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The re-emergence of Zika virus (ZIKV) and its associated neonatal microcephaly and Guillain-Barré syndrome have led the
World Health Organization to declare a global health emergency. Until today, many related studies have successively reported the
role of various viral proteins of ZIKV in the process of ZIKV infection and pathogenicity. These studies have provided significant
insights for the treatment and prevention of ZIKV infection. Here we review the current research advances in the functional
characterization of the interactions between each ZIKV viral protein and its host factors.
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Introduction

Zika virus (ZIKV) is a mosquito-borne flavivirus that can
cause Zika Fever, the Guillain-Barré syndrome (GBS) in
adults and microcephaly in fetuses and infants (Johansson et
al., 2016; Pierson and Diamond, 2018). ZIKV was first
isolated from a rhesus monkey with fever in Zika Forest,
Entebbe, Uganda, in 1947 (Dick and Haddow, 1952; Dick et
al., 1952). At the outset, ZIKV was only circulating in
Africa, and fewer than 20 human infections had been
documented for half a century (Faye et al., 2014). In 2007,
the first outbreak of ZIKV occurred on Yap Island in the
Western Pacific Micronesia, causing approximately 3/4 of
the residents to be infected with ZIKV, and the patients had
only mild symptoms such as rash, fever, joint pain and
conjunctivitis (Duffy et al., 2009; Musso and Gubler, 2016).
From October 2013 to March 2014, French Polynesia ex-
perienced a large-scale Zika virus infection. Unlike the past,
in this epidemic there were cases of GBS reported to be
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related with ZIKV infection for the first time (Cao-Lormeau
et al.,, 2014; Ochler et al., 2014). The largest outbreak of
ZIKV infection in history started in Brazil in 2015, and
subsequently the virus infections rapidly expanded to many
countries in the Americas (Fauci and Morens, 2016). As of
2017, more than 22,000 confirmed cases and 580,000 sus-
pected cases have been reported in 52 American countries
and regions (Pierson and Diamond, 2018). Due to the neo-
natal microcephaly and GBS associated with ZIKV infec-
tions in the American ZIKV epidemic, ZIKV received
widespread international attention (de Oliveira et al., 2017,
Johansson et al., 2016).

ZIKV belongs to the genus of Flavivirus in the family of
Flaviviridae. The virus particle is about 40 nm in diameter
and comprises an icosahedral shell consisting of 180 copies
each of the envelope (E) protein and the membrane (M)
protein, which are all inserted into the lipid membrane with
their transmembrane domains (Hamel et al., 2015; Shi and
Gao, 2017). The ZIKV genome is a positive-sense, single-
stranded RNA of approximately 11 kb in length, and contains
two untranslated regions (UTR) and one open reading frame
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(ORF) with 10 genes (Shi and Gao, 2017). The translation of
the ORF produces a polyprotein of more than 3,000 amino
acid residues which is cleaved by the host and viral proteases
to produce 10 viral proteins including three structural pro-
teins (capsid protein (C), pre-membrane (prM) and envelope
protein (E)), and seven nonstructural proteins (NS1, NS2A,
NS2B, NS3, NS4A, NS4B and NS5) (Hasan et al., 2018; Shi
and Gao, 2017). The structural proteins are mainly involved
in the assembly of virus particles, virus adsorption and in-
vasion into cells, and contain the major epitopes of virus. The
non-structural proteins are mainly responsible for viral
genome replication, translation and regulation of the host
immune responses and metabolism. ZIKV is mainly trans-
mitted through several mosquito species of the genus Aedes,
such as Aedes aegypti, Aedes albopictus, Aedes Hensili,
Aedes polynesiensis, Aedes africanus and Aedes luteoce-
phalus (Duffy et al., 2009; Grard et al., 2014; Ledermann et
al., 2014; Musso et al., 2018). However, it was also found
that ZIKV has other transmission routes such as mother-to-
child transmission, sexual transmission and blood transmis-
sion (D’Ortenzio et al., 2016; Foy et al., 2011; Lessler et al.,
2016; Pingen et al., 2016). ZIKV shows a high tendency and
long persistence in human tissues and body fluids (Barzon et
al., 2016; Carteaux et al., 2016; Furtado et al., 2016; Joguet et
al., 2017; Miner and Diamond, 2017; Tabata et al., 2016). In
addition to infecting the eyes, brain, testes, and placenta, the
virus can be also detected in tears, urine, saliva, and even
semen. Importantly, current studies have reported that ZIKV
RNA can persist in the patient’s semen for up to six months
after the onset of infection (Mead et al., 2018).

Phylogenetic studies have shown that ZIKV has evolved
into two lineages, African and Asian, and the ZIKV strains
that caused the outbreaks in the Americas belong to the
Asian lineage (Musso and Gubler, 2016; Wang et al., 2016).
Although the ZIKV epidemics have currently subsided, the
re-emerging ZIKV shows a stronger infectious and patho-
genic activity than its precursor originating from Africa.
Therefore, understanding the molecular mechanisms of
ZIKV pathogenicity and biological functions of various viral
proteins will help us to treat and prevent ZIKV infection, and
also provide references for coping with other emerging and
recurrent viruses. This article gives a comprehensive de-
scription of the existing functional research of each viral
protein of ZIKV and their interactions with host factors, and
discusses the possible causes for the infectivity and patho-
genicity of ZIKV.

Capsid protein
The capsid (C) protein is the viral structural protein which,

combined with the viral genomic RNA, forms the nucleo-
capsid (NC) of the ZIKV particles (Shang et al., 2018). The
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NC is enveloped by a lipid membrane containing prM and E
proteins to produce the immature virus particles in the en-
doplasmic reticulum (ER). Structural studies have shown
that the overall structure of the ZIKV C protein is similar to
the structure of DENV and WNV C proteins (Shang et al.,
2018, Tan et al., 2020). The N-terminus of the C protein
contains a highly positively charged loop, followed by five a
helices (helix al-a5). The viral protease NS2B/3 cleaves at
the junction of C protein helices 04-a5 and thus releases the
mature C protein, leaving helix a5 embedded in the ER
membrane. The hydrophobic helix al helps C protein dimer
production and interacts with the viral lipid membrane
(Shang et al., 2018; Tan et al., 2020). The structural analysis
of C protein shows that differences in the sequence of helix
al have an impact on the properties and the degree of ex-
posure of the hydrophobic cleft, suggesting that helix al is a
hot spot for evolutionary adaptation of flaviviruses (Mor-
ando et al., 2019). Helix o4, with a high positive charge
interface, binds to nucleotides, and helix a5 is used as a
signal peptide after the cleavage of C protein to guide prM to
enter the ER lumen (Tan et al., 2020). Recent studies re-
vealed that C protein plays a central role in the assembly of
ZIKV. The study of Morando et al. suggests that the dy-
namics of C protein structural elements responds to a
structure-driven regulation of interaction with endocellular
hydrophobic interfaces, which are required for NC assembly
(Morando et al., 2019). The study of Tan et al. describes a
subnanometer resolution structure of C proteins within virus
particles. It illuminates the quaternary structure of the C
protein and also shows the presence of helix a5 on C protein
(previously thought to be removed by protease hydrolysis).
Moreover, helix a5 was verified to be able to induce C
protein dimers which subsequently form larger oligomers
during the assembly process. Since E and prM alone cannot
produce regular flavivirus icosahedral particles, C protein
was suggested to serve as an important mediator between E/
prM and viral genome to ensure the correct assembly of virus
particles (Tan et al., 2020). Shang et al. found that in addition
to binding to ssSRNA, C protein also shows high affinity to
dsRNA, dsDNA and ssDNA, indicating that C protein may
participate in nucleotide-related host reactions (Shang et al.,
2018).

In addition, some studies have shown that C protein is
involved in post-transcriptional regulations in host cells and
the virus-related neurological diseases. Hou et al. found that
ZIKV C protein can form a stable complex with Ras-GAP
SH3 domain-binding protein 1 (G3BP1) and Caprin-1 to
block the formation of stress granules (SGs) in the host cell,
thus removing SGs-mediated restriction on the translation of
the viral genome (Hou et al., 2017). The disruption of the
nonsense-mediated mRNA decay (NMD) pathway is a
known cause of microcephaly and other neurological dis-
orders (Fontaine et al., 2018). Fontaine et al. revealed that in
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human neural progenitor cells (hNPCs), ZIKV C protein can
bind to the main regulator up-frameshift protein 1 (UPF1) in
the NMD pathway and induces its proteasome-dependent
degradation, thereby inhibiting the antiviral effect of the
NMD pathway and disrupting the cellular process of quality
control, eventually leading to neuropathy in the developing
brain (Fontaine et al., 2018). No significant difference be-
tween viral strains of Asian and African lineages was shown
for the interaction between C protein and the NMD pathway
(Fontaine et al., 2018). Recently, a study also reported that C
protein specifically binds and inhibits Dicer to limit host
miRNA biogenesis in neural stem cells (NSCs), resulting in
neurodevelopmental defects and virus immune evasion
(Zeng et al., 2020).

Precursor membrane protein

The precursor membrane (prM) protein is one of the struc-
tural proteins on the surface of the envelope of ZIKV par-
ticles, and plays an important role in the assembly and
maturation of virus particles. The protein interacts with the E
protein in the ER membrane, and then encapsulates the viral
nucleocapsid to produce immature virus particles (Hasan et
al., 2018; Nambala and Su, 2018). During the transport of
immature virus particles to the Golgi apparatus, prM protects
the E protein from premature fusion. After entering the Golgi
apparatus, most of the prM is cleaved by the host furin
protein to produce a 75-amino acid M protein and 99-amino
acid Pr polypeptide, after which the virus matures and is
released (Li et al., 2019).

Recent studies indicate that prM protein may be related to
the neurovirulence by ZIKV infection. After studying the
effect of prM amino acid substitutions on ZIKV, Yuan et al.
found that in most contemporary epidemic strains, a serine to
asparagine substitution (S139N) appeared in prM protein
(Yuan et al., 2017). This amino acid substitution, among
other substitutions along the genome, showed the greatest
neurovirulence in newborn mice. Moreover, after reversing
the amino acid substitution (N139S), the neurovirulence of
the N139S mutant was lowered. In addition, ZIKV infection
of human brain precursor cell (hNPC) has also shown,
compared to N139S mutant strains or pre-epidemic Asian
strains, that SI39N can enhance ZIKV replication and cell
lethality in hNPC (Yuan et al., 2017). Subsequently, Li et al.
showed that prM and Pr peptides can directly induce apop-
tosis of human brain glial cells SNB-19, but the S139N re-
verse mutation in the Pr region did not change its
cytotoxicity to SNB-19 (Li et al., 2019). Therefore, these
findings indicate that prM may constitute a component of
ZIKV cytotoxicity, and prM S139N in the ZIKV epidemic
strain is critical to cause nerve-associated diseases by ZIKV
infection, possibly by affecting the interaction profile with E
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protein and the structural stability of the virions.

Envelope protein

The envelope (E) protein is the main component of the
icosahedral capsule envelope of the ZIKV particles, re-
sponsible for the virus attaching to and entry the host cell, as
well as for host adaption, immune recognition and virus
pathogenesis. It is also the major protein for inducing neu-
tralizing antibodies against virus infection (Dai et al., 2016;
Fontes-Garfias et al., 2017; Giraldo et al., 2020; Sapparapu et
al., 2016; Shan et al., 2020; Stettler et al., 2016). It has a total
length of 505 amino acids, similar to other flavivirus E
proteins, and consists of four domains. The B-barrel-shaped
domain I (DI) connects DII and DIII as the structural center;
finger-like domain II (DII) contains the E protein dimeriza-
tion interface and a fusion loop that interacts with the en-
doplasmic membrane; the C-terminal immunoglobulin-like
domain III (DIII) contains the receptor binding site, which is
mediated by the E protein and plays a role in membrane
fusion. The fourth domain is comprised of a-helix stem re-
gion and an a-helix transmembrane region anchored to the
ER membrane (Dai et al., 2016; Kostyuchenko et al., 2016).
Many groups have identified DII and DIII in the E protein as
critical for a potent neutralizing response, designating them
as the important regions for developing an effective and safe
ZIKV subunit vaccine (Hasan et al., 2017; Sapparapu et al.,
2016; Stettler et al., 2016; Tai et al., 2018).

Kostyuchenko and his colleagues have shown that ZIKV
has higher thermal stability than DENV. When the virus is
incubated at 40°C, unlike DENV, ZIKV virus particles can
still maintain their structural stability, which is most likely
due to the tight packing of ZIKV E protein dimers and
complex interactions that give the virus a more dense and
stable structure (Kostyuchenko et al., 2016). This may ex-
plain why ZIKV can withstand harsh conditions and remain
in different body fluids such as tears, urine, saliva, and se-
men. Studies in vitro showed that different cell types are
permissive to ZIKV infection (Aagaard et al., 2017; Chen et
al., 2016; Hamel et al., 2015; Sheng et al., 2017; Tang et al.,
2016). DC-SIGN, HSP70, TIM-1 and the TAM receptors
(TYRO3, AXL and MER) have been shown to be beneficial
for the entry of ZIKV and other flaviviruses into host cells
and are suggested to be the possible candidate receptors/co-
receptors (Hamel et al., 2015; Hastings et al., 2017; Laureti
etal., 2018; Meertens et al., 2017; Pujhari et al., 2019; Tabata
et al., 2016). However, these studies have not shown direct
interactions between E protein and the mentioned host fac-
tors, thus the identification of the host receptor(s) still needs
further research. Notably, recent research shows that E pro-
tein is ubiquitinated by the tripartite motif 7 (TRIM7)
through Lys63 (K63)-linked polyubiquitination, which is a
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determinant for ZIKV entry, tissue tropism and pathogenesis
(Giraldo et al., 2020).

The E protein N154 glycosylation is required for ZIKV
infection of A. aegypti and critical for virus virulence in
A129 mice. Except for some early African strains, E proteins
of the most ZIKV strains contain a glycosylation site at
amino acid N154 (Fontes-Garfias et al., 2017). The mutation
of this site (N154Q) weakened ZIKV infectivity in A129
mice and A. aegypti, but this mutation shows no significant
effect on the neurovirulence of ZIKV (Fontes-Garfias et al.,
2017). However, removal of the N154 glycosylation in E
protein had little impact on viral infection in mammalian cell
but increased viral fitness in 4. aegypti (C6/36) cells (Fontes-
Garfias et al., 2017; Gong et al., 2018). These discrepancies
observed in vivo and in vitro may be due to a network of
cytokines and a complex immune system which lacks in cell
lines. Another study suggests that the E protein glycosylation
may contribute to ZIKV pathogenesis via enhancing infec-
tion of lectin-expressing leukocytes (Carbaugh et al., 2019).
Recently, Shan et al. revealed that ZIKV acquired an evo-
lutionary mutation in the E protein (V473M), before its 2013
transmit to the Americas, which is a critical determinant for
enhanced neurovirulence, mother-to-child transmission, and
viremia to facilitate urban transmission (Shan et al., 2020).
This study explains, in a large part, the reason of ZIKV re-
emergence and enhanced pathogenicity. In addition, Zhou et
al. found that ZIKV E protein specifically interacts with
major facilitator superfamily domain-containing protein 2
(Mfsd2a) in human brain microvascular endothelial cells
(hBMECs), promotes the ubiquitination degradation of
Mfsd2a, damages Mfsd2a-mediated intake of docosahexaene
acid (DHA), eventually leading to impaired brain develop-
ment (Zhou et al., 2019).

NS1

Nonstructural protein 1 (NS1) is a multifunctional non-
structural protein of ZIKV, with a total length of 352 amino
acids (Xu et al., 2016). NS1 can exist in two forms, as a
homodimer and as a hexamer. The dimeric NS1 is mainly
located in the ER lumen of the cell, and is involved in reg-
ulating the host cell immune responses and assisting virus
replication (Song et al., 2016; Xu et al., 2016). Hexamer NS1
protein is released to the outside of the cell, thereby trig-
gering the host immune responses and inducing hy-
perpermeability in tissues (Puerta-Guardo et al., 2019).
Structural analysis of NS1 by Xu et al. showed that the
overall structure of ZIKV NSI1 is very similar to that of
DENYV and WNV NSI, of which the monomer structure has
three domains: B-hairpin domain, wing domain and p-ladder
domain (Xu et al., 2016).

The functional studies on flavivirus NS1 have revealed
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that NS1 plays an important role in virus replication. Re-
cently, Ci et al. found that ZIKV NS1 can induce the re-
modeling of the ER membrane to form a replication
compartment for ZIKV (Ci et al., 2020). In addition, NS1
was found to suppress the immune response of host cells
through two ways: (1) NS1 directly binds TANK binding
kinase 1 (TBK1) and inhibits phosphorylation of TBK1, thus
blocking the interferon (IFN) signaling; (2) NSI recruits
USPS to inhibit the degradation of caspase-1 and then acti-
vates NLRP3 inflammatory bodies, thereby reducing the
production of IFN (Wu et al., 2017; Xia et al., 2018; Zheng et
al., 2018).

As the only protein among ZIKV viral proteins to have an
exocrine form among ZIKV viral proteins, there have been
relevant studies referring that NS1 plays an important role in
virus invasion of several immune-privileged sites. Puerta-
Guardo et al. found that ZIKV NS1 can specifically induce
increased permeability of human umbilical vein endothelial
cells in vitro and induce brain endothelial vascular leakage in
mice, and NS1s from both African and American strains
behaved similarly in that regard (Puerta-Guardo et al., 2019).
In addition, Puerta-Guardo et al. also reported that NS1
modulates the glycosaminoglycans (GAGs) on trophoblasts
and chorionic villi, causing the placental dysfunction and
resulting in increased permeability of human placentas
(Puerta-Guardo et al., 2020). Recently, Hui et al. revealed
that ZIKV NS1 can disrupt the integrity of the blood-testis
barrier (BTB) by interacting with matrix metalloproteinase 9
(MMP9) and facilitated K63-linked polyubiquitination of
MMP9, which leads to the degradation of the essential pro-
teins involved in the maintenance of the BTB (Hui et al.,
2020). Therefore, apart from promoting viral replication and
immune escape, NS1 can promote virus transmission from
blood to tissues.

The study by Liu et al. indicated the NS1 A188V can
significantly affect the infectivity of the virus among mos-
quitoes. In their initial research, they found that NS1 facil-
itates flavivirus acquisition by mosquitoes from an infected
mammalian host and subsequently enhances viral prevalence
in mosquitoes (Liu et al., 2016). Asian ZIKV isolates from
before 2012, with an alanine at residue 188 of NS1, had weak
infectivity and low prevalence in mosquitoes and caused
only sporadic outbreaks (Liu et al., 2017). In contrast, in
ZIKV strains responsible for the epidemic in the Americas,
the spontaneous substitution of A188V in its NS1 protein,
results in increased NS1 antigenaemia and enhancement of
ZIKV infectivity and prevalence in mosquitoes, potentially
leading to facilitated transmission (Liu et al., 2017). Amino
acid 188 of NS1 is the key point to affect virus transmission
ability in mosquitoes, however, it is not a determinant of the
viral prevalence among the population, and other unknown
factors might be involved (Liu et al., 2017). Subsequently,
Xia et al. further investigated this mutation, and found that
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A188V of NS1 can enhance the binding of NS1 to TBK1,
thereby reducing the effect of the IFN response (Xia et al.,
2018). Furthermore, the VI188A reverse mutation in the
South American epidemic strain indicated that this mutation
had no effect on the neurovirulence, one of the pathological
characteristics of ZIKV-induced diseases during the epi-
demic (Xia et al., 2018). Thus the mutation of NS1 at posi-
tion 188 is an important but not the only factor for the
transformation of virus infectivity and pathogenicity, and this
transformation is more likely to be determined by multiple
substitutions along the viral genome and other unknown
factors.

NS2A

NS2A is an ER-resident, membrane-bound protein with a
total length of 226 amino acids and a calculated molecular
weight of approximately 22 kD (Zhang et al., 2019a; Zhang
et al., 2019b). Unfortunately, the protein structure of a fla-
vivirus NS2A has not yet been successfully resolved. But
some studies have revealed the topological structure of
Dengue virus (DENV) and ZIKV NS2A, which greatly
promoted our understanding of how the natural state of
NS2A exerts its biological functions (Xie et al., 2013; Zhang
et al., 2019b). The biochemical structure study of ZIKV
NS2A by Zhang et al. showed that the N-terminal region of
NS2A, amino acid residues 1-56, is located on the ER lumen
side and contains two membrane-associated segments. Re-
sidues 74-97 comprise a transmembrane segment that spans
the ER membrane, and residues 103-226, the C-terminal
region of NS2A, is located on the cytoplasmic side and
contains four membrane-associated segments (Zhang et al.,
2019b). In addition, Zhang et al. showed that NS2A is
functionally involved in the ZIKV RNA replication and the
assembly of viral particles. They also identified the key re-
sidues of NS2A that affect viral replication or assembly
(Zhang et al., 2019b). The single mutation of NS2A (A175V)
described by Marquez-Jurado and her colleagues using re-
verse genetics can affect viral RNA synthesis and the gen-
eration of viral particles, which also confirmed a role of
NS2A in virus replication and assembly (Marquez-Jurado et
al., 2018). Later, Zhang et al. further studied the molecular
mechanism of ZIKV NS2A involved in virus assembly. They
found that NS2A recruits viral NS2B/NS3 protease and the
structural C-prM-E polyprotein to the virion assembly site.
Once the C-prM-E polyprotein has been processed, NS2A
binds the 3’-UTR of the progeny viral RNA via its cyto-
plasmic loop, thus presenting viral RNA to the structural
proteins to enable virion assembly (Zhang et al., 2019a).

In addition to playing a direct role in the life cycle of ZIKV,
recent studies indicate that NS2A is also involved in reg-
ulating the host innate immune response and has causal re-
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lations with neurological diseases. Xia et al. have shown that
NS2A can inhibit the IFN response by participating in the
inhibition of TBKI1 phosphorylation (Xia et al., 2018);
Nguyen et al. have revealed that NS2A can directly inhibit
RIG-I and IRF3 to antagonize the RIG-I/MDAS pathway-
mediated production of interferon-f (IFN-f) (Ngueyen et al.,
2019). Yoon et al. found that NS2A can directly mediate the
degradation of adhesion junction proteins, thereby destroy-
ing the neurogenesis of mammalian cortex, and similar
phenomena were also observed in West Nile virus (WNV)
and Japanese encephalitis virus (JEV) infections (Yoon et al.,
2017). This phenomenon indicates that NS2A is one of the
important causal factors for ZIKV-induced neurovirulence.
Of note, NS2A is relatively highly conserved, showing
nearly 99.9% identity at the protein level among different
ZIKV strains (Yoon et al., 2017). This indicates that Zika
virus may have neurovirulence from the beginning, and
NS2A is not the only factor in the pathogenic transformation
of Zika virus.

NS2B/3

NS2B is also an ER-resident, transmembrane protein (Xing
et al., 2020). From the existing research, NS2B mainly acts
as a cofactor of NS3. NS2B binds and stabilizes the structure
of NS3, providing an ER anchor point for NS3 and activating
the NS3 active region to exert protease activity (Li et al.,
2018; Phoo et al., 2016; Xing et al., 2020). Viral polyprotein
precursors are processed into mature proteins (three struc-
tural proteins and seven non-structural proteins) by host
proteases and NS2B/3 proteases (Phoo et al., 2016; Xing et
al., 2020). However, there is not much data supporting that
NS2B alone could exert biological functions. The study of
Xia et al. has mentioned that ZIKV NS2B can inhibit the
phosphorylation of TBK1 to suppress IFN- production (Xia
et al., 2018).

NS3 is the viral protease and helicase of ZIKV. After ex-
pression, it is mainly located in the mitochondria (Xing et al.,
2020). NS3 is a common multifunctional viral protein among
the Flavivirus members, with N-terminal serine protease
domain and C-terminal nucleoside triphosphatase (NTPase)
and RNA helicase domains (Lei et al., 2016; Phoo et al.,
2016). The protease region of NS3 is mainly used to process
the polyprotein precursor produced after the translation of
viral genome. However, Xing et al. found that NS3 cannot
fully exert its protease activity without binding to NS2B
(Xing et al., 2020). The NS3 nucleoside triphosphatase hy-
drolyzes ATP during viral genome replication to provide
energy for dissociating the double-stranded RNA into single-
stranded RNA via the NS3 helicase region (Xu et al., 2019).
In the study of NS3 helicase activity, Xu et al. found that the
interaction between NS5 and NS3 can further activate its
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helicase activity, and blocking this process leads to defects in
virus replication (Xu et al., 2019). As NS3 does not have a
membrane-bound structure itself, it needs the assistance of
NS2B to play its biological function on the ER (Xing et al.,
2020).

NS3 plays a key role in the virus life cycle, and its function
is generally more conservative in flaviviruses. So far the
researches around NS3 or NS2B/3 have mainly focused on
the related inhibitors and enzyme activities (Chan et al.,
2017; Lei etal., 2016; Li et al., 2018; Xu et al., 2019), only a
few studies have reported that NS2B/3 also play a role in
viral pathogenicity and host immune regulation. Li et al. first
reported that NS2B/3 is involved in the neurovirulence
caused by ZIKV (Li et al., 2019). They found that NS2B/3
protease cleaves Septin-2 (SEPT2) in human brain neural
precursor cells (WNPCs), resulting in a decrease of protein
level of SEPT?2 to inhibit hNPC cytokinesis, and eventually
triggers genotoxic stress and cell death in hNPCs. Sequence
alignments associated with comparison of protease activities
against Septin-2 of ZIKV NS2B/3 of different strains showed
that although the Asian strain had four amino acid changes
compared with the African strain, the efficiency of cleaving
Septin-2 was not much different between those ZIKV strains
(Li et al., 2019). In the same year, Hou and his colleagues
reported that NS3 is also involved in inhibiting the formation
of SGs to interfere with host translation and ribonucleopro-
tein complex transport (Hou et al., 2017). In addition, NS2B/
3 also plays a role in the down-regulation of host immune
responses by inhibiting the induction of IFN and downstream
IFN-stimulated genes (Wu et al., 2017). Besides, NS2B/3
can suppress activation of JAK—STAT signaling by targeting
Jak1 for degradation and attenuate RLR-induced apoptosis to
ensure the complement of viral cell life cycle (Wu et al.,
2017). Furthermore, NS2B/3 also mediates the cleavage of
R78 and G79 in the cytoplasmic loop of human stimulator of
IFN genes (hSTING), suppressing the cGAS/STING path-
way to blunt cell-intrinsic antiviral defenses (Ding et al.,
2018).

NS4A/4B

NS4A and NS4B are another two membrane-associated non-
structural proteins encoded by ZIKV. Since there have been
no reports on either ZIKV or other flavivirus NS4A and
NS4B structural studies to date, it is difficult to have a clear
picture of how these proteins are structurally organized. In
other flavivirus-related studies, NS4B have been reported to
be involved in viral replication (Evans and Seeger, 2007), but
what the role NS4B plays in ZIKV replication remains un-
known. Currently, related functional studies have shown that
NS4A/4B is involved in regulating host immune response
and triggering nerve-associated diseases.
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Wu et al. found that NS4B can combine with TBK1 to
inhibit the production of type I interferon, which is also re-
ported by Xia et al. (Wu et al., 2017; Xia et al., 2018).
Furthermore, NS4A blocks interferon regulatory factor 3
(IRF3) phosphorylation, thus preventing the production of
type I IFN induced by the melanoma differentiation asso-
ciated gene 5 (MDAS)/retinoic acid-inducible gene I (RIG-I)
signaling pathway (Hu et al., 2019; Ma et al., 2018; Ngueyen
et al., 2019; Xia et al., 2018). The research of Ma et al.
showed that NS4A combines with MAVS to hinder the in-
teraction between mitochondrial antiviral signaling protein
(MAVS) and RIG-I and thus reduces the induction of type I
IFN, which is also supported by Hu et al. (Hu et al., 2019; Ma
et al.,, 2018). Interestingly, type III IFN protects human
placental barrier cells from ZIKYV infection, and this type of
IFN production is also regulated by the MAVS signaling (Hu
et al., 2019; Lazear et al., 2015). Therefore, it may explain
from another perspective how ZIKV crosses the placenta
during pregnancy to infect the developing fetus. In addition,
NS4A is also involved in regulation of host cell metabolism
by inhibiting the formation of SGs and triggering the overall
translational block of host cells to assist in virus replication
(Hou et al., 2017).

In 2016, Liang and his colleagues reported that NS4A/4B
plays a major role in the pathogenesis of neonatal micro-
cephaly (Liang et al., 2016). They found that NS4A/4B can
interfere with Akt (also known as protein kinase B)-mam-
malian target of rapamycin (mTOR) signal transduction in
human fetal neural stem cells (fNSCs) by inhibiting Akt
phosphorylation. The Akt-mTOR signaling pathway reg-
ulates the neurogenesis and inhibits cell autophagy of fNSCs
(Liang et al., 2016). Therefore, when ZIKV NS4A and NS4B
inhibit the Akt-mTOR signaling pathway, this in turn im-
pedes the neurogenesis of fNSCs and increases autophagy.
Moreover, comparison experiments of representative ZIKV
strains of Asian and African lineage (MR766, IbH30656, and
H/PF/2013) showed similar levels of neurogenesis inhibition
in fNSCs, consistent with the high sequence identity of
NS4A and NS4B among those strains (Liang et al., 2016). It
is therefore likely that additional factors, such as key amino
acids in the sequence other than NS4A/4B, are associated
with pathogenesis of the epidemic ZIKV strains. The An-
kryin repeat and LEM domain containing 2 (ANKLE?2)-Ball
(VRK1) pathway is required for proper localization of
asymmetric proteins and spindle alignment during neuroblast
(NB) cells division, and mutations in ANKLE? cause auto-
somal recessive microcephaly (Link et al., 2019; Yamamoto
et al., 2014). Exogenous expression of NS4A in NB cells
mimics microcephaly phenotypes seen in ANKLE2 mutants.
The underlying mechanism might be its specific interaction
with ANKLE2 and blockage of the downstream signal
transduction, leading to defects in brain development (Link
et al., 2019; Shah et al., 2018).



Guo, M, et al.  Sci China Life Sci May (2021) Vol.64 No.5 715

NSS

NSS5 is the largest non-structural protein encoded by ZIKYV,
with a full length of 903 amino acids, consisting of two major
functional domains: the N-terminal methyltransferase
(MTase) domain and the C-terminal RNA-dependent RNA
polymerase (RdRP) domain (Wang et al., 2017; Zhao et al.,
2017). The main biological function of NS5 is being re-
sponsible for viral RNA synthesis and capping. Structural

analysis shows that the overall structure of ZIKV NS5 is very
similar to JEV NS5 (Zhao et al., 2017). The ZIKV NS5
protein from African and Brazilian strains has a similar RNA
synthesis capacity although there are 36 amino acid residue
differences on their protein surface (Zhao et al., 2017).
Apart from its own enzymatic functions, research in recent
years has shown that NS5 is also involved in the immune
regulation of host cells. Grant et al. revealed that ZIKV NS5
can bind and induce ubiquitination-mediated degradation of
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Figure 1 Schematic representation of network interactions of ZIKV proteins and host factors. The functions of ZIKV nonstructural proteins in restricting
host antiviral immunity: ZIKV NSI, NS2A, NS2B, NS4A, NS4B and NS5 negatively regulate RIG-I-like receptor-induced IFN- production; NS1 activates
NLRP3 inflammatory bodies by inhibiting the degradation of caspase-1; NS2B/3 blocks the JAK-STAT signal transduction and suppresses the cGAS/STING
pathway; NS5 induces ubiquitination-mediated degradation of human STAT2, and blocks STAT1 phosphorylation and enhances the type II interferon
response by promoting the formation of STAT1-STAT1 protein complexes; NS5 suppresses ISGs by inhibiting PAF1C recruitment. The functions of ZIKV
proteins in viral pathogenicity: C protein degrades UPF1 and inhibits Dicer resulting in neurogenesis dysfunction; NS1 disrupts the integrity of the BTB by
upregulating the protein level of MMP9 and increases the permeability in developing human placentas by disrupting GAGs; E protein induces the degradation
of Mfsd2a to impede brain development; ZIKV NS2A inhibits neurogenesis by degrading adhesion junction proteins; NS2B/3 protease causes genotoxic
stress and cell death by cleaving Septin-2 leading to neurogenesis dysfunction; NS4A inhibits ANKLE2 to cause microcephaly; NS4A and NS4B blocks the
neurogenesis by deregulating Akt-mTOR signaling; C protein, NS3 and NS4A negatively regulate the formation of SGs to interfere with host translation and
the ribonucleoprotein complex. The functions of ZIKV nonstructural proteins in the viral life cycle: NS1 induces the ER to form the replication compartment;
NS2B/3 cleaves the viral polyprotein and dissociates the double-stranded RNA; NS5 is responsible for viral RNA synthesis and capping; NS2A recruits the
complexes for virion assembly to the ER (Mature ZIKV particle: PDB 5IZ7. Immature ZIKV particle: PDB 6LNU).
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human (but not murine) STAT2 to antagonize the type I IFN
response (Grant et al., 2016). Therefore, ZIKV is also likely
to suppress the type III IFN signaling by targeting STAT2,
enabling ZIKV to infect the fetus through the placenta.
Kumar et al. also confirmed that ZIKV infection inhibited
type I and type III IFN signal transduction, and further
showed that NS5 mediates STAT2 degradation through its
MTase domain interacting with STAT2. In the study of Bo-
wen et al., it was shown that ZIKV can antagonize IFN-
mediated phosphorylation of STAT1 and STAT2 to inhibit
IFN responses. Further research by Chaudhary et al. de-
monstrated that NS5, in addition to inducing ubiquitination
degradation of STAT2, also promotes the formation of
STAT1-STAT1 protein complexes, thereby enhancing the
STAT1-mediated type II IFN response (Chaudhary et al.,
2017). Hertzog and his colleagues also found that NS5 can
block STAT1 phosphorylation during viral infection (Hert-
zog et al., 2018), while Shah et al. found that the NS5 protein
inhibits the expression of IFN-stimulated genes (ISGs) by
impeding the recruitment of the PAF1 complex (PAFI1C)
(Shah et al., 2018). Moreover, NS5 was also reported to
repress K63-linked polyubiquitination of RIG-I, attenuate
the phosphorylation and nuclear translocation of IRF3, and
inhibit the production of IFN-f (Li et al., 2020; Xia et al.,
2018).

ZIKV NS5 was revealed to be localized in the nucleus after
expression (Shah et al., 2018; Zhang et al., 2019a), which is
also observed with DENV NS5 that translocates, after re-
lease from the polypeptide, to the nucleus and then hampers
the splicing of host mRNA (De Maio et al., 2016). Inter-
estingly, according to a recent study, the ZIKV NS5 nuclear
accumulation protects NS5 from cytoplasmic degradation,
enabling NS5 to perform its biological functions in the virus
life cycle (Ji and Luo, 2020).

Perspective

The re-emerging of ZIKV and its link with various clinical
diseases led to a rapid research response in the world, which
has provided some answers to why this virus transitioned
from mild to notorious. To date, the studies of ZIKV proteins
have partially answered questions about viral persistence,
evolution, virulence, tissues tropism, immune evasion, and
virus transmission dynamics, and the mechanism of ZIKV
causing neurodevelopmental disease (Figure 1). However,
there is still too limited knowledge about the ZIKV receptor,
the structure of membrane-bound nonstructural proteins, as
well as the mechanism of male-reproductive sequelae of
virus infection. ZIKV infection has been posing a great threat
to public health, yet, there are no available drugs, vaccines or
therapeutics against ZIKV infections on the market so far. It
is becoming extremely urgent to develop effective anti-
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ZIKV drugs for related disease treatment and prevention.
Extensive research on the molecular mechanisms of viral
proteins and their roles in virus-host interactions will provide
clues for the future design of specific drugs disrupting these
interactions and reducing the health damage to the host and
also shed light on the development of effective vaccines.
Finally, the lessons we have learnt from ZIKV may be ap-
plicable to other emerging or re-emerging viruses that result
in unforeseen human diseases.
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