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Bone age (BA) is a clinical marker of bone maturation which indicates the

developmental stage of endochondral ossification at the epiphysis and the

growth plate. Hormones that promote the endochondral ossification process

include growth hormone, insulin-like growth factor-1, thyroid hormone,

estrogens, and androgens. In particular, estrogens are essential for growth

plate fusion and closure in both sexes. Bone maturation in female children is

more advanced than in male children of all ages. The promotion of bone

maturation seen in females before the onset of puberty is thought to be an

effect of estrogen because estrogen levels are higher in females than in males

before puberty. Sex hormones are essential for bone maturation during

puberty. Since females have their pubertal onset about two years earlier than

males, bone maturation in females is more advanced than in males during

puberty. In the present study, we aimed to review the factors affecting

prepubertal and pubertal BA progression, BA progression in children with

hypogonadism, and bone maturation and deformities in children with

Turner syndrome.

KEYWORDS
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What is bone age?

Mechanism of bone maturation in the long bones

The long bones grow as a result of endochondral ossification, which contributes to

height acquisition during childhood (1). In endochondral ossification, cartilage first

develops and is later replaced by bone. There are two ossification centers in endochondral

ossification, the primary and secondary centers. The primary ossification center finally

forms the diaphysis of the long bones, whereas the secondary center forms the epiphysis.

These two formations each proceed in basically the same way (2). The growth plate is

located between the end of diaphysis (metaphysis) and the epiphysis, and its ossification
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is also brought about by endochondral ossification.

Endochondral ossification at the growth plate is essential for

the elongation of the long bones.

The term bone maturation denotes the developmental stage

of endochondral ossification at the epiphysis and the growth

plate for which bone age (BA) serves as a clinical marker. BA is

evaluated by the size and shape of the epiphysis, which reflects

the process of secondary ossification and the degree of fusion in

the growth plate (3). Figure 1 shows a graded scale of bone

maturation in the radius and the third metacarpal bone

according to Tanner-Whitehouse 2 (TW2) method (3).

An increase in height is the result of endochondral

ossification; chondrocyte differentiation is followed by the

replacement of cartilage with bone at the growth plate of the

long bones (1). In short, chondrocyte progenitors in the resting

zone move proximally to differentiate into proliferating and

hypertrophic chondrocytes, which secrete extracellular matrix

components. Subsequently, in the hypertrophic zone invasion of

blood vessels leads to apoptosis of the chondrocytes and

osteoblast migration and finally to bone formation in the

matrix at the distal end of the metaphysis.

Hormones promoting endochondral ossification include

growth hormone (GH), insulin-like growth factor-1 (IGF-1),

thyroid hormone, estrogens, and androgens (4). Children with

GH deficiency and hypothyroidism show growth disturbance

and BA delay, while children with precocious puberty and

hyperthyroidism show growth promotion and BA acceleration

(4). Estrogens are essential for the growth plate closure, a late-

stage marker of BA development. In male patients with estrogen

resistance and aromatase deficiency, the growth plates do not
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fuse, and height continues to increase even in adulthood (5, 6),

whereas in female patients with Kallmann syndrome with

isolated hypogonadotropic hypogonadism, the growth plates

do not fuse even by age 20 years (7). Estrogens reportedly

cause irreversible depletion of chondrocyte progenitors in the

resting zone at the growth plate (8). Figure 2 illustrates major

factors that regulate the growth plate.

On the other hand, 46,XY patients with complete androgen

insensitivity syndrome reached almost normal final height for

females without treatment, suggesting that androgen is not

essential for epiphyseal fusion (9). In patients with androgen

insensitivity syndrome, estrogens converted from androgens

promote bone maturation.
Bone age assessment methods
The Greulich-Pyle (GP) (10) and TW2 (3) methods are used

world-wide. The GPmethod was developed using radiographs of

upper-middle-class Caucasian children in the United States

collected between 1931 and 1942. The TW2 method was

created using radiographs of average socioeconomic class

children in the United Kingdom collected in the 1950s and

1960s. The GP method is atlas-based, whereas the TW2 method

is a score and more objective. However, the TW2 method

requires more time to evaluate than the GP method. The TW3

was corrected for the secular trend in bone maturation and

published in 2001 (11).

In the TW2 method, the maturity level of each bone is

classified into one of the stages from A to H or I according to

the size and shape of the epiphysis and the degree of growth
A

B

FIGURE 1

Bone maturation process and points of bone age evaluation using the Tanner-Whitehouse 2 method for the radius (A) and the third metacarpal
bone (B) The epiphysis gradually enlarges, and its width becomes equal to, or greater than, that of the metaphysis. Afterwards, fusion of the
growth plate begins, culminating in the complete fusion of the epiphysis and metaphysis. In the Tanner-Whitehouse 2 method, bone maturation
is classified into stages A–H or I (3). The stage of bone maturation is determined by the size of the epiphysis, its shape and structure, and the
degree of growth plate fusion. (Modified versions of Figure 6-21 and Figure 6-28 from Murata M et al., Assessment of skeletal maturity: A
practical manual. Tokyo: HBJ (1997). 65 p. and 68 p.).
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plate fusion. Each stage is assigned a score, and the total score is

calculated to determine the BA. In the various version of the

TW2 method, the conversion into the BA accounts for

variations found in the target population of the respective

region (12–14).

Several automated BA assessment methods have been

developed, including the BoneXpert method (15). The

BoneXpert method is a method in which the borders of 13

RUS bones (radius, ulna, and 11 short bones in fingers 1, 3, and

5) are automatically determined from a digitized image to

calculate an intrinsic BA. This intrinsic BA is transformed into

the GP bone age or TW bone age. This system’s usefulness is

reported in various ethnic groups by comparing it to the other

standards for each ethnic group (16, 17).
Bone age before the pubertal onset

Estrogens and bone maturation

Evaluation of left hand and wrist radiographs in male and

female subjects demonstrates that bone maturation in healthy

female children begins accelerating earlier than in healthy male

children (3, 10). Bone maturation in female children may

accelerate even before puberty, probably under the influence of

estrogens, which ultrasensitive bioassays show are higher in

female than in male children before puberty (18, 19);

circulating estradiol is thought to be synthesized in the ovaries

from adrenal steroids through FSH-induced aromatase

upregulation before adrenarche (20).
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Adrenarche and the bone maturation

Adrenal androgens are presumably involved in bone

maturation before pubertal onset. Adrenal androgens are

produced in the adrenal cortex and have a weak androgen

effect. The main adrenal androgens are dehydroepiandrosterone

(DHEA) and DHEA-sulfate (DHEA-S), which act by being

converted to more potent androgens, such as testosterone, and

to estrogens in peripheral tissues (21).

Several pieces of circumstantial evidence argue for the effects

of adrenal androgens on BA. First, delayed BA before pubertal

onset in a case of complete adrenal androgen deficiency suggests

that adrenal androgens are involved in prepubertal bone

maturation, as was apparently the case in a Japanese female

patient with the 46,XY karyotype with 17a-hydroxylase
deficiency, whose BA at the chronological age (CA) of 10 years

was 6 years for a female, and 7 years for a male, child (22).

Second, BA is advanced in children with premature

adrenarche, which is caused by early adrenal maturation and

is the most common cause of premature pubarche. In general,

adrenarche involves the maturation of the adrenal zona

reticularis. Biochemical adrenarche, which involves an increase

in DHEA and DHEA-S, begins at age 5–6 years in both sexes

(23). In children with premature adrenarche, BA before pubertal

ages is significantly advanced in both sexes; one-third of children

with this condition have an average BA, another one-third have

a BA advanced by 1 to 2 years, and the remaining one-third have

a BA advanced by more than 2 years (24).

Third, in children born small for gestational age (SGA), BA

in early childhood lags the CA but catches up to near
FIGURE 2

Simplified scheme of the growth plate. Systemic and local factors described in the manuscript are only shown. GH, growth hormone; IGF-1,
insulin-like growth hormone-1; PTHrP, parathyroid hormone-related peptide.
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equivalency at pubertal onset (25). Serum DHEA-S and

androstenedione levels in male and female children at the age

eight years were inversely related to birth weight and birth length

(26), and serum DHEA-S was found to be higher in short, female

children born SGA than children in a control group with a CA of

6.5 to 7 years (27), indicating that early adrenal maturation onset

may be responsible for the acceleration of the bone maturation

in short, prepubertal children born SGA.

Finally, obese, prepubertal children reportedly have

accelerated linear growth accompanied by advanced BA.

Pubertal height gain is smaller in obese children than in non-

obese children because BA at pubertal onset in the former is

advanced (28). Increased DHEA-S was also found to contribute

to the advanced BA in obese, prepubertal children (29).

Furthermore, as these children have large amounts of adipose

tissue where aromatase is expressed, the increase in estrogens

converted from adrenal androgens may promote earlier bone

maturation (30).
Local factors in the growth plate

Several local factors, such as the so-called cartilage matrix

factors, are involved in endochondral ossification of the growth

plate and bone maturation in addition to hormones. First,

aggrecan, encoded by ACAN, is a proteoglycan component in

the extracellular matrix of the growth plate and articular cartilage.

Heterozygous ACANmutations lead to short stature with variable

phenotypes, such as idiopathic short stature with advanced BA,

spondyloepiphyseal dysplasia, and spondyloepimetaphyseal

dysplasia (31, 32). Advanced BA before pubertal onset is

characteristic of patients with ACAN mutations. Premature

hypertrophic chondrocyte maturation, early growth of blood

vessels, and osteoblast migration into the hypertrophic zone are

thought to underlie advanced, prepubertal BA in patients with

ACAN mutations (33, 34) on the basis of the findings of a study

using chicks (34).

Other rare clinical disorders manifesting advanced,

prepubertal BA related to proteoglycan are Desbuquois

dysplasia type 1, which is caused by inactivating mutations of

CANT1 (35), and Desbuquois dysplasia type 2, which is caused

by activating mutations of XYLT1 (36). In these disorders,

impairment of proteoglycan synthesis leads to short stature

with advanced BA, as seen in patients with ACAN mutations.

Finally, patients with a decrease in the alpha subunit of G

protein (Gsa)-cAMP-protein kinase A (PKA) pathway

signaling, as seen in Albright’s hereditary osteodystrophy,

acrodysostosis type1, caused by inactivating mutations of

PRKAR1A, and acrodysostosis type 2, caused by activating

mutations of PDE4D, also exhibit short stature with an

advanced BA (37). Specifically, decreased Gsa-cAMP-PKA

pathway signaling causes advanced BA associated with

decreased parathyroid hormone-related peptide (PTHrP)
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signaling at the growth plate, which accelerates the normal

differentiation process of growth plate chondrocytes (38).
Bone age during puberty

Sex hormones and bone maturation

Sex hormones are essential for bone maturation during

puberty. Since females have their pubertal onset about two

years earlier than males, bone maturation in females is more

advanced than in males during puberty.

In female and male patients with hypogonadotropic

hypogonadism, BA is delayed from adolescence to adulthood.

In female patients, this delay is indicative of the importance of

the role of estrogens, and in male patients, of the role of

androgens and estrogens converted from androgens in the

peripheral tissues and growth plate cartilage. A 17-year-old

male patient with isolated hypogonadotropic hypogonadism

caused by a GnRH receptor (GNRHR) mutation had no

pubertal development and a BA of 14.5 years, and his 16-year-

old sister with the same mutation had no thelarche and a BA of

12.5 years (39). A 20-year-old female Japanese patient with

Kallmann syndrome had poor breast development and a BA

of 13 years (7), and a 22-year-old male Brazilian patient with

Kallmann syndrome caused by a KAL1mutation had 3mL testes

and a BA of 14 years (40).

Delayed BA from adolescence to adulthood in patients of both

sexes with aromatase deficiency indicates that estrogens play a

major role in bone maturation in both sexes. A 14-year-2-month-

old female patient with aromatasedeficiency with no palpable

breast tissue had a BA of 10 years (41) and a 14-year-7-month-old

female Sri Lankan patient with the same condition had Tanner

stage 1 breast development and a BA of 10.1 years (42). An adult

male Caucasian patient had a BA of 15 years when he received the

diagnosis of aromatase deficiency at age 28 years (6).

In the absence of sex hormones, bone maturation begins to

decelerate at the BA equivalent to the mean CA at pubertal onset

and does not progress beyond the BA equivalent just before the

start of growth plate fusion. In male Japanese patients with GH

deficiency associated with gonadotropin deficiency who received

GH therapy, BA decelerated after age 12 years and did not

progress beyond age 14 (43). Furthermore, in male Japanese

children who had short stature at puberty and received GH and

GnRH analog therapy, BA advancement began to slow after age

12 years and did not progress beyond age 14 years (44).

Similarly, in female Japanese children with short stature

receiving GH and a GnRH analog, BA deceleration occurred

after age 10.5 years and did not progress beyond 12 age years

(44). In untreated Japanese patients with Turner syndrome, the

BA maturation decelerated after a BA of 10 years and never

exceeded a BA of 12–13 years (45). The bone ages in all the cases

mentioned above were evaluated using the TW2-radius, ulna,
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and short bones (RUS) method standardized for Japanese

children (46).

The BA of 12 years for Japanese males and 10.5 years for

Japanese females with decelerating bone maturation caused by the

absence of sex hormones nearly match the mean CA at pubertal

onset [testicular volume > 3 mL at age 11.5~12 years and breast

development ≧ Tanner stage 2 at age 10 years (47)]. In addition,

the BA of 14 years in Japanese males and 12 years in Japanese

females correspond to the BA just before the start of growth plate

fusion, suggesting that sex hormones are essential for growth plate

fusion. Thus, sex hormones are necessary for bone maturation

during adolescence, and estrogens are essential for growth plate

fusion and closure in both sexes. The effect of estrogens on growth

plate fusion is discussed in the following chapter.
Estrogens and growth plate fusion

Estrogens have two roles in bone maturation. One is that

they increase height by promoting growth plate chondrocytes’

differentiation, proliferation, and apoptosis, and the other is to

promote growth plate fusion and closure. The latter processes

require not only an irreversible depletion of chondrocyte

progenitors in the resting zone but also senescence of the

growth plate, which involves a decline in the growth and

proliferation rates, number, and size of chondrocytes (48).

Growth plate fusion is thought to be triggered when the

proliferative potential of the growth plate chondrocytes is

finally exhausted.

The duration between pubertal onset and growth cessation is

longer in untreated children with precocious puberty than in

children with normal puberty because BA at the pubertal onset

in the former is lower than in normal children. Hypothetically,

the growth plates in young children are less senescent and thus

require prolonged estrogen exposure to complete the senescence

process, which triggers growth plate fusion (48).

Other clinical evidence for growth plate senescence indicates

that the growth velocity peaks at a BA of 13 years and 11 years in

male and female Japanese children, respectively, before declining

(49), possibly because of the senescence of the growth plate, i.e.,

the decline in the ability of chondrocytes to proliferate.
Bone age in children with
Turner syndrome

Madelung deformity

The short stature homeobox (SHOX) gene is located on a short

arm pseudoautosomal region of the X and Y chromosomes, and

SHOX haploinsufficiency causes short stature and skeletal

deformities (50). Léri-Weill dyschondrostenosis, a type of
Frontiers in Endocrinology 05
SHOX haploinsufficiency, and some instances of Turner

syndrome result in a short fourth metacarpal bone and radius

and ulna deformities, collectively known as Madelung deformity,

which is related to premature fusion of the lesions (50). This

premature fusion, one form of bone maturation advancement, is

probably caused by SHOX haploinsufficiency. Since the

haploinsufficiency may be related to an aberrant cell death

process in the growth plate (51), the overall BA is delayed as

described below. However, bone maturation in the fourth

metacarpal bone and the distal radioulnar regions advances.

Premature fusion of the growth plate in SHOX

haploinsufficiency is conspicuous at the distal ends of the

radius and ulna, presumably attributable to the high

expression level of SHOX. In fact, at Carnegie development

stage 14, SHOX is widely expressed near the middle of the limbs

(52). Then, at Carnegie development stage 21, SHOX expression

is localized in the upper limbs to the humerus, distal radius, ulna,

the distal end of each bone in the lower limbs, and the first and

second arches (52).

Because estrogens promote growth plate fusion, Madelung

deformity in SHOX haploinsufficiency is accelerated during

puberty and severer in female patients. The prevalence of

Madelung deformity in Turner syndrome is relatively low at

7.5%, possibly owing to hypogonadism, a common complication

of the disorder (50). In addition, patients with Turner syndrome

receiving estrogen therapy from the late teens starting at a low

dosage rarely have Madelung deformity (53).
Bone maturation before and
during puberty in children with
Turner syndrome

The mean DBA/DCA in untreated Japanese patients with

Turner syndrome with no spontaneous puberty was 0.75 ± 0.63

before BA 10 years (54), owing to chromosome imbalance,

hypogonadism, and SHOX haploinsufficiency.

SHOX is expressed in the growth plate, particularly in

hypertrophic chondrocytes, and regulates chondrocyte

differentiation, hypertrophy, and apoptosis (55). When

chondrocyte apoptosis is suppressed by SHOX haploinsufficiency,

bonematuration is delayed owing to the delay in the replacement of

chondrocytes by osteoblasts. BA lags the CA in prepubertal patients

with SHOX haploinsufficiency, although the delay is not very

significant. In prepubertal male and female patients with SHOX

variants and SHOX upstream or downstream enhancer deletions,

the mean BA/CA was 0.9 ± 0.1 (56). In prepubertal, male and

female patients with SHOX haploinsufficiency, the mean difference

between BA minus CA was -0.9 ± 0.9 (57). BA was evaluated using

the GP method, but because the data were analyzed without regard

to sex, it is unclear whether a sex difference in bone maturation was

present before pubertal onset in these patients.
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BA advancement after puberty in SHOX haploinsufficiency is

complicated because bone deformity in the hands may deteriorate

with puberty (53), as discussed above. Madelung deformity, which

involves earlier bonematuration in some of the bones in the hands

(50), may be the combined manifestation of SHOX

haploinsufficiency and estrogen exposure. Pubertal development

in patients with SHOX haploinsufficiency is normal.

To investigate the extent to which hypogonadism and SHOX

haploinsufficiency are each involved in bone maturation in

prepubertal and pubertal patients with Turner syndrome, the

degree of BA delay should be compared in patients with Turner

syndrome with the 45,X karyotype and female patients with

SHOX deletion.
Conclusion

Estrogens are involved in prepubertal and pubertal BA

progression and are essential for growth plate fusion and

closure. Adrenal androgens are the source of estrogens before

pubertal onset. In the absence of sex hormone, bone maturation

begins to decelerate at the BA equivalent to the mean CA at the

pubertal onset. It does not progress beyond the BA equivalent to

just before the start of growth plate fusion. In addition to

hormones, factors such as cartilage matrix and SHOX are also

involved in bone maturation.
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