
REPORT

The application of mathematical modelling to the design of bispecific monoclonal
antibodies

Tamara J. van Steega, Kirsten Riber Bergmanna, Nazzareno Dimasib, Kris F. Sachsenmeierc, and Balaji Agoramd

aLAP&P, Leiden, the Netherlands; bAntibody Discovery and Protein Engineering, Medimmune, LLC, Gaithersburg, MD, USA; cOncology Research,
MedImmune, LLC, Gaithersburg, MD, USA; dClinical Pharmacology/DMPK, MedImmune, LLC, Mountain View, CA, USA

ARTICLE HISTORY
Received 10 July 2015
Revised 22 December 2015
Accepted 7 January 2016

ABSTRACT
Targeting multiple receptors with bispecific antibodies is a novel approach that may prevent the
development of resistance to cancer treatments. Despite the initial promise, full clinical benefit of this
technology has yet to be realized. We hypothesized that in order to optimally exploit bispecific antibody
technology, thorough fundamental knowledge of their pharmacological properties compared to that of
single agent combinations was needed. Therefore, we developed a mathematical model for the binding of
bispecific antibodies to their targets that accounts for the spatial distribution of the binding receptors and
the kinetics of binding, and is scalable for increasing valency. The model provided an adequate
description of internal and literature-reported in vitro data on bispecific binding. Simulations of in vitro
binding with the model indicated that bispecific antibodies are not always superior in their binding
potency to combination of antibodies, and the affinity of bispecific arms must be optimized for maximum
binding potency. Our results suggest that this tool can be used for the design and development of the
next generation of anti-cancer bispecific compounds.
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Introduction

Targeted anti-cancer approaches often lead to development of
resistance and a decrease in patient response.1 The use of com-
binations of targeted therapeutics may be a way to avoid resis-
tance and lead to greater efficacy.2 In this context, greater
efficacy could arise from one or both of 2 mechanisms. First, a
combination of agents might affect a greater overall fraction of
tumor cells within a heterogeneous population. Alternatively,
concomitant targeting of 2 or more pathways known to medi-
ate reciprocal tumor “escape” pathways could prevent net sur-
vival of tumor through either pathway.

Affecting two targets in the same treatment regimen can be
achieved by combination treatment of (monospecific) monoclo-
nal antibodies (mAbs) or by engineering bispecific antibodies
(BSAbs), which are expected to have an advantage over combi-
nation antibodies in targeting multiple pathways because of what
is termed the “avidity hypothesis.” Specifically, this hypothesis
predicts that increased avidity arising from binding of 2 recep-
tors on a target cell leads to greater efficacy than combination
therapy with 2 antibody molecules, each binding only a single
target receptor.3 This hypothesis has been actively pursued by
antibody engineers; for example, molecules targeting both insu-
lin-like growth factor 1 receptor (IGF1R) and the epidermal
growth factor receptor (EGFR) have been reported, including
tetra-valent BSAbs and an antibody-mimetic construct
(avimer).4,5 Whereas a number of EGFR-IGF1R targeting bispe-
cific agents have been described, with many showing higher in
vitro and in vivo efficacy than either combination of antibodies

or individual antibodies, none has demonstrated a dramatic
improvement in efficacy in clinical trials when compared to
combination treatment directed at the same set of targets.4–8 The
reasons for the lack of this translation from a hypothesis to clini-
cal benefit is unclear, but could possibly be related to limitations
in the design of the BSAbs, choice of the target patient popula-
tion, and/or dose of antibody administered to patients.

We hypothesized that a mathematical analysis of the BSAb-
receptor system in a tumor-like setting may shed light on this
discrepancy. Over the years, a number of mathematical models
have been suggested to explore the multivalent binding of anti-
bodies to their target receptors.9–13 Kaufmann calculated the
equilibrium constants for a bivalent molecule (e.g. a mAb) while
taking into account spatial limitations in binding.9 Spatial limi-
tations dictate that simultaneous attachment of both arms of a
BSAb will only occur if a second receptor is in the vicinity of
the first receptor. M€uller published a dynamic model for biva-
lent binding according to the same principles.10 An important
feature of this model is the probability of bivalent binding,
which is calculated based on receptor density of a single recep-
tor type and the distance between the 2 arms of the mAb.

More recently, mathematical models that capture heteroge-
neous bivalent binding, thus binding to 2 different receptor
types, were published by Dold�an-Martinelli et al and Harms
et al.11,12,14 In the model proposed by Harms,12 binding to the
cell surface is affected by the concentrations of BSAbs and its
receptors, the binding constants and an avidity factor, but the
model does not take into account spatial limitations. The model
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described by Dold�an-Martinelli11 does take into account the
restriction in binding due to the limited availability of a second
binding receptor; however, it does not include the influence of
receptors on non-tumor cells. As such, none of the models
mentioned above can describe multivalent binding of a BSAb
to 2 different receptors with different expression densities on
tumor cell surface while accounting for presence of other non-
tumor – “decoy” - cells with different receptor expression den-
sities. Our model is the first to capture all of these processes in
a single mathematical binding model for BSAbs.

Here, we describe the development of a mathematical model
for binding of BSAbs to their targets. The model includes spatial
limitation of bivalent binding and allows the exploration of het-
erogeneous bivalent binding which may be influenced by varying
receptor densities at the cell level, the presence of decoy cells, and
BSAb affinities. The model was evaluated using in vitro data gen-
erated internally and from literature. We used the model to com-
pare the performance of monovalent BSAbs with combination
antibodies and tried to answer the following questions: 1) is the
avidity hypothesis universally true or are there conditions under
which bispecifics are only as good as (or even worse than) combi-
nation antibodies?; 2) what is the dependence of the overall bind-
ing potency on system factors such as receptor density and
presence of “decoy cells”?; and 3) how can this understanding be
used in designing optimal BSAb for a particular application?

Results

Virtual experiments: definitions and simulation conditions

Upon administration, an antibody will interact with its target
receptors on the tumor. Often, receptors of the same type are
expressed on cells other than tumor cells themselves. In this con-
text non-tumor cells expressing targets are referred to as “decoy”
cells. Thus, an antibody binds in vivo to both target and decoy
receptors. For the simulations in this manuscript, we chose the
EGFR/IGFR receptor combination. This model reflects the clini-
cal setting where EGFR is often over-expressed within certain
tumors (reviewed in Ref. Fifteen), while IGF1R is more widely
expressed in non-tumor tissue than EGFR.15 Virtual experi-
ments were performed in which binding for a monovalent bispe-
cific to tumor cells expressing EGFR and IGFR was assessed in
the absence and presence of decoy cells. Combination treatment
of EGFR and IGFR mAbs was used as a benchmark for compari-
son. For the sake of simplicity, it was assumed that maximiza-
tion of binding to both EGFR and IGFR on tumor cells was
beneficial for efficacy of treatment and binding to any receptor
on decoy cells did not lead to efficacy. Total target binding was
defined as the sum of EGFR and IGF1R binding on tumor.

Model provided adequate description of in-house and
literature data

Fig. 1 (A-C) compare model evaluation against in vitro
binding data and Fig. 2 is a comparison against literature-
reported data. The only adjusted parameter in this evalua-
tion is the “reaction volume,” which was adjusted for each
of the 2 cases (see Supplement S3 and the methods section
on model validation). Overall, the model adequately

captured the observed binding for the different cell types
and the different mAbs and BSAbs. Furthermore, the model
adequately predicted the experimental total binding data
from the Harms et al paper published in 2012 (Fig. 2).14

Total binding (black solid line) is the sum of bivalent (gray
solid line) and monovalent binding (black broken line). A
shift from bivalent to monovalent binding is observed at
higher IgG concentrations (Fig. 3, log M IgG > ¡9). For
high EGFR expression (A431 cells), this shift is observed as
a shoulder in the binding data (»log M IgG D ¡8). This
shift from bivalent binding toward monovalent binding
with increasing concentrations is adequately captured by
the model for all cell types (Fig. 2). These simulations show
that this model can be used to explore properties of a
monovalent BSAb.

Model indicates higher binding potency of BSAbs over
combination therapy (avidity hypothesis) beyond a
threshold receptor density

Fig. 3 shows a comparison of the binding potency of BSAbs
and combination therapy, starting with a concentration of
1 nM each of the IGFR and EGFR components. In this sys-
tem, the receptor density of EGFR on tumor cells was varied
and the IGF1R expression on tumor cells and decoy cells
were assumed to be 10-fold lower and 2-fold higher than
EGFR expression on these cells, respectively. The conditions
were chosen based on relative EGFR/IGFR receptor density
observed in BxPC3 cells (personal communication). The
simulation shows that total binding on tumor cells at low
receptor densities is less for the BSAb compared to combina-
tion treatment (< 105 receptors per cell, panel A), indicating
that the advantage of a BSAb is lost under these conditions.
Panel B shows reduced binding of the BSAb to the decoy
cells compared to the combination treatment at high recep-
tor densities, indicating preferential binding to tumor cells.
Interestingly, binding to decoy cells is reduced to zero for
the BSAb at high receptor densities (>105 pM), indicating
complete preferential binding to the tumor cell as a conse-
quence of avidity. The combination treatment, on the other
hand, distributes equally between the tumor and decoy cells.
Thus, the differentiation between the BSAb and the combi-
nation treatment appears to be directly linked to the receptor
density on tumor cells.

Binding potency of BSAbs is more sensitive to presence of
decoy cells than combination antibodies

Fig. 4 shows the influence of the relative abundance of decoy
vs tumor cells on tumor cell binding. Target and decoy cells
expressed 1 £ 106 and 1.5 £ 106 IGF1R per cell, respectively.
The number of IGF1R and EGFR were assumed to be com-
parable on the tumor cell but not identical to allow for dif-
ferentiation (IGF1R D 0.9*EGFR). With an increase in
decoy-target cell ratio (ccr) from 1–5, a rightward shift is
observed for the concentration-binding curve of the combi-
nation treatment (solid vs. dashed lines) indicating less bind-
ing to the tumor cell at a given drug concentration. In
contrast, the influence of an increase in decoy cells appears
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to be limited for the BSAb as binding under these conditions
as the receptor occupancy is unchanged except at very high
levels of BSAb due to the presence of great number of decoy
cells.

Binding potency of BSAbs is maximized at optimum
affinity

We evaluated the influence of receptor affinity on the binding
potency of BSAbs. Simulations were performed for a high

Figure 2. Model verification against binding data from Harms et al. Simulation of total bound (black solid line), bivalent bound (gray solid line) and monovalent bound
(black dashed line) plotted as the fraction of the maximum signal (y-axis) against antibody concentration (pM) for a parent antibody using the parameters as reported by
Harms et al.14 A. Simulation for U87MG cells with a receptor density of 5.8 £104 receptors/cell; B. Simulation for H1975 cells with a receptor density of 3.6 £ 105 recep-
tors/cell; C. Simulation for A431 cells with a receptor density of 2 £ 106 receptors/cell. The parameters kon and KD were obtained from the original publication. The reac-
tion volume (Vr) was set to the relevant range reported in the publication (3.4 £ 10¡5 L). The effective concentration (Ceff) was adjusted to 0.01 to reflect the observed
binding curve.

Figure 1. Model verification against binding data of a monovalent BSAb and its reference monoclonal antibodies (anti-EGFR or anti-IGF1R) for different cell types (BxPC-3,
H358, NIH3T3) In this simulation, the fraction of the maximal binding signal (left y-axis) was predicted as a function of antibody concentration in nM (x-axis) and plotted
against real-life binding data (MFIR, right y-axis). The purple symbols and lines represent the binding data and model prediction for the monovalent BSAb, respectively.
The red symbols and lines represent the binding data and model prediction for the anti-EGFR mAb, respectively. The green symbols and lines represent the binding data
and model prediction for the anti-IGF1R mAb, respectively. A. Binding to BxPC-3 cells; B. Binding to H358 cells; C. Binding to NIH3T3 (decoy) cells.
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receptor density (»1£106 receptors/cell) on tumor and decoy
cells with decoy-tumor cell ratio of 3. The affinity of BSAb to
EGFR was kept constant and that for IGF1R was varied in the
range 0.1 – 1 £ 106 pM. Total binding to tumor cells is shown
as a function of the antibody concentration (Fig. 5). For a par-
ticular concentration of the antibody, an optimum affinity
range existed, in this case between 1 £ 102 ¡1 £ 104 pM, when
binding to the tumor cells was maximized. At higher affinity,
the BSAb tended to get trapped on decoy cells, thus losing the
advantage of the avidity effect (not shown). At very low affinity,
avidity had little effect, thereby reducing total and IGF1R bind-
ing to tumor cells. It can thus be concluded that an optimum
affinity exists that would maximize binding efficiency for a
BSAb.

Model was applied to design a new anti-EGFR BSAb with
improved therapeutic index

Finally, the model was used to design anti-EGFR BSAb target-
ing different EGFR epitopes that would selectively bind the
tumor cells with high EGFR density (»106 receptors/cell) ,
while avoiding off-target cells such as skin and liver cells, which
have lower EGFR density (»103 receptors/cell), thus providing
an improvement over current anti-EGFR therapies. Simulations
were performed to predict the binding potency of a BSAb as a
function of receptor densities for different BSAb affinities. For
the sake of simplicity, the affinity to both epitopes was assumed
to be the same and the presence of decoy cells was ignored.

In Fig. 6, the total concentration of receptors bound is
plotted against receptor density for BSAb affinities ranging

Figure 3. Combination versus Bispecific treatment: Influence of receptor density on target and decoy binding. A. Simulation of total concentration bound at tumor cells in
a decoy cell scenario with decoy-target cell ratio of 1; B. Simulation of IGF1R concentration bound at decoy cells (decoy-target cell ratio of 1). Simulations were performed
with a fold10- lower receptor density for IGF1R compared to EGFR on tumor cells, which resembles BxPC-3 cells. The receptor density on the decoy cells was assumed to
be 2-fold higher than the EGFR receptor density on tumor cells which resembles the difference between tumor cells (BxPC-3) and decoy cells (NIH3T3).

Figure 4. , Bispecific vs. Combination treatment: Influence of decoy-tumor cell
ratio (ccr). Simulation of total receptor occupancy (y-axis) against antibody concen-
tration (pM). Similar receptor densities for IGF1R and EGFR on tumor cells (EGFR D
1 £ 106 receptors/cell, IGF1R D 0.9 £ 106 receptors/cell) were assumed, which
resembles H-358 cells. The receptor density on the decoy cells was assumed to be
1.5-fold higher than the EGFR receptor density on tumor cells.

Figure 5. Influence of IGF1R affinity on total binding on tumor cells. A surface plot
in which receptor occupancy (%, z-axis) was simulated as function of IGF1R affinity
(pM, x-axis) and antibody concentration (pM, y-axis). Simulation of total receptor
occupancy on the tumor cell. Kd ranges from high (0.1pM) to low (1£106 pM) affin-
ity for IGF1R. The antibody concentration ranges from 100 to 10000 pM. Simula-
tions were performed for a high receptor density (~1£106 receptors/cell) on tumor
and decoy cells with target-decoy cell ratio of 3. The affinity for EGFR was kept con-
stant to 1 nM (medium affinity).
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from 0.75 –750 pM. At high affinity (Kd � 75 nM), binding
to both the low and high density cells is high, whereas at a
lower affinity – 750 nM – binding to tumor cells is high,
but that to skin and liver cells is minimized (receptor occu-
pancy »20%). This results from the effect of avidity in the
“tumor” tissues due to high receptor density and the lack of
avidity in “healthy” tissues due to low receptor density.

Discussion

An emerging approach to the treatment of cancer is the use of
multi-specific antibodies, which may maximize treatment
response, while minimizing side effects.16 While early investiga-
tions have indicated that this approach has promise, the ideal
combination of tumor (system) characteristics and antibody
(design) parameters to optimize its value are not yet fully
understood. We developed a mathematical model of in vitro
target binding of BSAbs to provide a starting point for

quantitative investigation into this problem. Simulations have
provided interesting insights into the design aspects of this class
of molecules. We also applied the model in the design of a
BSAb with potentially improved tumor-targeting properties
compared to a conventional antibody.

In contrast to some previous models,12–14 a distinction is
made between the rate and the space in which bivalent binding
occurs and the distribution of different receptors in the current
approach. Furthermore, binding to tumor and decoy cells is
distinctly modeled, potentially aiding in understanding the
ability of BSAbs in maximizing the therapeutic index over
mAbs. Once calibrated, verification against available binding
data showed the model’s ability to reproduce homogenous
bivalent binding (Fig. 2, literature data) and heterogeneous
bivalent binding (Fig. 1, in-house experimental data). Despite
the large variability in the experimental data, the general trend
in the data was adequately captured by the model.

We then used the model to try and understand the complex
interactions of a BSAb with its cognate receptors in a tumor-
like setting. For the sake of simplicity, we only considered the
following aspects of this system: receptor density, decoy-target
cell ratio, and antibody affinity under physiologically-relevant
conditions. Even under these simplified conditions, simulations
using the model highlighted non-intuitive behaviors of the sys-
tem, which are important for design considerations. For exam-
ple, Fig. 3 indicates that under conditions of no decoy
receptors, for low receptor densities (<104 receptors per cell),
BSAb are less potent than combination treatment. At low
receptor densities, the BSAb gets “trapped” on one of its recep-
tors and the other arm is unable to bind due to lack of receptors
in the vicinity. Under these conditions, a mAb combination
performs better due to lack of steric hindrance. Beyond »105

receptors/cell, due to the influence of avidity, monovalent bind-
ing is greatly minimized (Fig. 3B), whereas the combination
therapy does not have this advantage. These receptor density
values fall within the relevant ranges observed for in vitro cell
systems for oncology (unpublished flow cytometric observa-
tions; Table 1), and therefore the simulations have relevance
for interpreting in vitro and clinical results.

Off-target binding is generally considered to reduce the ther-
apeutic index, but, compared to combination treatment, this
may be less relevant to a BSAb (Fig. 4). In the simulations, the
BSAb was shown to be less susceptible to the presence of a large

Figure 6. EGFR therapy, total concentration bound for high-high and low-low
affinity compounds. Receptor binding as a function of receptor density on the cell
surface: the influence of bivalent binding with different affinities. The green, red,
blue and black solid lines represent binding of the antibody at an affinity of 750,
75, 7.5 and 0.75 nM, respectively. The black vertical lines indicate the receptor den-
sity for decoy cells (low receptor density D 104 receptors/cell) and target cells
(high receptor densityD 106 receptors/cell).

Table 1. Overview of parameters and origin.

Drug/System Parameter Value Origin

Cell radius rc (cm) 7.5£ 10¡4 Kaufmann et al., 19929

Access radius r (cm) 4.9£ 10¡6 Calculation based on antibody lengthA

Reaction volume Vr (L) 7.9 £ 10¡10 Obtained by calibration
On rate binding kon (1/pM/s) 2.2 £10¡6 Krippendorf et al., 2012, Patel et al., 2010 8,27,28

EGFR IGF1R
Pani-X affinity KD (pM) 261 — In house experiments (BIAcore)
TZ-1 affinity KD (pM) — 540
BSAb affinity KD (pM) 253 297
BxPC-3 cells Rcell (receptors/cell) 186013.6 17679.0 In house experiments (FACS assay with QIFIKIT)
H358 cells Rcell (receptors/cell) 38260.5 23106.5
NIH3T3 cells Rcell (receptors/cell) 231.3 106317.8

AActual access radius was calculated to be 49 A
�
(4.9£ 10¡7 cm) based on the length antibody being~70 A

�
. To account for flexibility and cross linking capacity, in the simu-

lations an apparent access radius of 4.9 £ 10¡6 cm was used [Ref Kaufmann and Muller].

MABS 589



number of decoy cells than combination treatment. Conse-
quently, the model can be used to design molecules that mini-
mize side-effects.17–23

These two model results suggest that BSAbs may show
increased tumor binding and efficacy compared to combina-
tion treatment, when treating tumors with higher concen-
trations of the non-decoy target and high decoy to tumor
cell ratios. One could speculate that differences between
combination treatment and bispecifics are unlikely to be
observed if the patient population for which combination
treatment works is selected. Choosing the ‘right’ patient
population is essential in order to show the benefit of bispe-
cific molecules and this may be one of the reasons for the
lack of higher efficacy observed in clinical trials of BSAbs
compared to mAbs.

Apart from identifying the system (tumor) properties
optimal for BSAb treatment, the model also identifies opti-
mal antibody properties to maximize therapy. For example,
the model indicates that higher affinity may not necessarily
be suitable for preferential tumor targeting, and a lower
affinity may provide a higher therapeutic index (Fig. 5 and
6). Both these simulations illustrate the existence of an opti-
mum affinity that is neither too high nor too low. In Fig. 5,
high affinity to the decoy receptor results in the BSAb being
trapped in decoy cells – very low affinity to the decoy
receptor results in lack of avidity and the antibody essen-
tially functions as a monospecific antibody. The optimal
affinity spans a wide range (>100 -fold) indicating that
maturation of affinity to decoy receptor may not need to be
resource-intensive. In Fig. 6, very high affinity results in the
loss of specificity to the tumor. To our knowledge, this sim-
ulation is the first instance where it has been mathemati-
cally shown that the hypothesis of higher selectivity toward
high receptor expressing cells is possible. Verification of
these predictions are available from studies with early pre-
clinical anti-EGFR BSAbs that suggest that the use of multi-
epitopic binding antibodies might lead to preferential
targeting to EGFR-overexpressing tumors rather than
normal skin.25

Our simulation studies enable selective use of multi-spe-
cific antibodies through an in-depth examination of how and
when target density and affinity yield improved target bind-
ing. Without such an analysis it is possible that a “more is
better” approach may be assumed in the relationship
between a therapeutic antibody and its target(s). For exam-
ple, the simple expression of both antibody targets within a
given tumor, regardless of their densities, could lead to a
na€ıve selection of indications or prospective patients, with
no regard to how overexpression of one target could actually
yield predominantly single-target binding. Assessment of tar-
get expression density as described in this study will allow
the rational and more precise identification of the patients
who are likely to benefit from a particular multi-specific
agent, and help design antibodies for specific patient popula-
tions. These conclusions can be extended to the field of
multi-targeted antibody drug conjugates also.24

One limitation of the model is that it currently only
relates the system and design parameters to overall binding
potency against the different targets. How this binding

translates to cell killing efficacy is as yet unknown. Also, for
the sake of simplicity, the model assumes that the target
expression levels do not vary between tumor cells in patients.
It is known that this is not always true in patients, even
within a single tumor, and as such this may affect the effi-
cacy of a BSAb compared to combination treatment.26 It is
important to note that the current analysis of the model is
non-exhaustive. For a more comprehensive analysis of in
vivo tumor efficacy, other system factors (e.g.,, variability in
receptor expression across tumor/decoy cells, receptor recy-
cling, pharmacokinetics of the BSAb) all need to be taken
into account. This model provides a convenient starting
point for these explorations.

In conclusion, we developed a new model to describe the
binding of BSAbs to their target that accounts for the spatial
distribution of the binding receptors and the kinetics of
binding, and is scalable for increasing valency. The model
provided adequate description of internal and literature-
reported data on bispecific binding. Model predictions
provided interesting, previously unreported, properties of
bispecific binding systems, suggesting that this tool can be
invaluable in the design and development of the next genera-
tion of anti-cancer medicines.

Materials and methods

Computation

Development of the model and simulations were performed
using MATLAB software (version 7.11.0, release 2010b, Math-
Works, Natick, MA, USA). The model code in MATLAB is
provided in S1.

Model for bivalent binding of monovalent BSAbs to cell
surface receptors

The model for bivalent binding of monovalent BSAbs to cell
surface receptors is an extension of the model for binding of
mAbs published by M€uller et al.10 Bivalent binding of antibod-
ies to soluble receptors is dependent on antibody concentration,
receptor concentration and binding parameters. For surface-
bound receptors, the average distance between receptors may
be too large for all receptors to be bound bivalently. Conse-
quently, spatial limitation of binding was implemented in the
model. A BSAb is an antibody with 2 arms that bind 2 different
receptors. The affinities for the targets and the abundance of
both receptor types were considered relevant for bivalent bind-
ing. The developed model consists of 2 parts: 1. probability of
bivalent binding and 2. kinetics of bivalent binding.

Probability of bivalent binding

The model included the probability of having only one receptor
type per sphere. The probability of binding was obtained by
dividing the cell surface into areas swept out by the antibody
(spheres). The probability of bivalent binding equation are
shown in the supplementary materials (S2). It was assumed
that: 1) bivalent binding requires 2 receptors in a sphere; 2)
probability of binding is dependent on the amount of receptors
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in the sphere; 3) receptors on the cell surface are Poisson dis-
tributed; and 4) the concentration of receptors accessible
depends on receptor density on cell surface and the access
radius.

Kinetics of bivalent binding

At low receptor density, not all receptors will have a second
receptor in the vicinity to facilitate bivalent binding. Five types
of reactions exist for a BSAb: monovalent binding to either
EGFR or IGF1R only, monovalent binding to either EGFR or
IGF1R with the possibility of a second binding step and biva-
lent binding to both. Six ordinary differential equations were
used to reflect this and are provided in the supplementary
materials (S3). A model for the combination of parental anti-
bodies (combination treatment) was implemented according to
the same principles. As such, 3 reactions per mAb were used:
monovalent binding (with or without possible second binding
step) and bivalent binding.

Parameter values

Simulations were performed from a starting concentration of
the antibody until steady state binding was reached unless
reported otherwise. The starting concentrations of antibody
were in the range of those used in the actual experiments with
BSAbs.

Meaningful simulations were performed using parameter
values that were considered to be relevant for the system under
investigation. Parameter values were obtained from literature,
from physiological concepts or from experiments (Table 1).

The two parental mAbs (TZ-1 and Pani-X) used to con-
struct the BSAb, each with 2 identical binding arms, either
anti-EGFR or anti-IGF1R, were used as a reference in the bind-
ing experiments.

Experiments were performed to determine the number of
receptors on target and decoy cells.

Cell lines were chosen to represent cancer indications of rel-
evance to EGFR and IGF1R clinical approvals and trials. For
example, the NCI-H358 non-small cell lung carcinoma cell line
is known to harbor a mutation in the Kras oncogene, as well as
a deletion in the p53 tumor suppressor gene. Both of these
genes are known to be important in human disease. Similarly,
the BxPC3 pancreatic adenocarcinoma cell line has been used
to study at least one other EGFR-IGF1R BSAb.4 The murine
NIH 3T3 mouse cell line was engineered to over-express
human IGF1R and was chosen as an appropriate “decoy” cell
line because it expresses no human EGFR. The relative receptor
densities between actual tumor tissues and that of model tumor
cell lines are difficult to compare given that tumors require
enzymatic dissociation, which can influence conclusions about
actual in situ receptor density. However, cultured xenograft cell
lines were routinely used pre-clinically to model both anti-
EGFR (e.g., panitumumab, cetuximab) as well as anti-IGF1R
antibodies. Likewise, the decoy-target cell ratio of 1:1 reported
here was chosen for simplicity. The cytotoxicity data shown at
this ratio was consistent with model predictions when tested at
other ratios.

The following parameters were derived: 1) The dissociation
rate (koffx, koffy) was calculated (KD D koff 6 kon); 2) the volume
of the sphere (Vs) was calculated based on the access radius; 3)
the cell surface was obtained from the cell radius (rc); and 4)
the receptor density calculated using the cell surface and the
number of receptors per cell.

Model qualification

The model validity was assessed prior to the simulations.
Firstly, the model was verified against in-house binding data
generated for an anti-EGFR mAb, an anti-IGF1R mAb and a
BSAb targeting both. The cell lines expressed varying levels for
EGFR and IGF1R. For BxPC-3 cells, a high and medium
expression level was observed for EGFR and IGF1R, respec-
tively (Table 1). Adequate prediction of the observed binding
curves was obtained by adjusting the reaction volume only
(Table 1, Fig. 1).

Harms et al. published data obtained from flow cytometry
experiments for bivalent binding of IgG and reported monova-
lent binding parameters, obtained using KinExA.14 The data
and parameters available provided an excellent opportunity to
verify the model for bivalent binding of parental arm antibod-
ies. Our model adequately predicted the data for IgG binding
to cell lines representing low, medium and high expression lev-
els of EGFR (Fig. 2). The reaction volume (Vr D 3.4 £ 10¡5 L,
the binding parameters (kon, koff, KD) and the receptor density
on the different cell types were implemented based on those
reported. The effective concentration was modified to resemble
the more pronounced monovalent binding at higher drug con-
centrations (Ceff D 0.01).
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