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Temporal variation of genetic composition in
Atlantic salmon populations from the Western
White Sea Basin: influence of anthropogenic
factors?
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Abstract

Background: Studies of the temporal patterns of population genetic structure assist in evaluating the
consequences of demographic and environmental changes on population stability and persistence. In this study,
we evaluated the level of temporal genetic variation in 16 anadromous and 2 freshwater salmon populations from
the Western White Sea Basin (Russia) using samples collected between 1995 and 2008. To assess whether the
genetic stability was affected by human activity, we also evaluated the effect of fishing pressure on the temporal
genetic variation in this region.

Results: We found that the genetic structure of salmon populations in this region was relatively stable over a
period of 1.5 to 2.5 generations. However, the level of temporal variation varied among geographical regions:
anadromous salmon of the Kola Peninsula exhibited a higher stability compared to that of the anadromous and
freshwater salmon from the Karelian White Sea coast. This discrepancy was most likely attributed to the higher
census, and therefore effective, population sizes of the populations inhabiting the rivers of the Kola Peninsula
compared to salmon of the Karelian White Sea coast. Importantly, changes in the genetic diversity observed in a
few anadromous populations were best explained by the increased level of fishing pressure in these populations
rather than environmental variation or the negative effects of hatchery escapees. The observed population genetic
patterns of isolation by distance remained consistent among earlier and more recent samples, which support the
stability of the genetic structure over the period studied.

Conclusions: Given the increasing level of fishing pressure in the Western White Sea Basin and the higher level of
temporal variation in populations exhibiting small census and effective population sizes, further genetic monitoring
in this region is recommended, particularly on populations from the Karelian rivers.
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Background
Most empirical studies of genetic structure in natural
populations use a single sampling time point, assuming
that the genetic pattern is stable over time [1]. However,
temporal fluctuations in the allelic frequencies due to
genetic drift or to habitat changes can occur, particularly
in small populations [2]. Compared to large populations,
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small populations have a much higher possibility of losing
genetic diversity due to drift, and thus, they may experi-
ence accumulating effects of inbreeding, which results in a
relatively low fitness [3,4]. However, the negative effects of
inbreeding may be lessened by gene flow [5], while simul-
taneously decreasing genetic divergence between popula-
tions [6]. Thus, knowledge regarding the strength of the
evolutionary forces such as gene flow and random genetic
drift in the shaping of genetic structure in natural popula-
tions has important implications for effective species
conservation and management [3,7].
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Salmonids, particularly Atlantic salmon (Salmo salar L.),
show great variation in philopatry (homing) and dispersal
(straying) [8], which make them good model systems for
the study of such evolutionary processes. They demon-
strate a well-known homing ability [9], which combined
with the discrete nature of their rearing habitat, results
in their structuring into genetically distinct popula-
tions e.g., [1,10-12]. However, spatially segregated sal-
mon populations remain interconnected via dispersal
[13]. From a practical perspective, the use of temporally
replicated samples may assist in the comparison of histor-
ical and contemporary patterns of population dispersal, in
the detection of changes in population genetic structure
and diversity over time, and in the estimation of the level
of gene flow between populations, resulting in the selec-
tion of proper management units for conservation [14,15].
Moreover, a temporal approach may help to evaluate the
genetic consequences of physical and biological environ-
mental changes [16], such as dam building [17], stocking
and hatchery supplementations [18,19].
Studies of temporal variation in Atlantic salmon

based on neutral markers involve mostly North American
[1,10,20,21] and some European salmon populations
[18,22-25]. In general, the North American anadromous
and freshwater salmon populations have been shown to
be temporally stable [1,20,26]. In addition, relative tem-
poral stability has been shown in European anadromous
[22,24,27,28] and freshwater [23] salmon. However, tem-
poral genetic instability was also observed in some salmon
populations on both sides of the Atlantic due to different
reasons, such as variations in the environmental conditions,
farm escapees, and pollution [10,25,29].
Atlantic salmon populations of the Western White Sea

(particularly of the Kola Peninsula) are generally considered
to be stable and less affected by human activities [30]. This
region harbours more than 100 salmon rivers, most of
which are relatively small with a suitable spawning habitat
for 50 to 4000 spawners [31]. Taken together, they have an
important effect on salmon reproduction in this region
[31]. In addition, there are several larger river systems, such
as the Ponoi and Varzuga rivers, which have 30 and 75
thousand ascending salmon spawners every year, respect-
ively [31]. These rivers are also a popular destination for
angling tourists. Previous population genetic studies exam-
ining single time point samples have revealed a strong sub-
division in regional groups with different levels of within
group genetic divergence and different patterns of gene
flow/genetic drift in each group [32]. In particular, anadro-
mous salmon spawning in the rivers of the Kola Peninsula
exhibit a low level of genetic divergence, demonstrating
significant isolation by distance [32]. Given the increasing
level of human activities in the salmon rivers of the
Western White Sea Basin within the past decade e.g.,
[33,34], the question remains to what degree these
activities influence the genetic variation of Atlantic
salmon populations in the region.
Here, we characterised the level of temporal genetic

variation in 16 anadromous and 2 freshwater Atlantic
salmon populations spawning in the rivers of the
Western White Sea Basin. We subsequently evaluated
the effect of the fishing pressure on the temporal genetic
variation in this region. Our specific aim was to deter-
mine the level of genetic stability in salmon populations
in the Western White Sea, to assess whether the genetic
stability was affected by the increasing level of the fishing
pressure and, on the basis of the obtained results, to
provide management recommendations for conservation.

Results
A total of 326 alleles were observed across all loci, with
locus allele number ranging from 71 in locus Ssa404 to
9 alleles in locus Ssa412. The mean level of genetic di-
versity across 14 microsatellite loci varied from relatively
low in freshwater populations of the Western White Sea
Basin (mean HE = 0.45; mean AR = 3.80) to relatively high
in the anadromous populations of the Kola Peninsula
(mean HE = 0.71; mean AR = 9.38) (Table 1). In contrast,
the level of population genetic differentiation (FST)
exhibited the opposite pattern. The highest genetic dif-
ferentiation was observed among the freshwater popula-
tions of the Western White Sea Basin (FST = 0.199), and
the lowest was found in the anadromous populations
of the Kola Peninsula (FST = 0.012). Five populations
(Danilovka 2008, Pyalitsa 2008, Strelna 2008, Indera
2001, and Pisto 1999) were found to deviate from
Hardy-Weinberg equilibrium after correcting for mul-
tiple (significance) tests. However, these results were
treated as negligible due to the occurrences of both
heterozygote deficiency and excess at a few loci (see
Suppl. online Additional file 1 for details). Similarly,
MICROCHECKER indicated the potential occurrence
of null alleles at just 10 locus-population combina-
tions (out of 532 tests, Suppl. online Additional file 2),
suggesting that the occurrence of common null alleles
was unlikely to explain the deviations.

Temporal variation
The population genetic structure of salmon from northwest
Russia was characterised by a relatively high temporal sta-
bility. Overall, the variation among samples due to the tem-
poral component was nearly 11 times lower than that due
to a spatial component as revealed by the AMOVA test
(Table 2). For the anadromous populations of the Western
White Sea Basin, the overall proportion of temporal vs.
spatial variation was 1:3, which varied from 1:3.2 for the
Kola Peninsula to 1:1.9 for the Karelian White Sea coast
salmon. In contrast, for the freshwater populations of the
Western White Sea Basin, the variation was nearly 7 times



Table 1 Atlantic salmon populations in the basin of the White Sea, sampling locations, year, abbreviation (Abbr.),
diversity indices: expected heterozygosity (HE), observed heterozygosity (HO), allelic richness (AR) and inbreeding
coefficient (f), the level of fishing pressure (Fishing pressure) and estimated census size (Size category)

Population Sampling year Abbr. Coordinates Sample size HE HO AR f Fishing pressure1 Size category2

Anadromous

Kola Peninsula

Kachkovka 2008 Kach08 67°24’N40°48’E 66 0.73 0.72 9.52 0.007 2 3

Kachkovka* 2001 Kach01 67°26’N40°56’E 41 0.73 0.70 9.81 0.047 3 3

Ponoi 2008 Ponoi08 67°07’N40°55’E 93 0.73 0.73 9.92 −0.003 1 5

Ponoi 1995 Ponoi95 67°08’N41°04’E 38 0.72 0.73 9.63 −0.008 1 5

Danilovka 2008 Dan08 66°45’N40°59’E 43 0.70 0.68 8.42 0.023 2 1

Danilovka* 2001 Dan01 66°45’N40°58’E 44 0.71 0.72 9.12 −0.009 1 1

Sosnovka 2008 Sos08 66°31’N40°32’E 46 0.71 0.70 9.06 0.040 2 2

Sosnovka 2001 Sos01 66°31’N40°34’E 30 0.74 0.70 9.98 −0.020 1 2

Babya 2008 Baby08 66°25’N40°34’E 41 0.71 0.73 9.27 0.022 2 3

Babya* 2001 Baby01 66°24’N40°08’E 46 0.73 0.71 10.14 0.012 1 3

Likhodeevka 2008 Likh08 66°21’N40°09’E 46 0.72 0.71 9.56 0.012 2 2

Likhodeevka* 2001 Likh01 66°21’N40°08’E 47 0.71 0.71 9.45 0.024 1 2

Pulonga (Kola) 2008 PuK08 66°16’N39°57’E 76 0.70 0.69 9.43 0.010 3 3

Pulonga (Kola)* 2001 PuK01 66°17’N39°56’E 47 0.71 0.70 9.30 −0.038 2 3

Pyalitsa 2008 Plc08 66°11’N39°29’E 26 0.74 0.76 9.65 0.029 3 2

Pyalitsa 2001 Plc01 66°11’N39°30’E 46 0.73 0.71 9.99 0.030 3 2

Chapoma 2008 Cha08 66°07’N38°50’E 49 0.71 0.69 9.73 −0.006 3 3

Chapoma 2001 Cha01 66°06’N38°50’E 42 0.71 0.69 9.36 0.034 4 3

Strelna 2008 Str08 66°04’N38°38’E 63 0.70 0.71 9.92 −0.028 3 3

Strelna 2001 Str01 66°04’N38°38’E 47 0.72 0.69 9.89 0.018 3 3

Chavanga 2008 Chv08 66°09’N37°46’E 41 0.70 0.72 9.34 −0.024 3 3

Chavanga 2001 Chv01 66°07’N37°44’E 49 0.68 0.67 8.05 0.090 4 3

Indera 2008 Ind08 66°14’N37°08’E 60 0.68 0.69 7.99 0.002 3 1

Indera 2001 Ind01 66°14’N37°09’E 45 0.70 0.64 8.73 −0.006 2 1

Varzuga 2008 Var08 66°24’N36°37’E 51 0.71 0.71 9.29 −0.057 4 5

Varzuga 1999 Var99 66°28’N36°28’E 37 0.73 0.73 9.59 −0.100 4 5

Karelian White Sea

Nilma 2005 Nil05 66°29’N33°08’E 32 0.63 0.67 5.52 −0.057 4 1

Nilma* 1999 Nil99 66°29’N33°08’E 42 0.65 0.71 4.92 −0.100 5 1

Pulonga (Karelia) 2005 PuW05 66°18’N33°15’E 56 0.62 0.66 5.32 −0.064 4 1

Pulonga (Karelia)* 1999 PuW99 66°18’N33°15’E 43 0.61 0.63 5.17 −0.026 4 1

Pongoma 2005 Png05 65°17’N34°00’E 41 0.69 0.67 7.69 0.030 3 1

Pongoma* 1999 Png99 65°17’N34°00’E 50 0.68 0.67 7.23 0.013 3 1

Freshwater

Pisto 2005 Pis05 65°21’N30°33’E 39 0.52 0.52 4.48 0.021 5 1

Pisto 1999 Pis99 65°16’N30°33’E 55 0.53 0.52 4.63 −0.002 5 1

Kamennaya 2005 Kam05 64°28’N30°24’E 29 0.39 0.38 3.11 −0.071 3 1

Kamennaya 1999 Kam99 64°28’N30°24’E 57 0.38 0.41 2.98 0.022 3 1

*Data taken from Tonteri et al. [32].
1Fishing pressure: 1–no catch in a river; 2-< 15% of spawners caught; 3-16-25% of spawners caught; 4-26-40% of spawners caught; 5-41-70% of spawners caught
(A.E. Veselov, A.G. Potutkin–personal observations, Additional file 4: Table S1).
2Size category: 1-100-500; 2-500-1000; 3-1000-5000; 4-5000-10000; 5-10000-50000 ascending adults/year [35-38].

Ozerov et al. BMC Genetics 2013, 14:88 Page 3 of 15
http://www.biomedcentral.com/1471-2156/14/88



Table 2 Analysis of molecular variance (AMOVA) in the temporal samples of Atlantic salmon populations from
northwest Russia

Sample Number of
populations

Number
of groups

Percentage of variance P

Within population Among temporal samples Among spatial samples

Whole data (Kola + Karelian White
Sea + Karelian freshwater)

53 26 86.23 1.17 12.60 ***

White Sea basin (Kola + Karelian White
sea + Karelian White Sea freshwater)

36 18 91.83 0.99 7.18 ***

White sea (Kola +White Sea Karelia) 32 16 96.79 0.80 2.41 ***

Anadromous:

Kola peninsula 26 13 98.88 0.27 0.85 ***

Kachkovka (01 + 08) 2 1 100.00 0.00 ns

Ponoi (95 + 08) 2 1 100.00 0.00 ns

Danilovka (01 + 08) 2 1 99.55 0.45 *

Sosnovka (01 + 08) 2 1 99.48 0.52 ns

Babya (01 + 08) 2 1 99.76 0.24 ns

Lihodeevka (01 + 08) 2 1 99.76 0.24 ns

Pulonga (Kola) (01 + 08) 2 1 99.77 0.23 ns

Pyalitsa (01 + 08) 2 1 99.96 0.04 ns

Chapoma (01 + 08) 2 1 99.49 0.51 *

Strelna (01 + 08) 2 1 99.64 0.36 *

Chavanga (01 + 08) 2 1 99.14 0.86 **

Indera (01 + 08) 2 1 99.91 0.09 ns

Varzuga (99 + 08) 2 1 99.78 0.22 ns

Karelian White Sea 6 3 90.45 3.31 6.25 ***

Nilma (99 + 05) 2 1 94.86 5.14 ***

Pulonga (White sea) (99 + 05) 2 1 97.32 2.68 ***

Pongoma (99 + 05) 2 1 96.88 3.12 ***

Freshwater:

White Sea 4 2 74.33 3.27 22.40 ***

Pisto (99 + 05) 2 1 93.61 6.39 ***

Kamennaya (99 + 05) 2 1 99.61 0.39 ns

Lake Onega (Baltic) 12 5 82.42 2.12 15.46 ***

Kumsa (00 + 04) 2 1 95.12 4.88 ***

Pyalma (01 + 04) 2 1 98.81 1.19 ***

Lizhma (99 + 02 + 04) 3 1 98.44 1.56 **

Shuya (99 + 04) 2 1 98.06 1.94 ***

Tuba (01 + 04) 2 1 96.02 3.99 ***

Lake Ladoga (Baltic) 6 3 91.76 2.16 6.08 ***

Hiitola (99 + 06) 2 1 99.46 0.55 ns

Tulema (99 + 06) 2 1 98.46 1.54 ***

Sysky (99 + 06) 2 1 96.11 3.89 ***

*P < 0.05; **P < 0.01; ***P < 0.001; ns–non significant.
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lower due to the higher spatial component (Table 2). In
total, a small but significant variation between the tem-
poral samples was detected in eight of the 18 populations
of the Western White Sea Basin: seven anadromous
(4 from the Kola Peninsula: Danilovka, Chapoma, Strelna,
and Chavanga; and 3 from the Karelian White Sea coast:
Nilma, Pulonga, and Pongoma) and one freshwater
(Pisto). The other 10 populations of the Western White



Ozerov et al. BMC Genetics 2013, 14:88 Page 5 of 15
http://www.biomedcentral.com/1471-2156/14/88
Sea Basin were found to be temporally stable. The level of
temporal variation in the anadromous populations of the
Kola Peninsula did not exceed 0.86%, whereas the level of
temporal variation in the anadromous populations of the
Karelian White Sea coast was higher and ranged from
2.68% to 5.14% (Table 2). A small but significant pro-
portion of variation explained by temporal differences
(1.19%-6.39%) was observed in all of the Karelian fresh-
water salmon populations, except for Kamennaya (White
Sea Basin) and Hiitola (Lake Ladoga) (Table 2). The rela-
tive stability of the genetic composition between the
earlier and more recent samples in the Western White
Sea Basin was further supported by the low average level
of genetic differentiation (FST) among the temporal sam-
ples within each river (FST = 0.012 ± 0.005), which was
nearly 7 times lower than that between the spatial
samples (FST = 0.082 ± 0.004). Pairwise genetic differenti-
ation (FST) among rivers was not significant in 121 out of
612 tests, all of which involved anadromous populations
of the Kola Peninsula (Suppl. online Additional file 3). In
general, the level of temporal variation was higher in
populations with census sizes of fewer than 500 ascend-
ing breeders, in comparison with populations with larger
census sizes (Figure 1).
Power analyses tests [39,40] demonstrated that given

the number of loci, their polymorphism and the sample
sizes used in the study, the probability for detecting of
genetic differentiation as low as FST = 0.0005 was over
97%. When FST was set to zero, the proportion of false
significances (α) was 4.8%, which is close to the
intended value of 5%. Given that the lowest signifi-
cant FST value observed in our data was 0.0015, it is
therefore likely that small but significant FST values
detected in our study reflect the true level of genetic
Figure 1 Box-plot showing the level of temporal variation
(%, as revealed by AMOVA) in populations of different
population census size category (see Table 1). Horizontal line,
open rectangle, and whiskers indicate the median, 25th and 75th
quartiles, and non-outlier range, respectively.
differentiation. Furthermore, the null hypothesis of gen-
etic homogeneity was rejected using both χ2 and Fisher’s
approaches (P < 0.0001, both tests) [40,41].
Differences in allelic richness (Wilcoxon signed-rank test

P < 0.01-0.05) and expected heterozygosity (Wilcoxon
signed-rank test P < 0.05) per locus between earlier and
more recent samples were observed in 6 and 1 populations,
respectively, out of 18. However, after sequential Bonferroni
correction, none of them remained significant. Correlation
of the microsatellite allele frequencies between earlier and
more recent samples was significant in all cases and varied
from 0.79 to 0.98 (P < 0.001). Among anadromous salmon
the highest correlation level was observed in popula-
tions of the Kola Peninsula (Pearson’s r = 0.93-0.97), and
the lowest correlation level was found in the populations
of the Karelian White Sea coast (Pearson’s r = 0.79-0.90).
The allelic frequencies of the Karelian freshwater
salmon of the Pisto and Kamennaya Rivers demonstrated
correlation coefficients of 0.87 and 0.98, respectively.

Genetic relationships
PCA divided salmon of northwest Russia into four main
clusters corresponding to the geographical sampling re-
gions: 1) Kola Peninsula, 2) Karelian White Sea coast, 3)
Lake Onega and 4) Lake Ladoga, whereas 5) fresh-
water populations of the Western White Sea Basin, (Pisto
and Kamennaya) were the most distanced from other
groups (Figure 2). Here, the first two axes of the principal
components captured 49.03% of the total genetic vari-
ation. When the populations of the Kola Peninsula were
analysed separately, the first two axes represented
30.37% of the total genetic variation. The data points
of the temporal replicates were generally located more
closely to each other, except for Babya, Indera and
Varzuga (Figure 2).
The salmon populations of northwest Russia also

showed a clear subdivision into five groups on the
neighbour-joining tree according to their geographical
origin (Figure 3). The first cluster was formed by the an-
adromous populations of the Kola Peninsula, which
were separated from the second group, which consisted
of the anadromous populations of the Karelian White
Sea coast. Anadromous Karelian populations were then
grouped with the freshwater salmon of the White Sea
Basin (Pisto and Kamennaya), which in turn was
grouped with the Karelian freshwater salmon of the
Onega and Ladoga Lakes (Figure 3). Nearly half of the
temporally replicated anadromous populations of the Kola
Peninsula were grouped by the site of origin with a boot-
strap support of over 50%. The temporal samples of 3 an-
adromous and 10 freshwater populations of Karelia
generally tended to cluster by the site of origin (except for
the Pongoma population) with a bootstrap support that
varied between 82% and 100%.



Figure 2 Principal component analysis (PCA). (a) Results of the PCA of the Atlantic salmon populations from northwest Russia. Anadromous
populations were represented by 2 groups: the Kola Peninsula and Karelian White Sea coast. Freshwater–by the groups of Lakes Ladoga and
Onega (Baltic Sea Basin), and populations of the Western White Sea Basin: Kamennaya and Pisto. (b) Results of the PCA of the temporal replicates
of the anadromous salmon populations of the Kola Peninsula (White Sea Basin).
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Isolation by distance
The Mantel test revealed a significant association be-
tween the geographic and genetic distance among the
anadromous populations of the Western White Sea
Basin, which were sampled from 1995-2001 (Mantel’s r2 =
0.43, P < 0.001) and 2005-2008 (Mantel’s r2 = 0.37, P <
0.01) (Additional file 4: Figure S1). This association was
weaker but still significant when the test was performed
separately in populations from the rivers of the Kola
Peninsula (Mantel’s r21995-20001 = 0.15, P1995-2001 < 0.05;
Mantel’s r22005-2008 = 0.20, P2005-2008 < 0.05, Additional
file 4: Figure S1). The genetic differentiation pattern was
also consistent among the earlier and more recent samples
(Mantel’s test FST1995-2001 vs. FST2005-2008, r2 = 0.92,
P < 0.001) (Figure 4), which provided additional evidence
of the relative temporal stability of the Atlantic salmon
populations in the Western White Sea Basin.

Effects of fishing pressure
A negative association between the level of temporal stability
of allele frequencies and fishing pressure was also evident.
The fishing pressure index (Additional file 4: Table S1) was



Figure 3 Neighbour-joining dendrogram based on DA genetic distances, demonstrating the genetic relationships between the
temporally replicated samples of anadromous and freshwater Atlantic salmon populations in the White Sea and Baltic Sea (Lakes Ladoga
and Onega) basins. The number on the nodes indicates the bootstrap values (percentage) obtained after 1000 replicates. Only values >50%
are shown.
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Figure 4 The relationships between the genetic differentiation among earlier (FST/(1-FST)1995-2001) and more recent anadromous salmon
samples (FST/(1-FST)2005-2008) of the White Sea Basin (dashed line) (r2 = 0.92, P < 0.001) and the Kola Peninsula (solid line) (r2 = 0.45,
P < 0.001). The relationships between the Kola, Kola and Karelian White Sea coast, and Karelian White Sea populations are presented as open
triangles, closed diamonds and open circles, respectively.
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significantly higher in populations exhibiting a significant
change in allele frequencies over time compared to popula-
tions whose allele frequencies did not significantly change
(non-parametric Mann–Whitney U-test, P < 0.05, Figure 5).
Similarly, temporal stability tended to be lower in popula-
tions of the Kola Peninsula experiencing higher fishing
pressure, however this trend was non-significant (non-
parametric Mann–Whitney U-test, P = 0.12, Additional
file 4: Figure S2). Furthermore, when the effect of the
estimated census size of a population was controlled,
there was a significant negative partial correlation be-
tween allelic richness and fishing pressure (Pearson’s
partial correlation r1995-2001 =−0.60, P1995-2001 < 0.01 and
r2005-2008 =−0.51, P2005-2008 < 0.05, Figure 6). The trend of
partial correlation of AR and fishing pressure remained
negative, albeit non-significant, when tested separately
for 13 populations of the Kola Peninsula (Pearson’s
partial correlation r1995-2001 =−0.40, P1995-2001 = 0.20 and
r2005-2008 =−0.17, P2005-2008 = 0.61).

Discussion
Temporal variation
The level of temporal stability varied among the Atlantic
salmon populations of the Western White Sea Basin. A
small but significant proportion of variation explained by
the temporal component was observed among 8 popula-
tions (7 anadromous and 1 freshwater), whereas the genetic
composition of 10 populations was temporally stable. The
lowest proportion of the temporal component observed in
the anadromous populations of the Kola Peninsula (0.00%-
0.86%) was most likely attributed to their higher census and
effective population sizes compared to salmon from the
Karelian White Sea coast [42], in which this component
was considerably higher (2.68%-5.14%). Indeed, we ob-
served higher level of temporal variation in populations of
smaller census sizes and are thus more affected by genetic
drift. Whereas genetic drift is compensated by gene flow
in Kola Peninsula populations, the significantly higher
level of temporal variation in salmon populations from the
Karelian White Sea coast suggests a stronger role of gen-
etic drift in shaping their genetic structure [32]. The more
stable genetic structuring of the Kola Peninsula salmon
over time was supported by non-significant genetic differ-
entiation (FST) and higher correlations of allele frequen-
cies (Pearson’s r = 0.93-0.97, P < 0.001) between the
temporal samples in comparison with the Karelian White
Sea coast anadromous populations (Pearson’s r = 0.79-
0.90, P < 0.001). Overall, the temporal variation within the
sampling sites observed in the Western White Sea Basin
over a period of approximately 1-1.5 generations (for the
River Ponoi–approximately 2.5 generations) was relatively
minor compared to the spatial differences between the
two. This pattern is typical for salmonids, and several
studies have demonstrated the temporal stability of
the genetic structure of anadromous and freshwater
populations e.g., [1,7,22,26,28,43,44].
However, the effects of migration and genetic drift in

shaping the genetic structure of salmon populations in



Figure 5 Box-plot showing the significant difference in fishing
pressure (corrected for population census size) on populations
with significant (sign, P < 0.05, n = 8) and non-significant
(ns, n = 10) genetic variation between the temporal samples
(non-parametric Mann–Whitney U-test, P < 0.05). Horizontal line,
open rectangle, whiskers, and open circle indicate the median, 25th
and 75th quartiles, non-outlier range and an outlier, respectively.
Fishing pressure was corrected for population census size by
dividing the mean fishing pressure for the two sampling years by
the estimated census size class of each population.
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this region may be also influenced by environmental
and, in particular, anthropogenic factors. We observed a
significant decrease in the genetic diversity of salmon popu-
lations with increasing levels of fishing pressure (Pearson’s
partial correlation r1995-2001 =−0.60, P1995-2001 < 0.01 and
r2005-2008 =−0.51, P2005-2008 < 0.05). These associations were
more clearly manifested in populations with small census
and effective population sizes, although the effect was ob-
served across census size classes. Moreover, populations
demonstrating a significant level of temporal variation
in the genetic composition were more affected by fishing
pressure compared to the populations with non-significant
Figure 6 Partial residual scatter plot demonstrating the significant ne
pressure on Atlantic salmon populations in the Western White Sea re
for the estimated census size (Pearson’s partial correlation r1995-2001 =
respectively).
genetic changes over time (non-parametric Mann–Whitney
U-test, P < 0.05). These associations remained negative,
albeit non-significant, when including only populations of
the Kola Peninsula, indicating that populations of the
western White Sea basin are important contributors to
this trend. The observed associations between human ac-
tivities and genetic variation support the notion of a
higher fishing pressure on the populations of the Karelian
White Sea coast than on the populations of the Kola
Peninsula [33,45]. Such differences may be attributed to
the rivers of the Karelian White Sea coast, which have bet-
ter road approaches, while most of the salmon rivers of the
Kola Peninsula are located in more remote areas, which
are only accessible by helicopters or boats [33,45]. More-
over, the human population density in the districts of the
Kola Peninsula (Tersky and Lovozersky) with the most
productive salmon rivers, such as Ponoi and Varzuga,
was approximately 0.26/km2. In contrast, in the Karelian
White Sea coast, the human population density was 7
times higher at 1.92/km2 (http://www.gks.ru).
Interestingly, the temporal changes in the genetic com-

position of a salmon population might be attributed to
other factors, such as stocking supplementations e.g., [18]
or farm escapees e.g., [25,29]. However, these scenarios
seem less likely in the Western White Sea Basin. Despite
regular farmed salmon releases in some of the rivers of
the Southern White Sea coast (Keret’ and Luvenga), gen-
etic introgression due to straying individuals in other
Karelian rivers appears to be minor. First, the Kandalaksha
farm only works with the Luvenga population, and Kem’
and Vyg have both propagated only the Keret’ population
for more than 30 years [46]. Second, the southern part of
the White Sea is characterised by an irregularity of its
coastline and complex currents. The other two farms,
Taibolskiy and Umbskiy, are located far away from the
sampling sites, use the local salmon spawners and release
smolts into the river of origin. Thus, we consider it
gative correlation between allelic richness (AR) and fishing
gion in (a) 1995-2001 and (b) in 2005-2008, which was controlled
−0.60, P1995-2001 < 0.01 and r2005-2008 =−0.51, P2005-2008 < 0.05,

http://www.gks.ru
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unlikely that farmed fish influenced the genetic com-
position of the wild salmon in this region.
Importantly, increased fishing pressure was recently

observed in most of the rivers of the region (A.E. Veselov,
unpublished data). However, due to compensation of suffi-
ciently large census and effective population sizes of
most Atlantic salmon populations in the Western White
Sea Basin, the effects of such changes may take a larger
number of generations to be detectable [47,48]. Consider-
ing that population stability increases with increasing
population size [49], we observed highly significant
changes in the genetic composition only in a few popula-
tions, most of which have estimated census sizes of fewer
than 500 ascending adults (salmon of the Karelian White
Sea coast). Moreover, small census and effective popula-
tion sizes combined with a relatively high fishing pressure
make these salmon populations more vulnerable to envir-
onmental and climate changes. Therefore, given the signs
of genetic instability observed over a relatively short time
period (1-1.5 generations), future genetic monitoring of
these Karelian White Sea populations is recommended.
Consequently, the analyses of more temporal replicates,
which ideally include older samples, together with histor-
ical ecological observations may provide a broader view
regarding the potential anthropogenic and environmental
effects on salmon populations in the Western White Sea
Basin.

Genetic substructure
The observed pattern of a strong subdivision of Atlantic
salmon populations from the White Sea Basin into four
large groups was consistent with earlier studies in this re-
gion [23,50-52]. While the temporal replicates of freshwater
and most of the Karelian White Sea coast anadromous
populations (except for Pongoma) tended to cluster to-
gether, only half of the populations of the Kola Peninsula
demonstrated a similar trend. Moreover, on the PCA plot,
the temporal samples of only 3 populations of the Kola
Peninsula were separately grouped. This pattern might indi-
cate a higher relative role of migration in the shaping of
genetic structure in salmon populations of the Kola
Peninsula compared to the anadromous populations of the
Karelian White Sea coast. This was also supported by a low
level of between-river genetic differentiation, which was not
significant in 20% of the tests and the IBD pattern among
the populations of the Kola Peninsula, which was significant
in two temporal replicates (1995-2001 and 2008). However,
in both cases, the regression slope was low (r2 = 0.15-0.17),
providing support for gene flow overpowering genetic drift
(case II, [53]). This may also explain the lack of resolution
on the neighbour-joining tree among Kola Peninsula pop-
ulations combined with the close geographical proximity
of the sampling locations in the area compared to other
areas in the study.
Overall, a significant isolation by distance signal among
the anadromous populations in the Western White Sea
Basin was consistent with previous observations reported
in other studies on salmonid populations and particularly
in anadromous Atlantic salmon populations [32,54-58].
Moreover, the consistency of the IBD pattern among earl-
ier and more recent samples of anadromous salmon has
provided additional evidence of the relative temporal
stability of the population genetic structure in this region.
Importantly, the observed IBD pattern indicates that gene
flow and genetic drift influence the regional population
structure differently depending on the scale: at shorter
geographic distances, gene flow is more effective, whereas
the genetic drift has a greater influence at greater dis-
tances of geographical separation (case IV, [53]). This was
consistent with the observations of Tonteri et al. [32],
suggesting that Atlantic salmon of the White and Barents
Seas were still undergoing a transitory phase towards
equilibrium between gene flow and drift.

Conclusions
In general, a higher level of temporal stability of Atlantic
salmon population structure was observed in the rela-
tively pristine area of the Kola Peninsula, whereas popu-
lations inhabiting the rivers located in more populated
area (Republic of Karelia) demonstrated greater temporal
variation. Considering the negative influence of fishing
pressure on the genetic structure and diversity of salmon
observed in this region, conservation measures should be
a key component of stock management strategies. Given
that the temporal variation was more clearly manifested
in populations with small census and effective population
sizes the protection and genetic monitoring of such popu-
lations is recommended, and particular attention should
be paid to the Karelian rivers.

Methods
Samples and microsatellite analysis
The samples (n = 1344, fin clips) were collected from
Atlantic salmon 1+ − 3+ parr between 1995-2001 and
2005-2008 in 16 salmon rivers distributed along the Kola
Peninsula and the Karelian White Sea coast as well as
in 2 freshwater rivers in Karelia (the White Sea Basin,
Figure 7, Table 1). The average time between sam-
pling within a site was 7.2 years (range 6-13), i.e., ap-
proximately 1.5 generations. Samples from each location
were electrofished along a river stretch that normally
spanned 100-200 m2, and samples from different time
points were collected from within 4 km of the previous
sampling location, except for Pisto (12 km) and Varzuga
(10 km). Protocols for DNA extraction, PCR and 14
microsatellite loci genotyping have been previously de-
scribed by Tonteri et al. [32]. The microsatellite data from
a single time point for eight anadromous populations



Figure 7 Map indicating the sampling locations of the studied populations. The sampling locations of freshwater populations [23] for
comparative analyses are presented as triangles on the insert map.
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(sampling year: 1999-2001) were obtained from Tonteri
et al. [32] (Table 1). Temporal microsatellite data for eight
additional freshwater Karelian populations (Lakes Ladoga
and Onega) were obtained from Ozerov et al. [23] and
were included in the study for comparative purposes.
Analyses of the microsatellite data were performed in
the same laboratory, and the same microsatellite allele
bins and scoring protocols were performed as previously
described by Tonteri et al. [32]. In total, the population
genetic data for 18 temporally replicated salmon
populations from the Western White Sea Basin were
available for this study.

Data analysis
The basic descriptive statistics for each population and
locus (allelic richness, expected and observed heterozy-
gosity) were obtained using FSTAT 2.93 [59]. In addition,
the same software was used to calculate Weir and
Cockerham’s [60] within-population inbreeding coeffi-
cients (f ) and between-population fixation indices (θ).



Ozerov et al. BMC Genetics 2013, 14:88 Page 12 of 15
http://www.biomedcentral.com/1471-2156/14/88
The simulated Fisher’s exact test [61] implemented in
GENEPOP 4.0 [62] was used to estimate deviations from
the Hardy-Weinberg equilibrium for loci and populations.
The potential presence of genotyping errors, such as large
allele dropouts and null alleles, was examined using the
Brookfield 1 estimator [63] implemented in the computer
software package MICRO-CHECKER 2.2.3 [64].

Temporal stability of population genetic structure
The significance of genetic differentiation between
populations (Weir and Cockerham’s [60] pairwise FST)
was obtained after 12600 permutations using FSTAT
2.93 [59]. The relationships between the temporal and
spatial samples were then visualised on the basis of
principal component analysis performed using PCA-
GEN 1.2 [65], in which the statistical significance of
the axes was obtained after 2000 randomisations. In
addition, the between population DA genetic distances
[66] were calculated and a neighbour-joining tree [67]
was constructed using POPULATIONS 1.2.3 [68]. The
tree robustness was tested with 1000 bootstraps among
loci. Furthermore, the stability of the population struc-
ture was also examined by comparing the temporal
variation within rivers with the spatial variation among
rivers by applying a two-level hierarchical analysis of
molecular variance (AMOVA) using ARLEQUIN 3.5
[69]. The separation among anadromous populations
was made between 1) Kola Peninsula and 2) Karelian
coast of the White Sea. The freshwater salmon were di-
vided according to their basin of origin: 1) freshwater pop-
ulations of the White Sea Basin, 2) Lake Onega (Baltic
Sea) and 3) Lake Ladoga (Baltic Sea). In addition, the tem-
poral stability of the allelic frequencies was quantified by
computing Pearson’s correlation coefficients between the
frequencies for each allele observed in two temporal sam-
ples for each population. Differences in the estimates of
the expected heterozygosity (HE) and allelic richness (AR)
per locus between temporal samples of each population
were assessed using a non-parametric Wilcoxon signed-
rank test.
POWSIM v4.1 [39,40] was used to estimate whether

the dataset used for genetic population analysis provided
enough statistical power for detecting significant genetic
differentiation. We simulated scenarios assuming differ-
ent local population sizes, including our actual sample
sizes. Simulations were run using various combinations
ofNe and t (whereNe is the effective population size and
t is the time since divergence, respectively), leading to
FST as low as 0.0005. The most polymorphic locus
Ssa404 was excluded from the analysis, due to software
limitations allowing ≤ 50 alleles per locus. Significance
estimates were based on 1000 independent simulations.
We also estimated the α error (type I) by performing a
simulation of no divergence among samples (i.e. setting
t = 0 that leads a value of FST = 0). Additionally, the hy-
pothesis of no difference at any locus using the actual
genotype data was tested applying χ2 and Fisher’s ap-
proaches implemented in the computer software pack-
age CHIFISH 1.3 [40,41]).
The level of fishing pressure (Table 1) was estimated

on a 1-5 scale as the proportion of spawning individuals
harvested on the basis of the fishing control authority
reports, in-river exploitation (i.e., presence of villages,
angling touristic camps, poaching), and personal obser-
vations (Additional file 4: Table S1). Census size of
Atlantic salmon populations in large rivers (Ponoi and
Varzuga) was estimated based on the count of ascending
adults using fish-count traps. In small rivers (Indera,
Pulonga, and Pyalitsa) census size was estimated as the
mean of total count of seaward running smolts and by
smolt tagging and count of returned spawners
(Chapoma and Strelna) [35-38]. For other streams the
census sizes were estimated as in Power [70] on the
basis of spawning and nursery habitat area, its quality,
and densities of salmon juveniles of different age classes
counted using electrofishing. The estimates are averaged
over ~ 15 year period of monitoring of the salmon rivers
included in the present study.
The effect of a fishing pressure on the genetic diversity of

salmon populations in the region was tested using the SAS
ver. 9.2 program (SAS Institute, Inc., Cary, NC, USA),
which applied a partial correlation between the allelic rich-
ness and the estimated level of fishing pressure while con-
trolling for the estimated census size. In addition, the
relationship between the level of temporal stability of
the allelic frequencies in a population and the fishing
pressure (corrected for the estimated census size of a
population) was examined by applying a non-parametric
Mann–Whitney U-test. Mantel’s test was implemented
using GENALEX 6 [71] and was used to clarify if the geo-
graphic distance was associated with the genetic diver-
gence among populations (i.e., if the isolation by distance
(IBD) signal was evident). The analysis was performed
for only 16 anadromous populations of the Western
White Sea Basin and was performed separately for the
Kola Peninsula salmon (13 populations) with a statistical
significance being accessed with 9999 random permuta-
tions. The geographic distances among the populations
were calculated as the shortest water distances between
the sampling sites, and the pairwise genetic divergence
was estimated as FST/(1-FST). To confirm the consistency
of the migration pattern over time, the test was performed
separately for earlier (1995-2001) and more recent (2005-
2008) samples. In addition, Mantel’s test (9999 random
permutations) was performed to compare the consistency
of the pairwise FST values between the earlier and recent
samples of 16 anadromous populations in the Western
White Sea Basin.
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Additional files

Additional file 1: Microsatellite diversity indices of the 32 studied
Atlantic salmon populations and the results of the Hardy-Weinberg
equilibrium test. The year of sampling is indicated after population code.
N–number of individuals; A–average number of alleles in a population;
HO–observed heterozygosity; HE–expected heterozygosity; HWE–the
P value of the Hardy-Weinberg equilibrium test. The P values over all
populations and loci have been corrected for multiple significant tests.

Additional file 2: Estimation of null allele frequencies (Brookfield 1)
across loci and populations.

Additional file 3: Pairwise genetic distances (FST) among Atlantic
salmon populations in the basin of the White Sea based on
microsatellite data as measured with FST. Salmon populations of the
Kola Peninsula are shaded in grey.

Additional file 4: Table S1. Estimated census size and the evaluation of
anthropogenic pressure in the rives of the Western White Sea basin.
Figure S1. The relationships between genetic (FST/(1-FST) and geographic
distances for the anadromous populations of the White Sea Basin (dashed
line) (r21995-2001 = 0.39; r22005-2008 = 0.35, P< 0.001 both tests); and the Kola
Peninsula (solid line) (r21995-2001 = 0.15; r22005-2008 = 0.17, P< 0.05 both tests),
sampled in (a) 1995-2001 and (b) 2005-2008. The relationships between Kola,
Kola and Karelian White Sea coast, and Karelian White Sea populations are
presented as open triangles, closed diamonds and open cirlces, respectively.
Figure S2. Box-plot showing the difference in fishing pressure (corrected for
population census size) on populations of the Kola Peninsula with significant
(sign, P < 0.05, n = 4) and non-significant (ns, n = 9) genetic variation
between the temporal samples (non-parametric Mann–Whitney U-test,
P = 0.12). Horizontal line, open rectangle, whiskers, and open circle indicate
the median, 25th and 75th quartiles, non-outlier range and an outlier,
respectively. Fishing pressure was corrected for population census size by
dividing the mean fishing pressure for the two sampling years by the
estimated census size class of each population.
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