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ABSTRACT

Motivation: Recognition of specific DNA sequences is a central
mechanism by which transcription factors (TFs) control gene
expression. Many TF-binding preferences, however, are unknown
or poorly characterized, in part due to the difficulty associated
with determining their specificity experimentally, and an incomplete
understanding of the mechanisms governing sequence specificity.
New techniques that estimate the affinity of TFs to all possible
k-mers provide a new opportunity to study DNA–protein interaction
mechanisms, and may facilitate inference of binding preferences for
members of a given TF family when such information is available for
other family members.
Results: We employed a new dataset consisting of the relative
preferences of mouse homeodomains for all eight-base DNA
sequences in order to ask how well we can predict the binding
profiles of homeodomains when only their protein sequences are
given. We evaluated a panel of standard statistical inference
techniques, as well as variations of the protein features considered.
Nearest neighbour among functionally important residues emerged
among the most effective methods. Our results underscore the
complexity of TF–DNA recognition, and suggest a rational approach
for future analyses of TF families.
Contact: t.hughes@utorotno.ca
Supplementary information: Supplementary data are available at
Bioinformatics online.

1 INTRODUCTION
Most transcription factors (TFs) can be grouped into families
of shared conserved DNA-binding structures that are usually
identified by common ancestry inferred from sequence homology
(Papavassiliou, 1995). Despite the sequence conservation within
TF families, individual proteins within the same DNA-binding
domain (DBD) family can have radically different DNA-binding
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specificities (Ekker et al., 1994). Since the preferred binding
sequences within a family can often be changed by mutating only a
single DNA-contacting amino acid residue (Damante et al., 1996),
it has been proposed that a recognition code might exist in which
affinity to each base in a TF binding site is governed by either
additive or combinatorial rules that pair the identities of amino acids
at DNA-contacting positions with relative preferences for each of
the four DNA bases at each position of the binding site. Conflicting
with this view, however, are observations that changes in DBD
sequence can alter the arrangement of DNA-contacting residues
in ways that seem to be inconsistent with a simple recognition
code (Miller et al., 2003; Pabo and Nekludova, 2000). In addition,
study of the DNA-binding specificities of TFs typically employs a
position weight matrix (PWM) (Stormo, 2000), and the assumptions
of PWMs, such as independence of base positions, do not fit all of
the biochemical data (Benos et al., 2002).

Several high-throughput, unbiased and semi-quantitative
methods for the assessment of TF sequence preferences have
been developed, including protein-binding microarrays (PBM)
(Mukherjee et al., 2004), DNA immunoprecipitation microarrays
(DIP-chip) (Liu et al., 2005), and cognate site identifier (CSI)
microarrays (Warren et al., 2006). The datasets associated with
these methods provide an opportunity to examine protein–DNA
interactions at previously unprecedented resolution and scale.
Here, we present an evaluation of how well a panel of inference
algorithms can predict TF DNA-binding specificity data derived
from PBM experiments, in an effort to gain deeper insight into the
mechanisms governing the specificity of protein–DNA interactions,
and also to identify a means to project binding preferences to
proteins without known binding preferences. We focus on the
homeodomain family, because it is large and diverse, and the
vast majority of homeodomain-containing proteins have only a
single homeodomain. Homeodomains are also one of the most
well-studied DBDs, both structurally and biochemically, such that
the DNA-contacting residues are known (Kissinger et al., 1990)
and several residues that can alter sequence specificity have been
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Table 1. List of 75 mouse homeodomains unique at 15 AA positions that
contact DNA

Alx3 Dobox4 Hlxb9 Hoxc12 Lhx6 Pax4 Rhox6
Bapx1 Dobox5 Hmbox1 Hoxc8 Meis1 Pax6 Six1
Barhl1 Duxl Hmx1 Ipf1 Meox1 Pax7 Six3
Barx1 Emx2 Hmx2 Irx2 Msx1 Pbx1 Six4
Bsx En1 Homez Irx3 Nkx1-1 Pitx1 Tcf1
Cdx1 Esx1 Hoxa1 Isl2 Nkx2-2 Pknox1 Tcf2
Cphx Evx1 Hoxa10 Isx Nkx6-1 Pou1f1 Tgif1
Crx Gsc Hoxa13 Lbx2 Obox1 Pou2f1 Tgif2
Cutl1 Gsh2 Hoxa2 Lhx1 Obox6 Pou4f3 Tlx2
Dbx1 Hdx Hoxa6 Lhx2 Og2x Pou6f1
Dlx1 Hlx1 Hoxb13 Lhx3 Otp Rhox11

identified (Ades and Sauer, 1994; Ekker et al., 1994; Hanes and
Brent, 1989). We find that a nearest neighbour (NN) approach using
TF protein sequences is at least as effective as more sophisticated
techniques. This finding has implications for the mechanics of
DNA-binding, and for future study of TF–DNA interactions.

2 METHODS

2.1 Dataset
The Z-score transformed relative signal intensities for 168 homeodomains
across all 32 896 8mer DNA sequences were obtained using PBMs (Berger
et al., 2008). Given that methods that overfit the data may give good results
in a leave-one-out cross-validation scheme if a high portion of the data
has at least one nearly identical example, we reduced the dataset to 75
homeodomains unique at the 15 amino acid positions described as making
contact with DNA in the engrailed crystal structure (Table 1). A multiple
sequence alignment of the 75 homeodomains was obtained by downloading
the primary homeodomain family alignment from Pfam-A (Bateman et al.,
2004) (Accession number PF00046) and extracting the pertinent sequences.
From the resulting sequence alignment, three subset sequence alignments
were derived for purposes of feature selection: all 57 residues of the Pfam
alignment (positions 2–58 of the engrailed homeodomain), 15 residues
described by Kissinger et al. (1990) as making direct contact with DNA
in the engrailed homeodomain crystal structure (positions 3, 5, 6, 25, 31,
44, 46, 47, 48, 50, 51, 53, 54, 55 and 57), and six residues described as
determinants of sequence specificity in the literature (Ekker et al., 1994;
Laughon, 1991) (positions 3, 6, 7, 47, 50 and 54).

2.1.1 Numerical encoding All implementations of the compared methods,
except NN, required numerical inputs. We converted the 6-, 15- and
57-position sequence alignments to numerical encodings representing amino
acid sequences of length l as binary vectors of length l ×20 digits, i.e. the
20 different amino acids were encoded as orthogonal 20 digit vectors and an
amino acid sequence was represented by concatenating the binary vectors
corresponding to residues at each position. Gaps were encoded as a vector
of 20 zeros. Insertions were not considered in this analysis.

2.2 Machine learning algorithms
Let x1,x2 ,...,xn be the set of m-residue sequence alignments from the dataset
described above, where m = 6, 15 or 57, and for a given 8mer out of the t
total exemplar 8mers, let yi be the Z-scores for the i-th protein with respect
to that 8mer. We defined the problem of predicting homeodomain Z-scores
for a particular 8mer as the estimation of the function f :x→R trained using
the n data pairs (x1,y1),..., (xn,yn)∈χ ×R, such that f (xi) is approximately
equal to yi and f correctly generalizes to most unseen examples; therefore

the problem of predicting homeodomain 8mer Z-score profiles across all
8mers was defined as predicting all t such functions. In this case, x was the
set of sequences {A, R, N, D, C, E, Q, G, H, I, L, K, M, F, P, S, T, W, Y,
V, –}m, where ‘–’ represents a sequence alignment gap. We formalized both
definitions as multiple regression problems in which the xi were considered
as n observations on m predictor variables and the yi were considered as n
observations on a response variable, and accordingly, compared a number of
regression techniques from machine learning and statistics (outlined below)
for the purpose of quantitatively modelling the relationships between these
variables.

2.2.1 Nearest Neighbour Assume that x is the length m amino acid
sequence alignment of an unseen protein. In order to predict the 8mer profile
of x, our implementation of the NN algorithm calculates a vector

⇀
n of

distances, where each element
⇀
ni represents the distance d(xi, x) between

protein x and xi (i ∈ {1,...,n}). We defined the distance between two proteins
as the proportion of non-identities across all m positions. We also tested
distances based on the PAM250 matrix, but the results were inferior (Berger

et al., 2008). Using
⇀
n , the algorithm then finds the NNs of x by computing

the set {xi|d(xi,x)=min(
⇀
n )}. Finally, for all t 8mers, the algorithm calculates

the Z-score of each 8mer as the mean of the Z-scores for that 8mer across
all of the NNs.

2.2.2 Random forests regression We used the R randomForest
package, which serves as an interface to the original random forests
(RF) Fortran code developed by Breiman and Cutler (available at
http://www.stat.berkeley.edu/∼breiman/RandomForests). To predict the
8mer profile of an unseen protein x, we generated t RF, by using the set
of n observations on m predictors xi, the response variable y for a given
8mer, and default parameters. We then used this collection of RF to predict
the Z-scores across all 8mers for the sequence x.

2.2.3 Support vector regression We used the LIBSVM package
developed by Chih-Chung Chang and Chih-Jen Lin (available at
http://www.csie.ntu.edu.tw/∼cjlin/libsvm/) to construct SVMs for every
exemplar 8mer. For each 8mer, three SVMs were constructed, each using
a different kernel: the linear kernel (SVM_L),

k
(
x,x′)= 〈

x,x′〉

the polynomial kernel (SVM_P),

k
(
x,x′)= 〈

x,x′〉d ,

or the radial basis function kernel (SVM_R),

k
(
x,x′)=exp

(
−γ

∥∥ x−x′∥∥ 2
)
,

where d ∈ N,γ > 0, x and x′ are alignment encodings, and <x,x′ > refers to
the inner product. All parameters were left at default setting with
the following exceptions. For SVM_L, we tried all parameter pairs
[ε,C] = {ε,C |0.1 ≤ ε ≤ 4.8,2−15 ≤ C ≤ 23}, where ε is the epsilon-SVM
precision parameter, which was varied in steps of 0.8, and C is the SVM
error penalty parameter. For SVM_P, we tried all parameter pairs [d,C]
= {d,C |1 ≤ d ≤ 6,2−15 ≤ C ≤ 23}, where d was varied in steps of 1. For
SVM_R, we tried all parameter pairs [γ,C] ={γ,C |2−15 ≤ γ ≤ 23,2−15 ≤
C ≤ 23}, where γ was varied by a factor of 22. In all cases, C was varied
by a factor of 22 and the best parameter pair was chosen using 5-fold
cross-validation.

2.2.4 Principal components regression As the encoding strategy that we
used produces a much larger number of variables relative to the number of
samples (rank deficiency) as well as a large number of correlated variables
(multicollinearity), both of which are problematic for linear regression,
we used principal components regression (PCR) to simultaneously reduce
the dimensionality of the encodings and remove the correlation between

1013

http://www.stat.berkeley
http://www.csie.ntu.edu


[18:05 30/3/2009 Bioinformatics-btn645.tex] Page: 1014 1012–1018

T.M.Alleyne et al.

variables. PCR was carried out by first applying principal components
analysis to the encodings. The number of principal components retained
p was selected using parallel analysis (PA) with 1000 shuffles, which is
essentially a permutation test that asks whether the N-th principal component
explains more of the variance than the N-th principal component would
in a permuted version of the same data [reviewed in reference Franklin
et al. (1995)]. On the basis of PA, we retained 6, 12 and 19 principal
components for the 6-, 15- and 57-position alignments, respectively. For
each 8mer, we then built a regression model using an approach similar to
5-fold cross-validation, described as follows:

(1) randomly partition the sample set into five subsamples;

(2) retain one subsample as the validation set and aggregate the remaining
k = 4 subsamples into a matrix of training data, tij(i ∈ {1,...,k},
j ∈ {1,...,p}) so that the intercept in the regression model will always
be estimated by ȳ (Montgomery and Runger, 2007);

(3) centre and transform the training data into a new set of variables as;

xij = tij − t̄j√
Sij

where, Sij =∑k
i=1

(
tij − t̄j

)2
.

(4) compute the ordinary least squares coefficients for the transformed
training data and calculate the mean squared error (MSE) of the
coefficients using the validation set;

(5) go back to Step 2 until all subsamples have been used as the validation
set and retain the coefficients with the lowest MSE;

(6) repeat Steps 1–5 three times.

3 RESULTS

3.1 Comparison of linear and non-linear inference
methods

We attempted to learn the Z-score transformed signal intensities
for mouse homeodomain DBDs for all 32 896 non-redundant eight-
base DNA sequences using PBM experiments (Berger et al., 2008).
We learned the Z-scores rather than PWMs because Z-scores
reflect binding affinity (Berger et al., 2006), whereas PWMs
often fail to capture detailed binding activity (Benos et al.,
2002; Chen et al., 2007) and cannot be aligned with confidence
for many homeodomains (Berger et al., 2008), complicating
direct comparisons. To avoid overfitting, we considered a 75-
homeodomain subset in which each protein is unique at the 15
amino acid positions described as making contact with DNA
in the engrailed crystal structure (Kissinger et al., 1990)
(Table 1), as we have previously shown that a perfect match
at all 15 amino acids yields data comparable to experimental
replicates of a single homeodomain (Berger et al., 2008).
All original datasets and Supplementary Material can be
downloaded from http://hugheslab.ccbr.utoronto.ca/supplementary-
data/profile_prediction/.

We assessed the performance of a panel of inference algorithms
by a leave-one-out cross-validation approach, in which each of
the 75 homeodomains was held out from the training set in turn
and the remaining proteins were used as training data to predict
the Z-score profile of the held-out protein, given its amino acid
sequence. We used regression to create linear models via PCR and
linear kernel support vector regression (SVM_L). To create models
in which interactions between TF sequence features can be captured,
reflecting ‘combinatorial recognition codes’ (Damante et al., 1996),
we also used support vector regression with a polynomial kernel

(SVM_P), or radial basis function kernel (SVM_R), RF (Breiman,
2001) and a NN approach in which the profile of a held-out
protein was predicted as the averaged profiles of its nearest (fewest
mismatches) sequence neighbour(s) in the training set. With the
exception of the NN method, amino acid sequences of length l were
numerically represented as binary vectors of length l× 20 digits, i.e.
the 20 different amino acids were encoded as orthogonal 20 digit
vectors and each protein sequence was represented by concatenating
the binary vectors corresponding to residues at each position.

In each of these analyses we also considered three sets of features:
(i) the full 57 amino acid homeodomain (omitting insertions), (ii)
the subset of 15 amino acids that contact the DNA in the engrailed
structure (positions 3, 5, 6, 25, 31, 44, 46, 47, 48, 50, 51, 53, 54,
55 and 57) (Kissinger et al., 1990) and (iii) six amino acids that
have been demonstrated to influence binding preferences (positions
3, 6, 7, 47, 50 and 54) (Ekker et al., 1994; Laughon, 1991)
(referred to as 6AA, 15AA and 57AA). We did not consider de
novo feature selection as part of our training process because feature
selection consumes statistical (i.e. training) power, and arbitrary
feature selection is nondeterministic polynomial-time hard (NP) in
the general case (Garey and Johnson, 1979). In Section 3.3, we
present evidence that residues scored highest by the RF importance
score may be less predictive than literature-derived feature sets.

3.2 Assessing the performance of inference methods
The cross-validation results were assessed using three measures: (i)
the number of top-100 8mers in common, (ii) Spearman correlation
over all 8mers and (iii) overall RMSE (root mean squared error)
values between the predicted and the actual Z-score profiles over
all 8mers. As a summary statistic, we also counted the number
of proteins with a top-100 overlap <50. As a background control,
we calculated the difference between the median of each metric
and the median of the performance of all predicted versus all
actual profiles, since all homeodomain-binding profiles correlate
to a degree. Results are tallied in Table 2, which is sorted from
best to worst median rank across all of the criteria. Included
in Table 2 is the agreement between 19 experimental replicates
as a reference for the reproducibility of the assay itself (Berger
et al., 2008). In these replicates, 19 different homeodomains were
each analyzed in duplicate, and the numbers reported refer to 19
pairwise comparisons. Since the set of replicates contains some
homeodomains not found in the 75 that we analyzed, however, the
performance values cannot be directly compared with those of the
predictions.

Three major conclusions can be drawn from this analysis.
First, results of all algorithms are clearly distinct from random
(Table 2, columns 5, 9 and 12). Second, the 15AA and 6AA subsets
appear to provide a superior training set relative to the 57AA set.
Third, presumably due to the importance of non-linear interactions
between amino acid positions in defining DNA-binding specificity,
methods that can capture interactions and non-linearities have a clear
advantage: there is almost always at least one variant of each non-
linear method, i.e. NN, RF and SVM_R, that outperforms every
linear method we employed. NN (Fig. 1, right panel), in particular,
has a significantly higher mean top-100 overlap than PCR [95%
confidence interval (CI) for difference, 3.92–109; Kruskal–Wallis
test]. Moreover, NN often shows the greatest difference from
random, and has the fewest predicted profiles with a top-100
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Table 2. Leave-one-out cross-validation measures for 8mer Z-score profile prediction algorithms on 32 896 8mers for 75 homeodomains

Approach Residues 
Top100-overlap

(predicted versus real) 

Top100-
overlap

(control) 

No. of proteins 
with top-100 
overlap <50 

RMSE (predicted 
versus real) 

RMSE 
(control) 

Spearman (pre-
dicted versus real) 

Spearman  
(control) 

Median rank 
(Mean rank) 

Median Mean Median Mean Median Mean 
replicates N/A 86 82.84 80 0 0.63 0.58 −0.49 0.83 0.84 0.16 N/A 

NN 15AA 66 58.60 61 18 0.72 0.76 −0.36 0.80 0.77 0.14 3.00 (7.20) 
NN 6AA 66 58.65 60 18 0.68 0.77 −0.38 0.82 0.78 0.14 3.50 (6.00) 
NN 57AA 69 58.07 62 18 0.75 0.82 −0.36 0.79 0.76 0.13 3.50 (9.00) 
NN top6 66 58.68 58 16 0.72 0.76 −0.35 0.81 0.78 0.13 5.00 (7.00) 
NN top15 69 57.00 63 19 0.75 0.80 −0.34 0.80 0.77 0.13 5.00 (8.70) 

SVM_R 6AA 63 55.99 46 23 0.66 0.70 −0.26 0.83 0.81 0.09 5.50 (6.50) 
RF 15AA 65 55.85 57 24 0.69 0.71 −0.25 0.83 0.81 0.12 6.00 (6.00) 
RF 6AA 63 55.17 54 25 0.71 0.72 −0.25 0.83 0.81 0.12 7.00 (7.70) 

SVM_R 57AA 60 51.51 41 28 0.69 0.73 −0.20 0.84 0.81 0.08 7.50 (9.70) 
SVM_L 15AA 62 52.40 55 28 0.68 0.73 −0.30 0.82 0.79 0.10 8.00 (9.00) 
SVM_R 15AA 63 55.28 50 21 0.66 0.71 −0.28 0.82 0.80 0.09 8.50 (7.40) 
SVM_L 57AA 67 55.32 53 23 0.70 0.73 −0.22 0.83 0.79 0.09 8.50 (8.70) 
SVM_L 6AA 62 54.51 52 28 0.68 0.73 −0.28 0.82 0.80 0.10 9.50 (8.40) 

PCR 6AA 63 54.05 54 25 0.75 0.82 −0.30 0.79 0.75 0.12 10.0 (11.9) 
PCR 15AA 63 53.45 55 29 0.72 0.77 −0.28 0.80 0.77 0.11 11.0 (11.0) 

SVM_P 15AA 48 41.11 18 39 0.71 0.76 −0.17 0.83 0.81 0.08 11.0 (12.10) 
RF 57AA 55 51.53 37 28 0.73 0.75 −0.16 0.84 0.81 0.08 12.0 (10.70) 

SVM_P 6AA 49 41.65 16 38 0.70 0.76 −0.17 0.83 0.81 0.07 12.0 (12.6) 
SVM_P 57AA 48 38.91 5 39 0.72 0.79 −0.12 0.84 0.80 0.06 15.0 (14.2) 

PCR 57AA 60 48.48 51 32 0.77 0.79 −0.19 0.81 0.77 0.09 15.5 (14.3) 

Algorithms are sorted in descending order of median rank across all columns, where ties are resolved using mean rank. The first row shows the agreement between 19 experimental
replicates and their corresponding true Z-score profiles as measured using PBM. Columns labelled ‘predicted versus real’ show the mean or median performance between each
predicted profile and its true, measured Z-score profile. Columns labelled ‘control’ show the difference between the median predicted versus real performance and the median of
the performance between all pairs of predicted and actual profiles. Cells in a given column are coloured according to their position in the range of that column. Rows labelled top6
and top15 represent the result obtained if we use the 6 and 15 most important amino acid positions according to the RF importance score on the 57AA set.

Fig. 1. 2D clustergram of Z-scores for 2042 8mers and 75 mouse homeodomains, as observed in either real PBM data (left) or NN predictions (right), with
some of the established classes of homeodomains labelled. NN predictions were made using 6AA positions and leave-one-out cross-validation. The 2042
8mers were selected because they comprise the top 100 8mers by Z-score over the DBDs shown.

overlap <50. In three instances (Evx1, Irx2, and Lhx1), the 15AA
NN-predicted Z-score profiles exhibit Spearman correlation, top-
100 overlap, or RMSE values that exceed those of the experimental
replicates for these proteins. Therefore, it appears that predicted Z-
score profiles can, in specific cases, rival experimental replicates in
reproducing the Z-score profile of a given homeodomain. Figure 2
shows scatter plots of the Z-scores for Evx1, Irx2 and Lhx1, as
compared with predicted and replicate Z-scores.

3.3 De novo feature selection
The feature sets we used were chosen on the basis of biochemical
and genetic experiments to ask whether the use of this prior data
to select features reduces generalization error. It is also of interest

whether automated feature selection identifies the same residues,
and whether automatically selected features perform better than
those selected using evidence from laboratory studies. Towards this
end, we examined the ‘node purity’ importance scores output by
RF run with the full 57AA set. We summarized the importance
per residue for each by considering the median importance score
for the 2585 8mers reported by Berger et al. (2008) to be bound
in at least one experiment using the E >0.45 criterion, reasoning
that RF may be learning primarily noise for the remaining 8mers.
A very similar set of importance scores emerged from each of
the 75-rounds of cross-validation (Fig. 3). Considering the median
importance score over all homeodomains over all 2585 residues as
a feature prioritization measure, we obtained the ranking of residues
shown in Figure 3. The top 15AA emerging from this analysis are
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Fig. 2. Comparison of the accuracy of NN predictions versus experimental
replicates. Scatterplots show the measured Z-scores for all 32 896 non-
redundant eight-base DNA sequences from one PBM versus a second PBM
for the same DBD (top) or versus the Z-score predicted using NN (6AA
variant; bottom). Median performance metrics are given. Evx1 has a single
NN (Hoxa2); Irx2 has a single NN (Irx3); Lhx1 has two NN (Alx3 and
Lhx3).

(in descending order) 50, 6, 46, 54, 7, 56, 14, 28, 4, 19, 43, 22,
29, 36, 37. These residues include only four among our 6AA set
(6, 7, 50, 54) and four among our 15AA set (6, 46, 50, 54). Thus,
de novo feature selection identifies some, but not all, of the same
residues as laboratory studies. We found that the top-6 and top-15
residues selected by the RF importance score did not perform as
well in NN (our best performing method) as did the original 6AA
and 15AA sets (Table 2). A possible explanation is that de novo
feature selection is identifying residues that correlate with binding
specificity, but without being causative; for example, residues that
participate in functions of the homeodomains besides DNA binding,
those that are shared due to common evolutionary descent, and/or
those that co-vary due to structural constraints (Clarke, 1995). From
these results, and the fact that the 6AA and 15AA sets generally
provide better features (Table 2), we propose that use of experimental
evidence in the feature selection step can augment training power,
by incorporating external information.

3.4 Association between prediction difficulty and
number of sequence mismatches

In general, the 8mer profiles that are difficult for one algorithm
to predict are those that are difficult for other algorithms as well.
Figure 4 compares the top-100 overlap for all 75 homeodomains for
all prediction methods, using the 15AAfeature set. The colours of the
points reflect the NN distance. There is a clear relationship between
the 15AA distance and the top-100 overlap, with the 10 proteins with
the greatest distance consistently having overlaps <50, indicating
that for all methods the difficulty of learning the 8mer profile for a
specific experiment is related to whether there is a similar example
in the training set. This trend also holds for other feature sets, and
likely explains the success of NN, which does not incorporate any
information from more distant profiles.

Fig. 3. Node purity importance scores for 57 homeodomain amino acid
positions for 75 rounds of leave-one-out cross-validation, sorted by median
value (purple).

4 DISCUSSION
Our results show that the full DNA-binding specificity of
uncharacterized TFs to individual k-mers can be predicted on the
basis of similarity in protein sequence alone, given the sequence
specificity of closely related members of the same TF family,
and (preferably) knowledge of the DNA-contacting residues. Our
results are likely to underestimate real-world accuracy because
we only evaluated homeodomains that are unique at 15 DNA-
contacting amino acids. The efficacy of NN makes predicting
binding preferences simple to implement and consistent with
intuition: it is typically assumed that similarity among functional
residues reflects similar protein activity. At least one previous study
applied a NN strategy to the inference of PWMs (Qian et al., 2007),
but our NN implementation is more straightforward and provides
relative affinity estimates for individual sequences: in contrast, the
approach described by Qian et al. predicts the consensus motifs of
TF binding sites from the TRANSFAC database using the InterPro
annotations of the TF of interest and its target genes as training data.

Our results are consistent with the ‘combinatorial code’ model
of TF binding (Damante et al., 1996; Suzuki and Yagi, 1994;
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Fig. 4. Association between top-100 overlap scores for pairs of 8mer profile
inference methods. Scatterplots show the top-100 overlap values for 75
homeodomains when Z-score profiles are predicted using one inference
method versus another method for the same proteins. All axes range from
0 to 100. The names on the diagonal label the axes. Predictions are made
using the 15 homeodomain DNA-contacting residues. Homeodomains are
coloured according to whether they have �5 (red), 3–4 (blue) or 1–2 (green)
mismatches to their nearest sequence neighbour.

Suzuki et al., 1995). In this model, the relative preference of a
TF to individual bases in a given DNA sequence is determined
by the aggregate identities of a subset of key amino acid residues.
In our regime, this model would translate into interaction terms
among amino acid residues. Indeed, in our analysis, methods
capable of modelling interactions between amino acid positions,
such as NN and RF, appear to be best suited to predicting sequence
preferences for TFs, or at least for homeodomains. The fact that
linear regression is one of the least effective methods among
those tested further supports the importance of interaction terms;
preferences to individual DNAsequences apparently cannot be taken
as a linear combination of the contributions of each amino acid
residue.

In addition, the observation that incorporation of the full set of
homeodomain residues adversely affects all success measures that
were employed here, even using NN (which would not be subject to
overfitting), is consistent with a model in which the remainder of the
domain structure primarily plays a role as a scaffold, at least with
regard to DNA binding. This is because such a role would provide
flexibility in residue identities without impacting DNA sequence
specificity.

An important question is whether the outcome of our comparisons
would be different with different feature sets, and whether our results
could be improved with more sophisticated approaches. With regard
to feature sets, even in a circular regime (selecting amino acids using
the same data used to test them) we found no feature sets that offered
a substantial improvement over the 6AA and 15AA sets (Fig. 3,
Table 2 and data not shown), suggesting that a single DNA–protein
co-crystal structure constitutes a powerful feature selection step,
perhaps because it provides information that is not available to the
algorithms used here. Nonetheless, it is possible that addition of an
automated feature selection step might be advantageous, particularly
if it is incorporated into the cross-validation regime, i.e. if the feature

selection is done separately at each LOO iteration, and/or if it is
done in conjunction with feature selection based on experiments.
Due to the large number of permutations, we did not explore such
variations in this study, nor did we test every possible variation
of the techniques represented. For example, it has been reported
that pruned decision trees usually perform better than unpruned
trees; this was not an option in the RF implementation that we
used but would be worth examining. It may also be beneficial in
the future to take advantage of similarity among k-mers. In all of
the analyses presented here, each k-mer is treated as a separate
learning problem; however, there are relationships among the k-mers
in both sequence and affinity for individual proteins. Exploration of
these variations could shed light on the biology of DNA binding in
addition to improving prediction results. We note, however, that
there are also benefits associated with use of simple inference
methods, such as NN. While performing as well as other methods,
NN is computationally much less intensive than any other method
we tested; in our algorithm, NN is determined based on protein
sequence alone, so the time complexity of this part of the algorithm
does not depend upon the number of k-mers. Also, the success of
NN on the full set of k-mer affinities suggests that our NN approach
would also work well when the binding preferences of each TF were
represented differently, e.g. as a PWM.

Another question is whether better results could be obtained using
a training set that more completely samples possible homeodomain
amino acid combinations. With regard to sampling depth in the
training set, the argument may be academic: the large number
of possible combinations would be impractical to survey in the
laboratory, and also appears to be sparsely populated in nature (data
not shown) (Berger et al., 2008). A more extensive PBM-based
survey of the binding preferences of naturally occurring unique
combinations among DNA-contacting residues might be the next
step towards both theoretical and practical aims. Such a survey
would also help to clarify the functional evolution of the distinct
homeodomain subclasses. One interpretation of the success of NN—
coupled with the fact that all algorithms suffer considerably when
there is no similar homeodomain in the training set to serve as
an example—is that homeodomain groups [described in Banerjee-
Basu and Baxevanis (2001), although the groups we obtained are
not always identical] each have distinct DNA-binding modes that
cannot be inferred from examples in other groups. Consistent with
this notion, there is a strong correspondence between 8mer binding
profiles and sequence groups obtained by ClustalW (data not shown).
In fact, we cannot rule out that RF and/or SVM_R are acting in
essence as a more sophisticated version of NN, by learning group
memberships. We have attempted to improve upon our current
results using unsupervised sequence clustering approaches, but have
not yet been able to improve upon the NN results (data not shown).
One explanation for this outcome may be that there are no ideal
natural subdivisions within these groups; instead, there is variation
on a theme within each group, and the variation in amino acid
sequence bears a relationship to that seen in the 8mer binding
profiles. If this is the case, then even better inference results might
be obtained from a two-stage process in which group assignment is
separated from k-mer profile prediction within a group.

Finally, our preliminary results (data not shown) suggest that NN
will be similarly applicable to other DBD classes. Extension of the
work presented here should allow future experimental studies of
binding specificity to focus on proteins most likely to possess new
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DNA-binding activities, and will facilitate more accurate inference
of DNA-binding data among proteins with related sequences.
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