound to AGO2 when cells

were treated with miR-105 and miR-767, suggesting that the genes are direct targets of miR-

105 and/or miR-767 (Fig 9C). Overall, based on results presented in this manuscript, we pro-

pose that miR-105 and miR-767 target genes that inhibit undesirable drug effects. Specifically,

the miRNAs target FOXO3 and IRS1 to diminish drug-induced over-activation of the MAPK

pathway (Fig 9D).

Discussion

In the present study, a novel methodology was applied to identify bimodal miRNA across can-

cer types. To our knowledge, this is the first study to analyze the functional role of bimodal

miRNA. Furthermore, we are the first to investigate large-scale bimodal expression patterns

across cancers using next-generation sequencing data from clinical samples. We showed that

high levels of bimodal miRNA expression was characteristic of cancer. Furthermore, several

bimodal miRNA were common to multiple cancer types, suggesting that certain miRNA con-

sistently account for tumor heterogeneity and may be involved in general oncogenic processes.

The relevance of these bimodal miRNA was confirmed by showing that they could be used to

predict overall survival and drug response. To illustrate the importance of bimodal miRNA,

we specifically focused on miR-105 and miR-767. The two miRNA were bimodally expressed

in liver and lung cancer, and high expression was indicative of poor prognosis. Furthermore,

high miR-105 and miR-767-expressing cells responded better to PI3K inhibiting drugs. We

demonstrate that bimodal miRNA are viable biomarkers in cancer and may equip physicians

to better understand the patient prognosis and devise effective treatment strategies.

We utilized our controlled mixture modeling approach to identify bimodal miRNA that

played a role in cancer. The inclusion of control samples appeared to reduce false positives.

We assumed that if genes followed a similar distribution in the cancer population and the gen-

eral population, then they were not relevant to tumorigenesis. Not only did CM rank known

bimodal breast cancer genes more favorably, but it also excluded genes with known sequence

variation (immunoglobulins) and high copy number variation (glutathione transferase) in the

general population [19]. We are the first to implement control tissue as a means of addressing

this issue. Previous studies have simply removed known bimodal genes from the analysis [19],

but our method still considers those genes while imposing a penalty. Thus, we account for the

possibility that known bimodal genes may contribute to tumorigenesis, but only if they present

a different distribution than controls. Furthermore, our method accounts for genes that have

not yet been discovered as bimodal in the general population. This is particularly important

for the analysis of bimodal miRNA. Unlike protein-coding genes whose population sequence

and copy number variation have been extensively studied, there is limited information regard-

ing miRNA expression distributions in the healthy population. Therefore, removing miRNA

based on prior knowledge would be impossible.

We specifically used our methodology to identify bimodal miRNA across cancers. First, we

found that kidney cancer had the most bimodal miRNA, which may be indicative of greater

heterogeneity. This may be due to the inclusion of two subtypes, including clear cell and papil-

lary cell carcinoma. Previous research has shown that kidney tumor subtypes differ in their

gene expression, mutations, non-coding RNAs, and DNA methylation, leading to a heteroge-

neous molecular landscape [20]. We also found that thyroid cancer had bimodal miRNA that

FOXO3, and decreased levels of phosphorylated ERK. Blue: PI3K pathway proteins, green: MAPK pathway proteins, yellow P:

activating phosphorylation, red P: inactivating phosphorylation.

https://doi.org/10.1371/journal.pcbi.1010109.g009
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were highly related to each other, suggesting two subtypes of patients with high genetic con-

cordance within each group. The two most common types of thyroid cancer, papillary and fol-

licular carcinoma, have been defined by different somatic mutations [21], gene expression

[22–24], and miRNA profiles [25]. Therefore, the large number of bimodal miRNA that we

observed may be reflective of the two subgroups. In our analysis thyroid cancer had the largest

concurrently-expressed miRNA module, containing 14 miRNA. This is supported by prior

studies which have shown consistent molecular changes specifically within papillary or follicu-

lar thyroid carcinomas [26].

As opposed to kidney and thyroid cancer, breast and prostate cancer had fewer bimodal

miRNA, suggesting that there is more genetic similarity amongst tumors than in other types of

cancer. Both cancers were represented exclusively by one sex, which may have resulted in less

transcriptional variation. However uterine cancer had the second highest number of miRNA

with bimodality index thresholds > 1.4 or 1.5, so low variation due to lack of sex differences

does not totally account for the small number of bimodal miRNA in breast and prostate can-

cer. Unlike uterine cancer which was divided into endometrial carcinoma (TCGA-UCEC),

carcinosarcoma (TCGA-UCS), and sarcoma (TCGA-SARC) subtypes, prostate, and breast

cancer were each classified under one group in GDC (TCGA-BRCA and TCGA-PRAD), and

both primarily impact glandular cells. Prior studies have demonstrated large expression differ-

ences between cell types and high concordance within cell types, so having one predominantly

affected cell type in prostate and breast cancer may reduce variation [27, 28]. For breast and

prostate cancer, several classifications based on miRNA and gene expression have been devised

[29–35], but it is unclear how variability in miRNA expression compares to other cancer types.

We provide evidence that miRNA expression is more normally distributed in breast and pros-

tate cancer, which may pose a greater challenge for miRNA-based patient stratification in

these populations.

We also compared between cancers and found that certain bimodal miRNA modules were

common to multiple cancer types, which may suggest genetic similarities between certain can-

cer types. For instance, head and neck cancer had two bimodal modules in common with lung

cancer. Interestingly, both cancers consisted of squamous cell carcinoma cases, which have

been shown to have the similar gene and miRNA expression patterns [28, 36, 37], SNPs, and

risk factors, such as smoking and high fasting glucose levels [38]. Thus, the two cancers may be

impacted by the same carcinogens and oncogenic driver genes, resulting in similar miRNA

profiles. Furthermore, head and neck and lung cancers also shared one bimodal module with

uterine cancer. Fewer similarities have been found between uterine cancer and the other two,

but basal and secretory lung cancer, mesenchymal head and neck cancer, and immunoreactive

uterine cancer have been shown to display similar gene expression patterns and greater

immune activation [36]. Finally, head and neck, liver, lung, and stomach cancer shared a

bimodal expression of miR-105 and miR-767. Head and neck, liver, and lung cancer have been

shown to have similar expression patterns in cell cycle genes [37], but the previous investiga-

tion has not identified many genetic similarities between stomach cancer and the other three

cancer types. Gastrointestinal cancers tend to have similar miRNA profiles [28], however, lung

adenocarcinoma and stomach adenocarcinoma also display similar miRNA patterns [39].

Therefore, overlap in bimodal miRNA expression between cancer types could suggest that cer-

tain cell types are likely to display similar genetic profiles.

Alternatively, consistent bimodal miRNA expression between cancers may indicate the

importance of such miRNA in general oncogenic processes. Hallmarks of cancer include such

characteristics as tissue invasion and metastasis, replicative immortality, evasion of apoptosis,

and metabolic reprogramming [1]. However, distinct aberrant phenotypes may arise within

the hallmarks. Indeed, the progression from a mild tumorigenic state to another more severe
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phenotype has been shown to be associated with genetic changes. For instance, invasion and

metastasis are regulated by EMT, which marks the transition from a polar epithelial cell to a

mobile mesenchymal cell. Genetic regulation of EMT involves transcription factor activation

to induce cytoskeletal reorganization, including loss of intercellular adhesion proteins, such as

E-cadherin and occludins, and gain of vimentin and smooth muscle actin [40]. Also, epige-

netic factors like DNA hypomethylation of EMT transcription factors [41–43] and hyper-

methylation of E-cadherin are associated with EMT [44–46]. Another hallmark of cancer is

reprogrammed cellular energetics. While aerobic glycolysis-dependent tumors represent one

aberrant metabolic phenotype, a different hybrid phenotype utilizes both glycolysis and oxida-

tive phosphorylation. Mitochondrial signaling to the nucleus as well as oncogenes such as

RAS, MYC, and c-SRC have been shown to mediate the relationship between glycolysis and

oxidative phosphorylation [47, 48]. Thus, it may be the case that bimodal miRNA are associ-

ated with bimodal physiological states. Because many of the identified bimodal miRNA were

common to several cancer types, we hypothesize that such oncogenic states are not cancer-spe-

cific, but rather are broadly observed across cancers. It is unclear whether miRNA expression

might be driving or responding to physiological differences. Future studies should determine

concrete associations between bimodal miRNA and universal oncogenic features.

In order to show the clinical utility of bimodal miRNA, we first examined whether they

could be used to predict overall survival. We found that multiple bimodal miRNA modules

could successfully predict overall survival in five out of eight cancer types. We also examined

single miRNA modules. High miR-105 and miR-767 expression were indicative of poor sur-

vival in liver and lung cancer. This is consistent with past reports suggesting that miR-105 and

miR-767 may play an oncogenic role in melanoma, breast, lung, and colorectal cancer. In colo-

rectal and breast cancer, miR-105 was upregulated in tumor compared to control tissue, and

high expression was indicative of poor survival outcomes [49–51]. miR-105 overexpression

was also shown to induce NF-κB signaling [52] and heighten EMT in colon cancer cell lines

and mouse tumors [53]. Similarly, miR-767 was shown to promote cellular proliferation in

human melanoma cell lines [54] while miR-105 overexpression increased cell viability in non-

small cell lung cancer cell lines [55]. Additionally, miR-105 and miR-767 were shown to target

ten-eleven translocation tumor suppressor genes (TET1 and TET3), implicating miR-105 and

miR-767 as putative oncogenes [56]. Finally, exosomally secreted miR-105 was shown to pro-

mote breast cancer metastasis by reprogramming neighboring fibroblasts and breaking endo-

thelial tight junctions [57, 58].

In contrast, several studies point to a tumor suppressive role for miR-105 and miR-767.

Specifically, high miR-767 was associated with longer overall survival in thyroid cancer

patients [59], while high miR-105 expression was correlated with more favorable survival in

non-small cell lung cancer, glioma, and hepatocellular carcinoma patients [60–64]. Further-

more, in both glioma and prostate cancer, miR-105 overexpression in vitro reduced cellular

proliferation and induced G1 arrest, while inhibiting tumor growth in vivo [65, 66]. Collec-

tively, data suggests that the effects of miR-105 and miR-767 in tumorigenesis are variable

between cancer types and should be investigated in future experimentation.

In addition to overall survival, we also examined the ability of bimodal miRNA to predict

drug response. We found that miR-105 and miR-767 overexpression potentiated the PI3K

inhibitor-mediated decrease in cell viability. High miR-105 and miR-767 levels created a cellu-

lar environment that complemented the action of PI3K inhibitors by mitigating off-target

effects. PI3K inhibitors may have undesirable effects that arise from negative feedback and

crosstalk between related pathways. Blocking AKT signaling has beneficial actions, including

reduced activation of mTOR [67] and NF-κB [68] to decrease protein synthesis and increase

apoptosis. However, it also reduces negative feedback on the pathway. For instance, AKT
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typically phosphorylates FOXO3 and prevents it from entering the nucleus and acting as a

transcription factor for RTKs [69, 70]. Inhibition of PI3K can also decrease negative feedback

by S6K on IRS1 [14, 15]. Both of these mechanisms impact not only the PI3K pathway itself

but also affect the MAPK pathway, which is activated by the same RTKs and IRS1. We demon-

strated this crosstalk by showing a sharp induction of p-ERK after PI3K inhibition. Although

the precise mechanism necessary for this increase is unclear, we show that the increase is par-

tially mitigated by miR-105 and miR-767 and hypothesize that this is the consequence of

reduced levels of FOXO3 and IRS1 (Fig 9D). We demonstrate one possible avenue by which

bimodal miRNA may impact drug sensitivity, but additional investigation might utilize Argo-

naute high-throughput sequencing of RNA isolated by crosslinking immunoprecipitation

(AGO HITS-CLIP) to identify all miRNA-mRNA interactions [71, 72].

While we are the first to suggest a role for miR-767 in PI3K signaling, previous reports have

shown that miR-105 directly interacts with proteins in the PI3K pathway. In liver cancer, miR-

105 has been hypothesized to play a tumor suppressing role via its interaction with genes in

the PI3K pathway [73]. We confirmed downregulation of IRS1 protein and both IRS1 and

PDK1mRNA. We also found an increase in AGO2 binding to IRS1 and PDK1 with miRNA

treatment. However, we did not find any difference in total AKT or PDK1 protein. Also, Shen

et al. found lower levels of p-FOXO3 but report no changes in FOXO3 protein with miR-105

treatment. We found decreased FOXO3 protein levels. It is unclear exactly why these discrep-

ancies exist, but we hypothesize that concurrent treatment with miR-767 may account for the

inhibition of some protein targets as well as differences in cell proliferation. Also, our study

used A549 lung cancer cells for drug and miRNA studies, while Shen et al. used HepG2. Due

to inconsistent genetic backgrounds and baseline gene expression, it is possible that miRNA-

induced changes in protein expression and cell survival could be more easily observed in cer-

tain cell populations. Thus, it may be important to test multiple cell lines in order to determine

whether miR-105 and miR-767 have a universal mechanism of action or whether they perform

specific functions in different cell types. Overall, our findings confirm that miR-105 and miR-

767 are important for PI3K signaling, and we add to the existing body of literature by demon-

strating their ability to identify which drugs may be effective in treating particular subgroups

of tumors.

The current study has several strengths and limitations. Previous bimodality studies have

focused exclusively on protein-coding genes, but our investigation broadens this scope, as we

are the first to apply our novel method and examine bimodal miRNA. Although our method is

straightforward and can be easily implemented in a clinical setting, there are limitations to the

simplicity of our approach. Tumors are genetically complex, and modules of bimodal miRNA

are ultimately part of a larger tumor profile. Incorporating networks of miRNA, genes, and

other microenvironment parameters may be necessary to better predict patient outcome. Our

in vitro analysis of miR-105 and miR-767 may also benefit from more omics data and statistical

learning methods to fully understand the underlying biological state in order to identify the

primary drivers of tumorigenesis.

Additional investigation should also aim to uncover the biological mechanisms by which

miR-105 and miR-767 mediate drug sensitivity. We utilized computational tools to identify

gene targets of miR-105 and miR-767 in the PI3K pathway. In vitro results also showed down-

regulation of IRS1 and FOXO3 with miR treatment, but without the appropriate knockdown

experiments, we cannot conclude that these gene targets are directly responsible for increasing

drug sensitivity. Since miR-105 and miR-767 have targets outside the PI3K pathway, it is possi-

ble that other genes may play a role. Future experiments should utilize Argonaute high-

throughput sequencing of RNA isolated by crosslinking immunoprecipitation (AGO HIT-

S-CLIP) to identify all miRNA-mRNA interactions [71]. Finally, other factors such as baseline
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gene expression and tumor microenvironment may mediate miRNA effects, so incorporating

additional cell lines as well as in vivo studies will be crucial in finding the link between miR-

105 and miR-767 and drug response.

Although we only examined single miRNA modules, we provide preliminary evidence that

bimodal miRNA may impact the clinical outcome, and we devise a foundational methodology

that can be expanded to yield a more comprehensive patient profile.

Conclusion

In the current study, we identified bimodal miRNA across cancer types and showed how they

could be used for patient stratification based on prognosis and drug response in several types

of cancer. We first devised an approach for identifying bimodal miRNA and applied our

model to miRNA-seq data. We are the first to examine genome-wide bimodal expression

across cancers using sequencing data. We found that certain miRNA were bimodally expressed

in multiple cancer types, suggesting that they may be associated with general oncogenic char-

acteristics. Specifically, we examined the importance of miR-105 and miR-767 in predicting

overall survival in liver and lung cancer as well as facilitating sensitivity to PI3K inhibiting

drugs. Our study provides a framework for finding bimodal expression and demonstrates the

role of bimodal miRNA in tumorigenesis as well as their potential in predicting patient sur-

vival and enabling effective treatment.

Methods

Genomic datasets

RNA-seq data for methodological validation was downloaded from Genomic Data Commons

(GDC, formerly TCGA). We decided to test our model on breast cancer mRNA expression

data (Project ID: TCGA-BRCA), given the large number of patient tumor (n = 1,102) and con-

trol samples (n = 113), as well as the extensive characterization of specific bimodal genes in

previous literature (e.g. estrogen receptor 1 (ESR1), human epidermal growth factor receptor 2

(HER2 or ERBB2), progesterone receptor (PGR), etc.) [74, 75]. RNA-seq data were normalized

according to gene length and total number of reads mapped, such that values were expressed

as reads per kilobase of transcript per million mapped reads (RPKM).

For identifying novel tumorigenic miRNA, miRNA-seq data was downloaded from GDC

for nine types of tumors: breast (Project ID: TCGA-BRCA; n = 1,096), head and neck (H&N;

Project ID: TCGA-HNSC; n = 523), kidney (Project ID: TCGA-KIRC, TCGA-KIRP; n = 835),

liver (Project ID: TCGA-LIHC; n = 372), lung (Project ID: TCGA-LUAD, TCGA-LUSC;

n = 997), prostate (Project ID: TCGA-PRAD; n = 498), stomach (Project ID: TCGA-STAD;

n = 446), thyroid (Project ID: TCGA-THCA; n = 506), and uterine cancer (Project ID:

TCGA-UCEC, TCGA-UCS, TCGA-SARC; n = 861). Additionally, miRNA-seq data was

downloaded from GDC for normal tissue, including breast (n = 104), head and neck (n = 44),

kidney (n = 105), liver (n = 50), lung (n = 91), prostate (n = 52), stomach (n = 45), thyroid

(n = 59), and uterine (n = 30). These nine cancers were chosen due to data availability. Tumor

samples were pooled from all stages and both genders.

Controlled mixture modeling (CM) and bimodality index calculation

Mixture modeling was performed using the same method for both the methodology validation

on mRNA and the novel discovery of tumorigenic miRNA. Initially, genomic data were pro-

cessed such that all data were log2 transformed and very lowly expressed miRNA were

excluded from the analysis. Each miRNA was analyzed individually in each cancer type.
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Our controlled mixture modeling (CM) incorporated control samples to assess bimodality

of miRNA using the following steps:

1. Within each tumor type, every miRNA was fit with a one- and two-component Gaussian

mixture model. The one-component model followed a Gaussian distribution with mean μ
and variance σ:

f1 xijyð Þ ¼ G m; sð Þ;

The two-component model was a mixture of two Gaussians, represented by the density

function

f2 xijyð Þ ¼ p1TG m1T; s1Tð Þ þ p2TG m2T; s2Tð Þ:

For each gene, xi, in the tumor samples, μ1T and μ2T are the means of each component such

that μ1T< μ2T. Also, π1T and π2T represent the proportion of observations in each compo-

nent. To avoid miRNA with a small number of outliers, we required π1T and π2T to both be

greater than 0.1.

2. The expectation maximization (EM) algorithm followed by computation of the Bayesian

information criterion (BIC) was used to determine whether one- or two-component model

was a better fit for the data. All miRNA better fit by one component were disregarded as

unimodal. miRNA better fit by two components were re-clustered using k-means with

k = 2.

3. For two-component miRNA, one- and two-component Gaussian mixture models were fit

to the same miRNA from control tissue samples. The EM algorithm plus BIC was used to

decide whether one or two components better fit the data. This resulted in one of two

possibilities:

1. The miRNA was unimodally distributed amongst control samples. In this case the bimo-

dality index of the miRNA was calculated by

BI ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p1T � p2T
p jm1T � m2Tjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p2Ts
2
1T þ p1Ts

2
2T

p :

2. The miRNA was bimodally distributed amongst control samples. In this case, the

miRNA was better fit by the two-component model and could be represented by the

density function

f2 xijyð Þ ¼ p1CG m1C; sð Þ þ p2CG m2C; sð Þ:

Similarly to the model used for tumor samples, μ1C and μ2C are the means of each com-

ponent in the control samples such that μ1C< μ2C, and π1C and π2C represent the pro-

portion of observations in each component. Additionally, only π1C and π2C values

greater than 0.1 were considered.

K-means with k = 2 was then used to re-cluster the miRNA in control samples. The

bimodality index was penalized and calculated in two ways

BIm penalty ¼ BI �
1

jm1C � m1Tj þ jm2C � m2Tj

� �
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as well as

BIp penalty ¼ BI �
1

jp1C � p1Tj þ jp2C � p2Tj

� �

:

BIμ penalty and BIπ penalty were compared and the larger value was chosen as the final

bimodality index for the miRNA.

By penalizing the bimodality index calculation, we attempt to filter false positives when a

miRNA is bimodally expressed in the control population. The BIμ penalty greatly penalizes the

bimodality index score when the means of the components are similar between tumor and

control. The BIπ penalty penalizes the bimodality index score when the components are similarly

partitioned between tumor and control. We compared our method to an unpenalized bimo-

dality index (i.e. mixture model plus k-means [MM] without control samples).

Survival analysis

Survival analysis was performed to determine differences in overall survival time. First, data

were fit using a Cox proportional hazards regression. Next, hazard ratio (HR) was calculated

and a Wald test was performed to test for significance. Median survival time and 95% confi-

dence intervals were calculated and reported with Kaplan Meier curves.

Target prediction and pathway analysis

Gene targets of miR-105 and miR-767 were downloaded from TargetScan version 7.2 [76].

The top 1,000 predicted genes were used for functional pathway analysis in DAVID version

6.8 [77]. KEGG pathways with false discovery rate p-value < 0.05 were considered statistically

significant.

Drug sensitivity analysis

To identify drugs that effectively inhibited growth in high miR-105 and miR-767-expressing

cells, we looked at correlations between miR-105/767 and IC50 values for different drugs. We

used the same cell lines in which we quantified miRNA expression (HCT116, HepG2, HT29,

Jurkat, KM, MB231, MB435, MCF7, RKO, SKOV3, SW480, SW620, and T47D). For each

drug in each cell line, we downloaded the IC50 values for drugs from the Cancer Cell Line

Encyclopedia (CCLE) and Genomics of Drug Sensitivity in Cancer (GDSC) databases [78, 79].

In total, 14 drugs from CCLE and 214 drugs from GDSC were examined. We then computed

Pearson correlations for each drug log(IC50) and miRNA expression.

Cell lines and treatments

Thirteen cell lines were utilized for miRNA quantification. For drug sensitivity studies, A549

and HepG2 cells were used. Cells were cultured according to a standard procedure in our labo-

ratory [80]. miRNA overexpression was performed using miRNA mimics with a scrambled

miRNA sequence used as a control. For all experiments using ZSTK474 treatment, cells were

first treated with either miR-105 and miR-767 mimics or negative control for 24 hours before

ZSTK474 treatment was administered. The transfection protocol is outlined in the S1 Supple-

mentary Methods.
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miRNA and mRNA expression

Gene expression was measured using quantitative real-time PCR (qPCR). All mRNA primers

are described in S4 Table. Gene expression was normalized to the expression of the internal

control gene ribosomal protein L7a (L7a). For miRNA expression, qPCR was performed using

TaqMan miRNA Assay primers that were specific to miR-105 or miR-767 (Applied Biosys-

tems) and miRNA were quantified via the ΔΔCT method. A TaqMan miRNA Control Assay

for U6 snRNA was included for normalization. miRNA primers can be found in S5 Table. A

detailed PCR protocol can be found in the S1 Supplementary Methods.

Immunofluorescence and cell viability assay

Cells grown on coverslips and incubated in Ki-67 primary antibody (BioLegend, San Diego,

CA; S6 Table) then incubated with Hoechst 33342 (Invitrogen; S6 Table). Cells were imaged

via light microscopy at magnification of 63X. To quantify expression, three 67.74 μm x

67.74 μm area were randomly selected in each group, and analysis was performed using ImageJ

software. Cell viability was determined by WST-1 assay. A detailed immunofluorescence and

cell viability assay procedure can be found in the S1 Supplementary Methods.

Flow cytometry

Flow cytometry was used for cell cycle and apoptosis analysis. Cells were incubated in fluores-

cein-conjugated annexin V (FITC Annexin V, BioLegend, San Diego, CA) and propidium

iodide (PI, Sigma-Aldrich, St. Louis, MO). Unstained cells were considered non-apoptotic,

annexin V positive/PI negative cells were considered early apoptotic, and annexin V positive/

PI positive cells were considered late apoptotic. Specific cell preparation and flow cytometry

settings are outlined in the S1 Supplementary Methods.

Western blot analysis

In order to assess the effects of miR-105 and miR-767 on protein levels, the two miRNA were

overexpressed in vitro and western blot was used to quantify proteins in the PI3K pathway. For

quantification, samples were run in triplicate. Total protein was normalized to beta actin and

phosphorylated proteins were normalized to the corresponding total protein. A detailed west-

ern blot protocol can be found in the S1 Supplementary Methods. All antibodies can be found

in S6 Table.

RNA immunoprecipitation

RNA immunoprecipitation (RIP) was used to quantify binding between miRNA and putative

target mRNA. High complementarity between the miRNA and mRNA catalyzes endonuclease

cleavage via AGO2. For each RIP, A549 cells were incubated with miR-105 and miR-767 or

control miRNA. Antibodies for AGO2 and IgG (control) were utilized. RNA was then purified

and total RNA quantification, cDNA synthesis, and qPCR were performed as described above.

RIP methodology is further detailed in the S1 Supplementary Methods.

Additional statistical analysis

All in vitro experiments were performed in triplicate. Pairwise comparisons were made using

student’s t-tests. For drug and miRNA experiments involving multiple treatment conditions,

ANOVA was performed. Data are presented as mean ± SEM. P-values < 0.05 were considered

statistically significant.
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Supporting information

S1 Table. Concurrently expressed bimodal miRNA modules. Pairwise Pearson correlations

were calculated between miRNA with bimodality index> 1.4. Reported modules contain at

least three miRNA with correlations > 0.5 between all miRNA pairs.

(PDF)

S2 Table. Survival analysis using multiple bimodal miRNA modules. Hierarchical clustering

was performed using bimodal miRNA co-expression modules, and patients were divided into

two groups. Using the two groups, a Cox proportional hazards regression was fit for each can-

cer type. The reported hazard ratio (HR) denotes the risk of death in Group 2 compared to

Group 1. The statistical significance (p-value) of each HR was determined using a Wald test.

MST: median survival time, CI: confidence interval.

(PDF)

S3 Table. Drug sensitivity based on miR-105 and miR-767 expression. Values represent cor-

relations between miRNA expression and drug log(IC50) value.

(PDF)

S4 Table. mRNA primers. qPCR amplification efficiency is calculated based on the slope of

the standard curve. Slopes between -3.30 ± 0.20 and amplification efficiencies of 100 ± 10% are

typically considered acceptable.

(PDF)

S5 Table. miRNA probes. All primers are Taqman Advanced miRNA Assay.

(PDF)

S6 Table. Antibody information. IF: immunofluorescence, WB: western blot, RIP: RNA

immunoprecipitation.

(PDF)

S1 Fig. Identification of bimodal miRNA using mixture modeling with k-means. Bimodally

expressed miRNA were examined in nine types of cancer and control tissue using mixture

modeling with k-means (MK). Analysis was performed using bootstrapped samples of the

same size as control tissue. Graphs show the number of bimodal miRNA at bimodality index

(BI) thresholds: (A) BI> 1.2, (B) BI> 1.3, (C) BI> 1.4, (D) BI> 1.5.

(TIFF)

S2 Fig. Survival analysis using miR-105 and miR-767. (A) Head and neck and (B) stomach

cancer patients were divided into low and high miRNA expressers (blue and red, respectively).

For each cancer type, a Cox proportional hazards regression was fit. The reported hazard ratio

(HR) and 95% confidence interval (CI) denote the risk of death in the high expressing group

compared to the low expressing group. The statistical significance (p-value) of each HR was

determined using a Wald test. Median survival time is given in days with a 95% CI. (C) The

relationship between miRNA expression and TNM stage was examined. Graphs show the pro-

portion of individuals with high (red) and low (blue) miR-105 and miR-767 expression within

each stage. Differences in TNM staging between high and low expressers was tested using Chi

square tests, but there were no significant findings.

(TIFF)

S3 Fig. Survival analysis using miR-9. (A) miR-9-1, miR-9-2, and miR-9-3 are located on

chromosome 1, 5, and 15, respectively. (B) Head and neck, (C) lung, and (D) uterine cancer

patients were divided into low and miRNA expressers (blue and red, respectively). For each
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cancer type, a Cox proportional hazards regression was fit. The reported hazard ratio (HR)

and 95% confidence interval (CI) denote the risk of death in the high expressing group com-

pared to the low expressing group. The statistical significance (pvalue) of each HR was deter-

mined using a Wald test. Median survival time is given in days with a 95% CI. (E) The

relationship between miRNA expression and TNM stage was examined. Graphs show the pro-

portion of individuals with high (red) and low (blue) miR-9 expression within each stage. Dif-

ferences in TNM staging between high and low expressers was tested using Chi square tests.
�p<0.05.

(TIFF)

S4 Fig. Survival analysis using miR-96, miR-182, and miR-183. (A) miR-96, miR-182, and

miR-183 are located in an intergenic region of chromosome 7. (B) Kidney and (C) liver cancer

patients were divided into low and miRNA expressers (blue and red, respectively). For each

cancer type, a Cox proportional hazards regression was fit. The reported hazard ratio (HR)

and 95% confidence interval (CI) denote the risk of death in the high expressing group com-

pared to the low expressing group. The statistical significance (p-value) of each HR was deter-

mined using a Wald test. Median survival time is given in days with a 95% CI. (D) The

relationship between miRNA expression and TNM stage was examined. Graphs show the pro-

portion of individuals with high (red) and low (blue) miR-96, miR-182, and miR-183 expres-

sion within each stage. Differences in TNM staging between high and low expressers was

tested using Chi square tests. �p<0.05.

(TIFF)

S5 Fig. Survival analysis using miR-1, miR-133a, and miR-133b. (A) miR-1-1 and miR-

133a-2 are located in an intronic region on chromosome 20. miR-133a-1 is located within the

miR-133a-1 host gene (MIR133A-1HG). miR-133b is located in an intergenic region of chro-

mosome 6. (B) Head and neck and (C) stomach cancer patients were divided into low and

high miRNA expressers (blue and red, respectively). For each cancer type, a Cox proportional

hazards regression was fit. The reported hazard ratio (HR) and 95% confidence interval (CI)

denote the risk of death in the high expressing group compared to the low expressing group.

The statistical significance (p-value) of each HR was determined using a Wald test. Median

survival time is given in days with a 95% CI. (D) The relationship between miRNA expression

and TNM stage was examined. Graphs show the proportion of individuals with high (red) and

low (blue) miR-1, miR-133a, and miR-133b expression within each stage. Differences in TNM

staging between high and low expressers was tested using Chi square tests, but there were no

significant findings.

(TIFF)

S6 Fig. Expression of miR-105 and miR-767 in head and neck, liver, lung, and stomach

cancers. (A) The distribution of miR-105-1, miR-105-2, and miR-767 in head and neck, liver,

lung, and stomach cancer are presented such that miRNA expression is represented on the x-

axis and density is represented on the y-axis. (B) Pairwise correlations between miR-105-1,

miR-105-2, and miR-767 indicate concurrent expression of the three miRNA.

(TIFF)

S7 Fig. Expression of miR-105 and miR-767 by sex. (A) miR-105-1, (B) miR-105-2, and (C)

miR-767 expression were compared between female (pink) and male (blue) patients in head

and neck (H&N), liver, lung, and stomach cancers. For density plots (right), miRNA expres-

sion is represented on the x-axis and density is represented on the y-axis.

(TIFF)
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S8 Fig. miR-105 and miR-767 expression across cell lines. (A) miR-105 and (B) miR-767

expression levels were measured across 13 cell lines. (C) Expression was consistent with patient

data, as miR-105 and miR-767 expression were highly correlated. (D) miR-105 and (B) miR-

767 expression was not correlated with miR-9 expression.

(TIFF)

S9 Fig. miR-105 and miR-767 do not alter expression of AKT isoforms or PI3K subunits.

A549 cells were treated with a negative control miRNA (Control), miR-105 and miR-767

(miR), ZSTK474 alone, or ZSTK474 and miR-105/767 (ZSTK474 + miR). Gene expression

was measured by qPCR. Each treatment condition included three replicates. ANOVA was per-

formed. The p-values for the main effect of miRNA and ZSTK474 as well as their interaction

are reported. Data are normalized to L7a and presented as mean ± SEM.

(TIFF)

S1 Supplementary Methods. This section included additional methods in the study: Cell

lines and treatments; miRNA and mRNA expression; Immunofluorescence; Cell viability

assay; Flow cytometry; Western blot analysis; RNA immunoprecipitation (RIP).

(DOCX)
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