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SUMMARY

Stoichiometric metabolic modeling, particularly genome-scale models (GSMs), is now an indispens-

able tool for systems biology. The model reconstruction process typically involves collecting informa-

tion from public databases; however, incomplete systems knowledge leaves gaps in any reconstruc-

tion. Current tools for addressing gaps use databases of biochemical functionalities to address

gaps on a per-metabolite basis and can provide multiple solutions but cannot avoid thermodynami-

cally infeasible cycles (TICs), invariably requiring lengthy manual curation. To address these limita-

tions, this work introduces an optimization-based multi-step method named OptFill, which performs

TIC-avoiding whole-model gapfilling. We applied OptFill to three fictional prokaryotic models of

increasing sizes and to a published GSM of Escherichia coli, iJR904. This application resulted in holistic

and infeasible cycle-free gapfilling solutions. In addition, OptFill can be adapted to automate inherent

TICs identification in any GSM. Overall, OptFill can address critical issues in automated development

of high-quality GSMs.

INTRODUCTION

The use of systems biology in uni- and multi-cellular organisms (e.g. plants and animals) to engineer or

enhance desirable phenotypes and study system-wide metabolic processes is well-established and

capable of affecting the lives of millions of individuals, such as in the case of artemisinin production in yeast

or enhancing the nutritional value of agricultural products (Beyer et al., 2002; Hall et al., 2008). As opposed

to traditional qualitative approaches, computational approaches based on stoichiometric genome-scale

models (GSMs) of metabolism can be used to predict non-intuitive genetic interventions (Srinivasan

et al., 2015) by accounting for gene-protein-reaction (GPR) links. GSMs may also lead to increased under-

standing of how a change in environment, organism nutrition, or a gene knockout can affect the entire

metabolic system of an organism through tools such as flux balance analysis (FBA) (Orth et al., 2010),

OptKnock (Burgard et al., 2003), and OptForce (Ranganathan et al., 2010). GSMs have been developed

for many prokaryotic (Magnúsdóttir et al., 2016; Shoaie et al., 2013), animal (Brunk et al., 2018), plant

(Gomes de Oliveira Dal’Molin et al., 2015; Saha et al., 2011), and fungal (Andersen et al., 2008; Liu et al.,

2013) systems, enhancing mechanistic understanding and exploration of system-wide metabolism in

such organisms as E. coli (Ranganathan et al., 2010), cyanobacteria (Saha et al., 2016), yeast (Ng et al.,

2012), and other species (Gudmundsson et al., 2017; Islam et al., 2018; Saha et al., 2011; Shoaie et al.,

2013). GSMs are typically reconstructed by gleaning information on gene annotations, enzyme functions,

associated reactions, and reaction directionality from major public databases such as KEGG (Kanehisa

et al., 2017), ModelSEED (Overbeek et al., 2005), the NCBI (Limviphuvadh et al., 2018), MetaCyc (Caspi,

2006), K-Base (Arkin et al., 2018), and BIGG (King et al., 2016). At present, there is no complete knowledge

of any genome. For instance, the annotated genome of one of the most prolifically studied organisms,

Escherichia coli strain K-12 substrain MG1655, contains about 6.8% putative proteins and 16.1% uncharac-

terized proteins (UniProtKB, 2018). Furthermore, approximately 61% of proteins lack an enzyme commis-

sion (EC) number, which is important for the identification of GPR links in any GSM reconstruction

(UniProtKB, 2018). Inevitably, incomplete gene annotation and system knowledge (including reaction di-

rection) leaves metabolic gaps, imbalances, or thermodynamically infeasible cycles (TICs) in any initial

GSM reconstructions, leaving the model incomplete. Particularly problematic are TICs, sets of reactions

that can carry flux in the absence of nutrition provided to the model because their net stoichiometry is

zero, also known as futile cycles or type III reactions (Thiele and Palsson, 2010). These cycles can negate

metabolic costs (Thiele and Palsson, 2010), report infeasibly large reaction rates, be difficult to identify

(De Martino et al., 2013; Schellenberger et al., 2011), and inhibit the proper function of optimization-based
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tools that rely on duality to optimize multiple objectives such as OptKnock (Burgard et al., 2003) and Opt-

Force (Ranganathan et al., 2010).

A significant challenge to reconstruct GSMs is the amount of time and manual labor required to curate

these incomplete reconstructed models, addressing various issues such as element and charge balances,

reaction directionality, metabolic gaps, TICs, and other inconsistencies. Hence, it often requires months to

years of manpower before a predictive model is generated (Thiele and Palsson, 2010), which is a prereq-

uisite for conducting research on phenotypic enhancement or study metabolism. Two of the most chal-

lenging aspects of model development are the identification and elimination of TICs, as well as the

resolving of metabolic gaps.

The existing methods/tools that have been developed to address the identification and resolution of

TICs can be broadly categorized into four groups: (1) methods that can identify existing TICs in a

model (De Martino et al., 2013), (2) methods that can force no-flux through existing TICs in a model

(Schellenberger et al., 2011; Nigam and Liang, 2007; Chan et al., 2018), (3) a combination of the pre-

vious two (Chan et al., 2018), and (4) methods eliminating TICs by manipulating the metabolic network.

Although developing these is a significant step toward building a better and more predictive GSM,

there remain challenges that need to be addressed. For the first approach, Monte Carlo sampling-

based method (De Martino et al., 2013) cannot guarantee the identification of all TICs as it is a stochas-

tic approach. The second approach is the avoidance of TICs by the application of Kirchhoff’s loop law

in methods such as Loopless COBRA (Schellenberger et al., 2011). This approach does successfully

avoid TICs but does not address the root cause in the model that can make some models problematic

for tools such as OptForce that require no TICs (Ranganathan et al., 2010). Another approach is the

addition of thermodynamic constraints to the model using known thermodynamic quantities (Nigam

and Liang, 2007), which works well for well-studied organisms for which these in vivo parameters are

known but is more difficult to implement for non-model organisms. The third approach that combines

these two approaches, such as the one demonstrated by Chan et al. (2018), has shown promise and

computational tractability. However, this has generally been employed as a set of loopless constraints,

rather than as a method to avoid the inclusion of TICs in gapfilling. The fourth method has been used

to address TICs in energy metabolism, which can allow the model to produce unlimited energy severely

hampering model accuracy, by applying a variation of optimization-based tool GLOBALFIT (Fritzemeier

et al., 2017). GLOBALFIT has been used by Fritzemeier et al. (2017) to identify the minimal network

changes to address erroneous energy cycling in metabolic network models. These changes could

take the form of removal of reactions and/or correcting of reaction direction and address root causes

of TICs without using loopless constraints when applying in silico analysis tools.

It should be noted that not all the cycles in biological systems are infeasible cycles. Some cycles, such as the

Calvin cycle or the citric acid cycle are well-known biological cycles. These differ from infeasible cycles in

that these cycles has some net effect. In the case of the Calvin cycle this net effect of each revolution is

to fix carbon dioxide to a sugar by expending cellular energy. In contrast, thermodynamically infeasible cy-

cles result in no net production or consumption per each revolution. It should also be noted that some re-

actions do proceed in both directions at the same time in the same subcellular compartment in a cell, with

their relative rates limited by thermodynamic considerations. Although some models do include in vivo

thermodynamic information, the precise value, or more often range of values, for the Gibbs free energy

and other important thermodynamic properties of a reaction are often unknown aside from being able

to specify reaction direction (Thiele and Palsson, 2010). Therefore, for all but the best-studied organisms,

imposing thermodynamics-based limitations on reaction rates to preclude thermodynamic cycling is very

difficult if not impossible.

To address and resolve metabolic network reconstruction gaps, GapFind and GapFill (Satish Kumar et al.,

2007) are some of themost common tools used (Pitkänen et al., 2014; Henry et al., 2010; Kim et al., 2012). Gap-

Find and GapFill are optimization-based Mixed Integer Linear Programming (MILP) problems and have been

successfully implemented in the reconstruction of metabolic models, prokaryotic, and eukaryotic biological

systems such as cyanobacteria (Synechocystis sp. PCC 6803 and Cyanothece sp ATCC 51142) (Saha et al.,

2012), corn (Zeamays) (Simons et al., 2014), yeast (Saccharomyces cerevisiae), and Chinese hamster ovary cells

(Chowdhury et al., 2015). Other methods of automated gapfilling that build on the capabilities of GapFill

include GenDev (Latendresse and Karp, 2018), FastDev (Latendresse and Karp, 2018), likelihood-based
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gapfilling (Karp et al., 2018), and phenotype-based gapfilling (Cuevas et al., 2019). All these tools are con-

structed with the aim of increasing the accuracy of the GapFilling method, through comparison to some level

of data such as phylogenetic, phenotypic, or genetic. In this work, a problematic aspect of all these tools is

considered, which these other tools were not built to address. Despite their success, the tools for gapfilling

have significant limitations including the following: (1) gaps are addressed on a per-metabolite basis (as

opposed to a whole-model holistic approach), (2) thermodynamic feasibility is often not considered, and (3)

reaction direction is not considered in gapfilling, rather all reactions are added reversibly. From the first

and second limitations, several problems arise including (1) inability to guarantee that the minimum number

of reactions are added to fixmetabolic gaps on a whole-model (holistic) basis; (2) inability to identify and avoid

unfavorable interactions between multiple gap fixes (often, TICs); and (3) differences in the resultant model

dependent of the individual curator.

To address current TIC-finding and gapfilling method limitations, this work introduces a multi-step optimi-

zation-based MILP method. The first step is to solve an iterative optimization-based TIC-Finding problem

(TFP), which identifies potential TICs, which may be caused by adding reactions from a database in a given

direction (see Figure 1). This method uses optimization and binary variables as opposed to null space

matrices used by other methods that identify reactions participating in TICs (Saa and Nielsen, 2016) or

TICs (Chan et al., 2018) and thus can provide a greater level of detail for each inherent or potential TIC.

This problem is unique as it considers the direction and relative flux rate of reactions participating in

Figure 1. Visualization of OptFill Results with Respect to the First Test Model and Database

This figure shows that the model and database which are inputs to OptFill are separate but are both used in the workflow to prepare for OptFill and in OptFill

itself.

Then, the model and database are combined to show how they might appear and how this combination is used in the TIC-finding problem to identify

potential TICs that might occur between the model and the database. Selected identified potential TICs are shown here as illustrative examples. Potential

TICs #1 and #2 illustrate how TICs occurring in different directions are identified as separate TICs, how identified TICs might only occur between database

reactions, and the two of the smallest identified TICs. Potential TICs #9 illustrates a larger TIC that makes use of an irreversible reaction (NGAM), and

therefore has no opposite-direction TIC, making the direction of the other reactions important. Potential TICs #10 and #31 illustrate infeasible cycling

involving an energy molecule (ADP/ATP), in addition to potential TIC #31 being the largest identified TIC.

Finally, this figure shows the application of the connecting problems (CPs), which make use of the database, model, and TIC-Finding Problem solutions.

Shown here are the first (most optimal) and last (least optimal) solutions of the CPs. These solutions differ in the number of model metabolites that could not

be connected (red boxes); the number of metabolites introduced to the model (yellow boxes); the number and reversibility of database reactions added

(orange arrows); and the resultant model growth rate.
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TICs and can be easily adapted for the purposes of model curation sans database for the resolution of

inherent TICs. The second step involves the solving of three optimization-based problems, the connecting

problems (CPs), which are highly similar but have different objectives. The first connecting problem (CP1) is

the maximization of model metabolites successfully connected to metabolic network, e.g. maximizing the

number of metabolites that the connected model can now produce, while avoiding the addition of TICs.

The second connecting problem (CP2) is the minimization of the number of reactions required to achieve

the objective of CP1. The third connecting problem (CP3) is the maximization of the number of reactions to

be added reversibly from the database to achieve the objectives of CP1 and CP2 subject to avoiding TICs.

The connecting problems are unique in that, unlike other gapfilling algorithms, CP solutions provide whole

model gapfilling solutions guaranteeing the minimum number of reactions being added for the maximum

number of fixed metabolites. As proof of concept, the OptFill approach is applied to three test stoichio-

metric models of increasing sizes (models of 28–210 reactions, databases of 17–77 reactions) with designed

metabolic gaps and one smaller (1074 reactions) GSM of Escherichia coli with acknowledged metabolic

gaps (Reed et al., 2003) using another GSM of E. coli as the basis for a database (Feist et al., 2007). With

the computational resources at hand, the full OptFill method is limited to relatively smaller stoichiometric

models and databases but should be applicable to larger models and databases given access to greater

computational power.

RESULTS

Development of OptFill

OptFill was conceived and developed to address the limitations of the current state-of-the-art GapFind/

GapFill (Satish Kumar et al., 2007) tool. The initial stages of the design-build-test (DBT) cycle contained

the first test model (TM1) and the first test database (TDb1) and involved only a single connecting problem.

TM1 was constructed as a small stoichiometric model involving starch and glycolysis metabolism to pro-

duce ethanol but with metabolic gaps preventing growth (see Figure 1). TDb1 was designed to have the

capacity to fill these gaps, at the expense of potentially producing TICs. In the DBT cycle, it was soon real-

ized that the TFP was necessary to define the potential TICs that might occur. The TFP was built to solve for

the smallest TICs (i.e., the TICs with the smallest number of participant reactions) first and then solve for

larger TICs to prevent multiple TICs masquerading as a single TIC solution. The workflow representing

the TFP is shown in Figure 2. The CPs were developed to ensure consistency in the number, order, and

identity of the CP solutions while avoiding the addition of the whole set of TICs identified as potentially

occurring between the model and database. See Figure 3 for the conceptual formulation of each type of

problem. All problems that are part of the OptFill tool are mixed integer linear programming (MILP) prob-

lems that ensure global optimality of each solution in each iteration.

On occasion, the feasibility constraints usedmight be too strict to return a feasible solution to the CP prob-

lems, which could result in execution errors prematurely ending OptFill before completion. Therefore, an

error handling framework was built around each CP problem allowing a one-time relaxation of feasibility

constraints. These frameworks are shown in Figure 2. OptFill is ended when CP1 no longer has a feasible

solution even when feasibility constraints are relaxed (which occurs because previous solutions are

prevented from being re-identified) because at that point none of the CP2 and CP3 will have a feasible

solution. Further, all OptFill runs described used non-standard CPLEX solver options, which effectively

eliminated most types of cuts. This caused some level of reduction to the solution space, particularly those

that could result in non-optimal solutions being reported as optimal. These included flow, zero-half, and

Gomory fractional cuts, among others. This was done because the order of solutions is important in the

OptFill method, and the order of solutions also has bearing on the number of solutions returned. See Trans-

parent Methods for further detail.

Application of OptFill to Test Models

After finalizing the formulation (see Figure 3 and Transparent Methods) and workflow (Figure 2) of OptFill, a

detailed analysis of OptFill results with respect to TM1 and TDb1 was undertaken. Some qualitative results

of the application of the OptFill workflow to TM1/TDb1 are shown in Figure 1, which include the initial

model and database (Figure 1), the combination of the model and database (Figure 1), selected identified

potential TICs (Figure 1), and selected identified CPs’ solutions (Figure 1). As is shown in Figure 1, TM1 is

too disconnected to produce biomass but in combination with TDb1 can potentially produce biomass.

When the TFP is applied (Figure 1), 31 potential TICs consisting of 3–12 reactions (hereafter, sizes 3–12)

were identified. The average solution time (when a solution was found) was 0.175 s (s = 0.0727 s, min =

4 iScience 23, 100783, January 24, 2020



0.-

08-

70

s,

m-

a-

x =

0.-

378

s).

It

sh-

ou-

ld be noted that all solve times reported here are not

constant, even if using same resources. Figure 1

highlights five potential TICs that were identified.

The first two TICs identified, TIC #1 and #2, show

that the TFP can identify TICs occurring only in the

database; that TICs consisting of the same metabo-

lites and reactions are identified separately if reac-

tion directions are different; and that two of the

smallest TICs are identified. Potential TIC #9 shows

a TIC of moderate size (for TM1/TDb1), which con-

tains an irreversible model reaction related to non-

growth-associated maintenance (NGAM) and,

therefore, will not have a companion potential TIC

of opposite direction, unlike potential TIC #1 and

TIC #2 (in the opposite direction). Further, this high-

lights the potential for infeasible cycling, which

effectively negates the cost of NGAM of the model.

If added in its entirety, NGAMwould be irrelevant to

the model at any value and would significantly

reduce model accuracy. This TIC might not be

manually identified because NGAM is usually a fixed

quantity. Potential TIC #10 highlights another type

of infeasible cycling involving ADP/ATP, but this

cycling essentially negates the cost of phosphoryla-

tion/dephosphorylation of glucose-6-phosphate

isomers. Finally, potential TIC #31 is included to

highlight a non-intuitive TIC, in addition to be the

largest TIC identified. This TIC involves the separate

cycling of sugars and 3-carbon molecules linked and

is made possible by ADP/ATP cycling (sugar cycling

consumes ATP and 3-carbon cycling produces ATP).

These examples illustrate that many, but not all, po-

tential TICs involve the infeasible cycling of energy

molecules, which should be particularly avoided in

the reconstruction of models of metabolism, as

this can result in negated costs for various biological

activities with which a cost should be associated.

This negated cost can often result in increased

model growth rate and reaction fluxes, reducing

the model’s accuracy.

The model, database, and TFP solutions form the

input for the CPs. Before solving the CPs, a modified

version of CP1 was run, which prohibited the

Figure 2. Workflow of OptFill

This is a workflow diagram of the OptFill tool. Green nodes

represent the preparatory workflow, blue the workflow of

the TIC-finding problem (TFP), purple the workflow of the

connecting problems (CPs) including the error-handling

workflow imbedded in the CPs workflow, and red the

endpoints of the workflow. It should be noted that only one

endpoint truly exists, when a solution to CP1 is not found,

because the other problems, CP2 and CP3, will have

solutions if CP1 has a solution, hence the workflow exit

points being represented by a question mark at these

points.
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addition of database reactions. This modified CP1 reported that the raw TM3 model was capable of pro-

ducing nometabolites. The CPs, when applied to TM1 and TDb1, identified 24 potential solutions that con-

nected between 31 and 33metabolites with the additions of 6–10 reactions, of which 0 to 6 could be revers-

ible without TICs. The average time to solve all three CPs for each solution was 0.639 s (s = 0.147 s, min =

0.433 s, max = 0.950 s) (see Figure 4). From the FBA performed on each connecting problem solution with

the objective of maximization of biomass, the mean maximum biomass production rate of the set of con-

nected models was 2.43 h�1 (s = 0.394 hr�1, min = 1.44 hr�1, max = 2.90 hr�1). Solution times for the FBA

code were not recorded, as FBA solution time is generally low. Two connecting problem solutions, the first

and the last, are shown in Figure 1. These solutions are notably different in terms of the number of model

metabolites connected by the CPs’ solution (green boxes in the metabolic sketch), the number of interme-

diate metabolites introduced by these solutions (yellow boxes), the number of database reactions intro-

duced (orange arrows), and even the use of energy molecules. For instance, CPs’ solution 1 introduces

only two additional metabolites and six reactions reversibly from the database, which are part of the

CPs’ solution and connects all but two model metabolites. The first is acetate, which is a dead-end metab-

olite. The second is the extracellular proton, which suggests that the model is small enough that all protons

produced are also consumed. This solution has the slowest growth rate of all connecting problem solu-

tions. On the other hand, CPs’ solution 24 connects two fewer metabolites than CPs’ solution 1, requires

two more reactions, introduces two more intermediate metabolites, and has a higher growth rate. It is hy-

pothesized that this is due to the more efficient production of ATP allowed by reaction R01512[c] (enzyme

ATP:3-phospho-D-glycerate 1-phosphotransferace in the cytosol), which is present in many other high-

biomass solutions. This reaction allows two dephosphorylation events to produce ATP, as opposed to

only one (the other event occurring by hydrolysis).

Figure 3. Conceptual Formulation of Each Problem in OptFill

This figure gives a conceptual formulation of the TIC-finding problem, TFP, in part (A) and the connecting problems, CP1,

CP2, and CP3, in part (B). In part (B), as three connecting problems are solved, each conceptual constraint has indicated

CPs to which it is applied. Conceptual constraints may require multiple mathematical constraints to be realized, see

Transparent Methods for mathematical formulation.
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Figure 4. Visualization of OptFill Solution Time and Results

This figure show the trends in solution time, (A) through (C), of the TIC-finding problem (TFP, blue) and the connecting problems (CPs, brown) with trend lines

with the highest Pearson’s correlation coefficient of linear, exponential, power, and logarithmic fits. These trends are considered with respect to the number

of reactions in the model (A), database (B), and total reactions (C). Parts (D) through (F) highlight the trends of solutions. Part (D) highlights the number of

solutions found by the TFP and CPs; part (E) highlights the range in size of the identified potential TICs by the TFP. Parts (F), (G), (H), and (I) highlight the

variety of CPs’ solutions. In these figures, the pie chart indicates the number of metabolites connected by the CP1 solution, and the radar chart is used to

indicate the CP2 solution (number of reactions added) and the CP3 solution (number of those reactions that are added reversibly).

iScience 23, 100783, January 24, 2020 7



Two larger test models were built next to study the increase in number of solutions and time required to

reach those solutions by OptFill and, ultimately, to investigate its scale-up potential. Each test model

was built from an OptFill solution of a previous solution to highlight the ability of this tool to be applied

in sequence. In the application of OptFill to the existing models of organisms, careful attention must be

paid in selection of a CPs’ solution to accept, including considerations of energy metabolism, predicted

growth rates, and remaining unconnected metabolites. Here, CPs’ solution 1 was selected and combined

with TM1 as the base of the second test model (TM2). Reactions andmetabolites from the fatty acid biosyn-

thesis and the pentose phosphate pathway were added to this base, in which gaps were manually created.

Reactions that could address these gaps formed the second test database (TDb2). Redundant metabolic

functions were added to TDb2 to allow for potential TICs. Similarly, the third test model (TM3) was built

from the first CPs’ solution of TM2 and TDb2. Additionally, a bank of reactions from the amino acid synthe-

sis pathways, including redundant functionalities, was created. This bank was automatically (randomly)

sorted between those reactions that would be added to complete TM3 (�80% of bank reactions) and those

that would constitute the third test database (TDb3,�20% of bank reactions). As random sorting was used,

a modified version of the TIC-finding problem (modified TIC-finding problem, mTFP), was used to identify

inherent TICs in TM3 and TDb3, which resulted from the random assortment of the bank reactions. The re-

actions most commonly participating in identified inherent TM3 TICs were moved to the TDb3 until no

inherent TICs remained (five reactions in total).

For OptFilling of TM2/TDb2, 51 TICs consisting of 3–26 reactions were identified by the TFP, with a mean

solution time of 0.131 s (s = 0.0405 s, min = 0.0850 s, max = 0.308 s). The largest TIC, potential TIC #51 con-

sisting of 26 reactions, would have largely been very difficult to be identified by a non-automated method,

as it spans six KEGG pathways including glycolysis, the pentose phosphate pathway, purine metabolism,

nicotinate and nicotinamide metabolism, starch and sucrose metabolism, and riboflavin metabolism. TIC

#51 involves the cycling of 3-, 4-, 5-, and 6-carbon molecules, energy molecules (ATP, NADH, and NADPH),

and energy molecule hydrolysis. This TIC can be found in GitHub and Mendeley Data repositories accom-

panying this work.

Before solving the CPs, the modified CP1 was run and reported that the raw TM2 model was capable of

producing no metabolites. Fifteen potential CPs’ solutions were identified, which each connected 90 to

94 metabolites with the addition of 17–23 reactions, of which 0 to 19 could be reversible without TICs.

The average time to solve all three CPs for each solution was 1.40 s (s = 0.639 s, min = 0.404 s, max =

2.65 s) (see Figure 4). From the FBA performed, the biomass production rate of most CPs’ solutions applied

to TM2 was 1.31 h�1, for 10 solutions, and 1.36 h�1 for the remaining five. In the CPs’ solutions, those with

the highest biomass have fewer metabolites that could be connected (all solutions with higher biomass

production were generated after lower biomass production solutions). Those with the higher biomass pro-

duction rates generally have one fewer reaction that requires ATP hydrolysis and therefore has slightly

more energy in the system to spend on the production of biomass than their lower biomass counterparts.

Similarly, OptFill applied to TM3/TDb3 resulted in the identification of 60 TICs consisting of 3–31 reac-

tions by the TFP and 177 potential CPs’ solutions, which each connected 202 to 214 metabolites with 12–

17 reactions, of which 1 to 12 could be reversible without TICs. As earlier, the modified CP1 was used to

identify 54 metabolites that the raw TM3 was capable of producing. The mean TFP solution time was

0.240 s (s = 0.0756 s, min = 0.141 s, max = 0.541 s), whereas the mean CPs’ solution time was 0.985 s

(s = 0.249 s, min = 0.573 s, max = 1.86 s). From the FBA performed, the mean biomass production

rate of the connected model was 3.29 h�1 (s = 0.179 h�1, min = 3.11 h�1, max = 3.47 h�1). Runtime

and solution metrics for all solutions are shown in Figure 4. Unlike TM1 and TM2 OptFilling results, there

was no solution where all database reactions to be added by the CPs’ solution could be added revers-

ibly. This indicates that, for all solutions, the direction in which database reactions are added is important

to avoid TICs to produce a model without the disadvantages of TICs described previously. Furthermore,

the biomass production rate does not appear as dependent on either the number of metabolites con-

nected or reactions added as in previous CPs’ solution sets. Instead, the biomass production rate seems

to most depend on the method of sulfate assimilation.

Application of OptFill to iJR904

In order to show how the OptFill workflow might scale up to a GSM, the iJR904 model of Eschericia coli

consisting of 761 metabolites, 1,074 reactions, and 904 genes (Reed et al., 2003) was selected as the base
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model to fix. The iAF1260 model, a model extending onto iJR904, consisting of 1,598 metabolites; 2,381

reactions; and 1,260 genes (Feist et al., 2007) was selected to serve as the set of reactions from which to

build the database. iJR904 contains 70 dead-end metabolites (Reed et al., 2003) that need fixing. Before

applying OptFill, some minor formatting changes were made (described in Transparent Methods and

in the related GitHub and Mendeley Data repositories accompanying this work), and it was decided

that carbon-limited aerobic growth using acetate would be the condition for which iJR904 model

would be fixed. Metabolite exchange rates were taken from Reed et al. (2003) to describe this growth

condition.

In order to create the database that would be applied to iJR904, all iAF1260 exchange reactions and reac-

tions with names identical to those in iJR904 (which were assumed to be the same reaction as the former

was built from the latter) were removed from iAF1260 to form the initial database that consisted of 1,441

reactions. This proved too computationally intensive for the resources, and therefore this database was

further simplified in a manner that it is suggested others with limited computational resources might

also use. First, the iAF1260-based database and iJR904 were combined in single model file, and flux vari-

ability analysis (FVA) (Gudmundsson and Thiele, 2010) was performed (see Table S1. iJR904, Related to Fig-

ure 4). Those iAF1260 reactions capable of holding flux as determined by FVA (715 reactions) were defined

as the database of functionalities to be used with OptFill.

OptFill was performed on iJR904 using this database. This still resulted in a slow OptFill process; therefore,

solutions that were reported (i.e., 4 identified) in the allotted solve time of 24 h were collected. All iAF1260

reactions that participated in at least one solution (a total of 182 reactions) were selected as the basis of the

third iAF1260-based database. This resulted in significantly lower computational requirements for the

application of OptFill. This database was found, upon application of OptFill, to be without TICs. For the

purposes of demonstration and showing how the increase of TFP solution time changes with model and

database size, it was arbitrarily decided to add six reactions manually from the previous database, which

could participate in potential TICs between the model and database but which did not create TICs only

within the database. Further, the mTFP was applied to the iJR904 model. From the mTFP results, it was

noticed that in iJR904, some reactions were included in themodel twice, both as reversible and irreversible,

causing inherent TICs in the iJR904 model involving these duplicate reactions. It was decided to move the

irreversible reactions of each duplicate pair to the database (nine reactions in total) so that all iJR904

models were still present in the OptFill in some capacity. The final iAF1260-based database for the OptFill-

ing of iJR904 totals 188 reactions. Initial, final, and intermediate iAF1260-based databases used can be

found in Table S1. iJR904, related to Figure 4 iJR904 and in the GitHub and Mendeley Data repositories

accompanying this work.

Demonstrated here is a procedure by which the database applied to a model can be significantly

decreased in size to reduce computational cost of the OptFill method, while still effectively addressing

metabolic gaps. This can be summarized as follows: (1) eliminate all duplicate reactions; (2) perform FVA

on a pseudomodel that is a combination of the database and model and use the results to eliminate reac-

tions that cannot carry flux; and (3) perform OptFill using databases with larger solution time, collect a few

sample solutions, and use the set of reactions participating in sampled solutions as the database. Applica-

tions of steps (1) and (2) as well as iterative applications of (3) might be used by modelers to shrink the data-

base used inOptFilling to a size that is possible to solve in amodest period of time given the computational

resources available.

This final iAF1260-based database was used to OptFill iJR904 model. In this final iteration, there were 25

TICs of size two to eight reactions identified. The associated mean TFP solution time was 0.410 s (s =

0.0978 s, min = 0.330 s, max = 0.687 s). The TICs identified were generally simple, as they stem from reac-

tions manually added to the database, which cause TICs. Eleven TICs occur between just two reactions, and

a further four involving only a single database reaction. Each of these effectively precluded a single data-

base reaction from being added in a certain direction. When the CPs were applied to iJR904, it was found

that the CPs’ solution time had increased considerably from that of other models, to a mean of 236 s (s =

329 s, min = 15.3 s, max = 1010 s). The solution time of this model was significantly increased due to

disabling of many types of cuts that a solver might use to decrease solution time but that lead to non-

optimal solutions being reported as optimal. These are particularly relevant because minor cuts, such as

those that accept a 0.5% reduction in the optimal solution value, can change the number of metabolites
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connected by the CPs by two or more for GSMs. As the order of solutions is important, even these minor

relaxations were deemed problematic and were therefore mostly disabled, leading to increased solution

time. If these cuts were allowed, CPs’ solution time would have been approximately an order of magnitude

less than reported here. The modified CP1 problem reported that the iJR904 model was capable of pro-

ducing 358 metabolites under the given aerobic growth on acetate conditions, and all CPs’ solutions con-

nected 418 metabolites with the addition of 86 reactions. All CPs’ solutions produced biomass at a rate of

0.108 h�1. This is likely a result of the database reduction steps taken. The variation on the CPs’ solution

occurred in the number of connecting reactions that could be added reversibly, ranging from 5 to 86.

The full set of solutions can be found in the GitHub and Mendeley Data repositories accompanying this

work. It can be seen in Figure 4I that efforts to prevent non-optimal solutions from being reported as

optimal were not entirely successful. There exists one CPs’ solution, solution #72, where the optimal

(maximum) CP3 solution value is 5, whereas the optimal (maximum) CP3 solution value was 11 from solu-

tions #71 and #73. This occurred when all solutions were subject to approximately the same constraints

(save the integer cuts necessary to prevent repeated solutions). It is noted earlier that many types of

cuts were disabled, but not all, and one type of cut or other solver setting allowed this non-optimal solution

to be reported as optimal; however, eliminating all such cuts and settings proved prohibitively time-

consuming. Therefore, the settings, which can be found in the GitHub and Mendeley Data repositories

accompanying this work, were selected as those that, for this work, best balanced solution order and so-

lution time.

In the OptFilling solutions of iJR904, several trends can be noticed that were not present in the smaller test

models. First, when performing FBA, with the objective of maximizing biomass, on the resultant OptFilled

iJR904 model, not all reactions from the database held flux when biomass was maximized. This is because

these reactions make it possible for the model to produce metabolites that are not required for the

production of biomass or provide an alternative pathway for the production of biomass that might be

less efficient. This does not mean that these connected metabolites are unimportant under other, equally

valid, objective functions, for instance the connected metabolites may be bioproduction targets. Further,

some TICs exist between iJR904 model reactions in the OptFill solutions and notably one database reac-

tion. For most model reactions, these TICs occur because forward and reverse reactions are written sepa-

rately. The TIC involving the database reaction resulted from the proton uptake exchange reaction being

allowed a very high reaction flux in the iJR904 model. The TFP was performed with all exchange reactions

fixed to a flux of zero; therefore, the TFP did not identify this TIC, which involved an exchange reaction.

When the exchange reactions were allowed to carry flux again in the CPs, the high proton uptake rate

(here, 1000 mmol/gDW$h) allowed the cycling of reactions. These resulting TICs highlight two important

considerations in using OptFill. First, the mTFP should be used in combination with manual editing of

the model to ensure that the model does not contain inherent TICs, as the usual OptFill workflow will

not address inherent TICs. Second, reasonable bounds should be applied to all exchange reactions

(such as the proton uptake reaction) and forward and reverse reaction pairs to prevent TICs in the OptFilled

model.

OptFill Solution Times

With the caveats of the available resources (see Transparent Methods for information on the software and

hardware tools available for this work), the TFP seems to have a per-TIC average solution time with linear

dependence (R2 R 0.89) on size of model and/or database used (see Figures 4A through 4C). The same

procedure was applied to the aggregated CPs’ solution time but with significantly different results. Expo-

nential trend lines were able to fit with a high correlation coefficient (R2 R 0.96) between model, database,

total system size, and CPs aggregated solution time. This is indicative of a strong correlation between CPs

aggregate solution time, number of reactions in the total system, and that increasing total system reactions

greatly increases CPs aggregate solution time.

DISCUSSION

Introduced here is an optimization-based tool, OptFill, which can be used to increase the automation of the

curation of GSMs. This tool can either be used to automate the filling of metabolic gaps in a reconstructed

model or to automate the identification of TICs for manual resolution (via mTFP). In this work, the OptFill

was applied in sequence to three test models of increasing size as well as to a GSM of E. coli, iJR904. These

applications combined with some solutions for holistically gapfilling metabolic models, the computational

expense of the tool, and a method for reducing that expense highlighted the utility of OptFill.
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This method has considerable potential to be adapted to other metabolic systems (both eukaryotic and

prokaryotic) and is not specific to any identifier system such as KEGG or ModelSeed. For instance,

although all test models as well as iJR904/iAF1260 have been prokaryotic systems, there is no reason

why this approach would not similarly work in a eukaryotic organism. Further, the framework is flexible

enough that any system of reaction and metabolite identifiers, such as KEGG (Kanehisa et al., 2017),

MetaCyc (Caspi et al., 2014), BIGG (King et al., 2016), K-Base (Arkin et al., 2018), or custom identifiers,

may be used for metabolites and/or reactions, making this tool applicable to a wide variety of existing

GSM-building methods. This was demonstrated in this work as KEGG identifiers were used in the test

models, whereas BIGG identifiers were used by the iJR904 and iAF1260 models (Reed et al., 2003; Feist

et al., 2007).

From the observation of TFP solution times, it is evident that the TFP and mTFP could scale-up to genome-

scale models of metabolism, as a linear trend line (R2R0.89) strongly describes the per-TIC solution time

given the computational resources at hand. So long as the number of TICs in the system remains reason-

able, this portion of OptFill is transferrable to large-scale GSM systems or to situations where computa-

tional resources are limited. The transferability of the OptFill method is likely limited by the computational

resources available to the end-user, as the aggregate solution time of the three CPs is well described by an

exponential trend line (R2R0.97). This suggests that those without access to powerful computational re-

sources may have difficulty implementing OptFill in a reasonable time frame, unless, for instance the

end-user makes trade-offs between the solution order (e.g. each subsequent solution is truly globally

optimal) and solution time. These trade-off issues, such as shown in a minor way with the OptFilling of

iJR904, may likely be fixed by more advanced MILP solvers that are currently available or by advances in

optimization that may be made in future.

When implementing OptFill in other systems, a high-quality model and database should be used in or-

der to limit both the number of solutions and the time the OptFill method takes to complete. This is pri-

marily due to the number of feasible and unique combinations possible. For instance, if a multi-step re-

action is included in a database in addition to its component reaction steps, this can potentially double

the number of solutions found by both the TFP and CPs. To explain, if the multi-step reaction partici-

pates in n TICs, then its component step reactions would participate in n TICs. This results in 2n TICs,

where only n TICs need be identified. The same argument applies for CPs’ solutions. This error in model

reconstruction could then double (or more) the number of TICs and CPs’ solutions as well as the total

OptFill runtime in a stroke. In larger models, such issues can result in a significant expenditure of time

(potentially days) and computational resources that need not be expended should the model and data-

base used to be of high quality. Such an issue is elsewhere referred as a combinatorial explosion (Bur-

gard et al., 2003). This was shown in this work in the failure to achieve a reasonable number of solutions

or reasonable solution times in the OptFilling of iJR904 with a poorly curated database based on

iAF1260; however, when the database was better curated, reasonable numbers of solutions and solution

times were achieved. Therefore, it is important to address as many inherent TICs that occur both in the

model and in the database as feasible using the mTFP on both the model and the database to identify

and address these TICs.

Although throughout this text reaction cycling in the absence of nutrition (i.e., thermodynamically infea-

sible cycling) is described as a phenomenon that is to be avoided in GSMs, this is not always the case. In

many biological systems, cycling of some type does occur and the absence of that cycling in the models

might affect their accuracy. However, cycles included in a GSM should be carefully considered with

respect to their biological relevance, magnitude, and effect, particularly when they occur in the absence

of nutrition provided to the model. In essence, this work can be used to remove and/or avoid all cycling

that can occur in the absence of nutrition provided to the model or to ensure that cycles retained are

deliberate and have biological relevance if included. If cycles occur in a GSM model in the absence of

nutrition provided to the model and are biologically relevant, best practice should be to use other liter-

ature data available to limit the scope of the cycling to feasible number. This trade-off must be consid-

ered when applying the OptFill algorithm or when choosing to use some type of algorithm that employs

the loopless constraints.

This is the essential difference between what is proposed here as theOptFill tool and other algorithms such

as the algorithm employed by Chan et al. (2018) to identify all TICs in a model and avoid them. The TIC
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finding portions of the algorithm are largely equivalent, although Chan et al. (2018) may identify TICs faster.

OptFill then precludes these TICs from being added as part of a gapfilling solution so that the resultant

reconstructed metabolic model contains no inherent TICs. However, Chan et al. (2018) accepts these

TICs in the reconstructed network and seeks to limit flux through these TICs so that the resulting model

fluxes are feasible. The OptFill approach presents an alternative to the need to use loopless algorithms

on the gapfilled model and allows use of algorithms that are sensitive to the presence of TICs, such as Opt-

Force (Burgard et al., 2003; Chan et al., 2018) without modifying these algorithms for the use of various

loopless algorithms that may be computationally expensive.

In future, this work will be used as a gapfilling and curation strategy for the development of GSMs of any

prokaryotic and eukaryotic systems. In concert with advances in optimization solvers and available compu-

tational resources, these methods (i.e., the TFP, CPs, and their modified versions) will provide an alternative

holistic method of model curation. At present, those model-building tools with high computational power

at their disposal, such asModelSeed (Overbeek et al., 2005) and K-Base (Arkin et al., 2018), may well be able

to implement OptFill and its components for large GSMs to improve their automated curation capabilities.

In addition, with the available computational resources and some adjustments (as explained earlier),

Optfill is being implemented to improve the connectivity and predictive capability of the GSM of a non-

model purple non-sulphur bacterium (Alsiyabi et al., 2019) and to develop the GSM of a melanized fungal

strain.

Limitations of the Study

As already discussed in this work, this study does have multiple limitations. These limitations include solu-

tion speed, both of the CPs and as an overall result of combinatorial explosion; the need for powerful

computational resources to efficiently use this tool; and that this tool might miss cycles that do occur in bio-

logical systems but require thermodynamic data or constraints to prevent infeasible cycling.

METHODS

All methods can be found in the accompanying Transparent Methods supplemental file.

DATA AND CODE AVAILABILITY

The published article does not include all datasets and code generated or analyzed during this study. The

datasets and code generated during this study are available at GitHub in the ssbio/OptFill repository

[https://doi.org/10.5281/zenodo.3560302] and Mendeley Data OptFill repository [https://doi.org/10.

17632/npdwbmb7d7.1].
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TRANSPARENT METHODS  
 
KEY RESOURCES TABLE  
 
REAGENT or RESOURCE SOURCE IDENTIFIER 
Software and Algorithms 
Generalized Algebraic Modeling 
System (GAMS) version 24.7.4 

GAMS Development Corp. 
(URL: www.gams.com/) N/A 

CPLEX Solver version 12.6 GAMS Development Corp. 
(URL: www.gams.com/) N/A 

Perl version 5.26 (for Unix) Perl.org 
(URL: www.perl.org) N/A 

Strawberry Perl version 5.24.0.1 
(for Windows) 

Perl.org 
(URL: http://strawberryperl.com/) N/A 

The world-wide-web library for 
Perl, module 6.39 

Perl meta::cpan 
(URL: metacpan.org/pod/LWP) N/A 

Python version 3.3 (for Unix) Python Software Foundation 
(URL: www.python.org) N/A 

Kyoto Encyclopedia of Genes 
and Genomes (KEGG) 

Kanehisa Laboratories 
(URL: www.kegg.jp) RRID:SCR_012773 

iJR904 Reed et al. 2003 N/A 
Other 
Holland Computing Center, 
Crane Cluster (64 GB RAM, 
Intel Xenon E5-2670 2.60 GHz 
processor, 2 CPUs per node) 

Holland Computing Center, University of 
Nebraska 
(URL: hcc.unl.edu/) 

N/A 

 
LEAD CONTACT AND MATERIALS AVAILABILITY 
Further information and requests for resources and reagents should be directed to and will be fulfilled by 
the Lead Contact, Rajib Saha (rsaha2@unl.edu). No materials were generated in this work including cells, 
DNA, antibodies, reagents, organisms, mouse strains, or ES cells.  
 
Materials Availability Statement  
This study has produced several unique software codes in the form of GAMS, Perl, or Python programming 
languages/tools. These are included in the GitHub (DOI: 10.52.81/zenodo.8475) and Mendeley Data (DOI 
10.17632/npdwbmb7d7.1) repositories which accompany this work.  
 
METHOD DETAILS 
Model-Database TIC-Finding Problem (TFP) 
The first step of the OptFill method requires the iterative solving of the Mixed Integer Linear Programming 
(MILP) TIC-Finding Problem (TFP) applied to the model and database. This problem is defined below and 
is designed such that a TIC which could exist between the model and database with given reaction flux 
bounds will be a solution to the TFP.  
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𝑗𝑗∈𝐽𝐽

− 𝛾𝛾𝑠𝑠𝑓𝑓 ∀𝑠𝑠𝑓𝑓 ∈ 𝑆𝑆𝑓𝑓 (10) 

�𝛽𝛽𝑗𝑗 �𝛽𝛽𝑠𝑠𝑓𝑓,𝑗𝑗
′ �

𝑗𝑗∈𝐽𝐽

≤�𝛽𝛽𝑠𝑠𝑓𝑓,𝑗𝑗
′

𝑗𝑗∈𝐽𝐽

− �1 − 𝛾𝛾𝑠𝑠𝑓𝑓� ∀𝑠𝑠𝑓𝑓 ∈ 𝑆𝑆𝑓𝑓 (11) 

   
Fixed Values 

𝜖𝜖 = 1𝐸𝐸 − 3 ≡ 𝑎𝑎 𝑠𝑠𝑚𝑚𝑎𝑎𝑠𝑠𝑠𝑠 𝑚𝑚𝑛𝑛𝑚𝑚𝑛𝑛𝑚𝑚𝑛𝑛 
𝑣𝑣𝑗𝑗𝐿𝐿𝐿𝐿 ∈ ℝ ≡ 𝑠𝑠𝑙𝑙𝑙𝑙𝑚𝑚𝑛𝑛 𝑛𝑛𝑙𝑙𝑛𝑛𝑚𝑚𝑏𝑏 𝑙𝑙𝑜𝑜 𝑛𝑛𝑚𝑚𝑎𝑎𝑟𝑟𝑟𝑟𝑚𝑚𝑙𝑙𝑚𝑚 𝑗𝑗 𝑜𝑜𝑠𝑠𝑛𝑛𝑓𝑓 
𝑣𝑣𝑗𝑗𝑈𝑈𝐿𝐿 ∈ ℝ ≡ 𝑛𝑛𝑢𝑢𝑢𝑢𝑚𝑚𝑛𝑛 𝑛𝑛𝑙𝑙𝑛𝑛𝑚𝑚𝑏𝑏 𝑙𝑙𝑜𝑜 𝑛𝑛𝑚𝑚𝑎𝑎𝑟𝑟𝑟𝑟𝑚𝑚𝑙𝑙𝑚𝑚 𝑗𝑗 𝑜𝑜𝑠𝑠𝑛𝑛𝑓𝑓 

𝑆𝑆𝑖𝑖𝑗𝑗 ∈ ℝ ≡ 𝑠𝑠𝑟𝑟𝑙𝑙𝑚𝑚𝑟𝑟ℎ𝑚𝑚𝑙𝑙𝑚𝑚𝑚𝑚𝑟𝑟𝑛𝑛𝑚𝑚𝑟𝑟 𝑟𝑟𝑙𝑙𝑚𝑚𝑜𝑜𝑜𝑜𝑚𝑚𝑟𝑟𝑚𝑚𝑚𝑚𝑚𝑚𝑟𝑟 𝑙𝑙𝑜𝑜 𝑚𝑚𝑚𝑚𝑟𝑟𝑎𝑎𝑛𝑛𝑙𝑙𝑠𝑠𝑚𝑚𝑟𝑟𝑚𝑚 𝑚𝑚 𝑚𝑚𝑚𝑚 𝑛𝑛𝑚𝑚𝑎𝑎𝑟𝑟𝑟𝑟𝑚𝑚𝑙𝑙𝑚𝑚 𝑗𝑗 

𝛼𝛼𝑠𝑠𝑓𝑓,𝑗𝑗
′ = �1 𝑚𝑚𝑜𝑜 𝑛𝑛𝑚𝑚𝑎𝑎𝑟𝑟𝑟𝑟𝑚𝑚𝑙𝑙𝑚𝑚 𝑗𝑗 𝑢𝑢𝑎𝑎𝑛𝑛𝑟𝑟𝑚𝑚𝑟𝑟𝑚𝑚𝑢𝑢𝑎𝑎𝑟𝑟𝑚𝑚𝑠𝑠 𝑚𝑚𝑚𝑚 𝑢𝑢𝑛𝑛𝑚𝑚𝑣𝑣𝑚𝑚𝑙𝑙𝑛𝑛𝑠𝑠 𝑇𝑇𝑇𝑇𝑇𝑇 𝑠𝑠𝑙𝑙𝑠𝑠𝑛𝑛𝑟𝑟𝑚𝑚𝑙𝑙𝑚𝑚 𝑠𝑠𝑓𝑓  𝑙𝑙𝑚𝑚𝑟𝑟ℎ 𝑢𝑢𝑙𝑙𝑠𝑠𝑚𝑚𝑟𝑟𝑚𝑚𝑣𝑣𝑚𝑚 𝑜𝑜𝑠𝑠𝑛𝑛𝑓𝑓

0 𝑙𝑙𝑟𝑟ℎ𝑚𝑚𝑛𝑛𝑙𝑙𝑚𝑚𝑠𝑠𝑚𝑚
 

𝛼𝛼𝑠𝑠𝑓𝑓,𝑗𝑗
′ = �1 𝑚𝑚𝑜𝑜 𝑛𝑛𝑚𝑚𝑎𝑎𝑟𝑟𝑟𝑟𝑚𝑚𝑙𝑙𝑚𝑚 𝑗𝑗 𝑢𝑢𝑎𝑎𝑛𝑛𝑟𝑟𝑚𝑚𝑟𝑟𝑚𝑚𝑢𝑢𝑎𝑎𝑟𝑟𝑚𝑚𝑠𝑠 𝑚𝑚𝑚𝑚 𝑢𝑢𝑛𝑛𝑚𝑚𝑣𝑣𝑚𝑚𝑙𝑙𝑛𝑛𝑠𝑠 𝑇𝑇𝑇𝑇𝑇𝑇 𝑠𝑠𝑙𝑙𝑠𝑠𝑛𝑛𝑟𝑟𝑚𝑚𝑙𝑙𝑚𝑚 𝑠𝑠𝑓𝑓  𝑙𝑙𝑚𝑚𝑟𝑟ℎ 𝑚𝑚𝑚𝑚𝑛𝑛𝑎𝑎𝑟𝑟𝑚𝑚𝑣𝑣𝑚𝑚 𝑜𝑜𝑠𝑠𝑛𝑛𝑓𝑓

0 𝑙𝑙𝑟𝑟ℎ𝑚𝑚𝑛𝑛𝑙𝑙𝑚𝑚𝑠𝑠𝑚𝑚
 

 
Variables 

𝑣𝑣𝑗𝑗 ∈ ℝ ≡ 𝑜𝑜𝑠𝑠𝑛𝑛𝑓𝑓 𝑙𝑙𝑜𝑜 𝑛𝑛𝑚𝑚𝑎𝑎𝑟𝑟𝑟𝑟𝑚𝑚𝑙𝑙𝑚𝑚 𝑗𝑗 𝑚𝑚𝑚𝑚
𝑚𝑚𝑚𝑚𝑙𝑙𝑠𝑠
𝑛𝑛𝑔𝑔𝑔𝑔 ∙ ℎ

  

𝜂𝜂𝑗𝑗 = �1 𝑚𝑚𝑜𝑜 𝑛𝑛𝑚𝑚𝑎𝑎𝑟𝑟𝑟𝑟𝑚𝑚𝑙𝑙𝑚𝑚 𝑗𝑗 𝑢𝑢𝑎𝑎𝑛𝑛𝑟𝑟𝑚𝑚𝑟𝑟𝑚𝑚𝑢𝑢𝑎𝑎𝑟𝑟𝑚𝑚𝑠𝑠 𝑚𝑚𝑚𝑚 𝑟𝑟𝑛𝑛𝑛𝑛𝑛𝑛𝑚𝑚𝑚𝑚𝑟𝑟 𝑇𝑇𝐼𝐼𝑇𝑇 𝑠𝑠𝑙𝑙𝑠𝑠𝑛𝑛𝑟𝑟𝑚𝑚𝑙𝑙𝑚𝑚
0 𝑙𝑙𝑟𝑟ℎ𝑚𝑚𝑛𝑛𝑙𝑙𝑚𝑚𝑠𝑠𝑚𝑚

 

𝛼𝛼𝑗𝑗 = �1 𝑚𝑚𝑜𝑜 𝑛𝑛𝑚𝑚𝑎𝑎𝑟𝑟𝑟𝑟𝑚𝑚𝑙𝑙𝑚𝑚 𝑗𝑗 𝑢𝑢𝑎𝑎𝑛𝑛𝑟𝑟𝑚𝑚𝑟𝑟𝑚𝑚𝑢𝑢𝑎𝑎𝑟𝑟𝑚𝑚𝑠𝑠 𝑚𝑚𝑚𝑚 𝑟𝑟𝑛𝑛𝑛𝑛𝑛𝑛𝑚𝑚𝑚𝑚𝑟𝑟 𝑇𝑇𝐼𝐼𝑇𝑇 𝑠𝑠𝑙𝑙𝑠𝑠𝑛𝑛𝑟𝑟𝑚𝑚𝑙𝑙𝑚𝑚 𝑙𝑙𝑚𝑚𝑟𝑟ℎ 𝑢𝑢𝑙𝑙𝑠𝑠𝑚𝑚𝑟𝑟𝑚𝑚𝑣𝑣𝑚𝑚 𝑜𝑜𝑠𝑠𝑛𝑛𝑓𝑓
0 𝑙𝑙𝑟𝑟ℎ𝑚𝑚𝑛𝑛𝑙𝑙𝑚𝑚𝑠𝑠𝑚𝑚

 

𝛽𝛽𝑗𝑗 = �1 𝑚𝑚𝑜𝑜 𝑛𝑛𝑚𝑚𝑎𝑎𝑟𝑟𝑟𝑟𝑚𝑚𝑙𝑙𝑚𝑚 𝑗𝑗 𝑢𝑢𝑎𝑎𝑛𝑛𝑟𝑟𝑚𝑚𝑟𝑟𝑚𝑚𝑢𝑢𝑎𝑎𝑟𝑟𝑚𝑚𝑠𝑠 𝑚𝑚𝑚𝑚 𝑟𝑟𝑛𝑛𝑛𝑛𝑛𝑛𝑚𝑚𝑚𝑚𝑟𝑟 𝑇𝑇𝐼𝐼𝑇𝑇 𝑠𝑠𝑙𝑙𝑠𝑠𝑛𝑛𝑟𝑟𝑚𝑚𝑙𝑙𝑚𝑚 𝑙𝑙𝑚𝑚𝑟𝑟ℎ 𝑚𝑚𝑚𝑚𝑛𝑛𝑎𝑎𝑟𝑟𝑚𝑚𝑣𝑣𝑚𝑚 𝑜𝑜𝑠𝑠𝑛𝑛𝑓𝑓
0 𝑙𝑙𝑟𝑟ℎ𝑚𝑚𝑛𝑛𝑙𝑙𝑚𝑚𝑠𝑠𝑚𝑚

 
𝛾𝛾𝑗𝑗 ∈ [0,1] ≡ 𝑛𝑛𝑚𝑚𝑚𝑚𝑎𝑎𝑛𝑛𝑏𝑏 𝑣𝑣𝑎𝑎𝑠𝑠𝑛𝑛𝑚𝑚 𝑙𝑙ℎ𝑚𝑚𝑟𝑟ℎ 𝑚𝑚𝑚𝑚𝑠𝑠𝑛𝑛𝑛𝑛𝑚𝑚𝑠𝑠 𝑟𝑟ℎ𝑎𝑎𝑟𝑟 𝑎𝑎𝑟𝑟 𝑠𝑠𝑚𝑚𝑎𝑎𝑠𝑠𝑟𝑟 1 𝑚𝑚𝑚𝑚𝑟𝑟𝑚𝑚𝑛𝑛𝑚𝑚𝑛𝑛 𝑟𝑟𝑛𝑛𝑟𝑟 ℎ𝑙𝑙𝑠𝑠𝑏𝑏𝑠𝑠 

 
The set sf is the set of all previously found TICs and represents the solution space that is known. It should 
be noted that set J is the set of all reactions in the database and model, of which set JDB, the set of all 
reactions in the database, is a subset. Further, it should be noted that I is the set of all metabolites in the 
database and the model. Parameters (fixed values) and variables are defined after all constraints have 
been listed. The TIC-finding problem is run with all nutrient uptakes turned off, so that any reaction flux is 
unrealistic and due to one or more TICs. The TFP is included in File S3 as GAMS (Generalized Algebraic 
Modeling System) code. The following subsections will describe the above equations constituting the TFP 
in detail.  
 
Objective function and sought TIC size 
The solution of the TFP is itself a TIC. The objective function, equation (1), is minimization of the number 
of reactions participating in the TIC solution. This objective function is irrelevant in the solution due to 
equation (5), as equation (5) specifies the size of the TIC sought, and thus the objective function value, and 
is included to ensure that each possible TIC size is investigated. The order of solutions, when the workflow 
in Figure 2 is followed, is unimportant, and may vary each time the TFP is applied to a model.  
 
Enforcing flux bounds and reaction participation 
Equations (2) and (3) are constraints which enforce the given reaction flux bounds and determine if a 
reaction participates in the identified TIC. The variable 𝜂𝜂𝑗𝑗 stores if a reaction participates in a TIC, while 
variables 𝛼𝛼𝑗𝑗 and 𝛽𝛽𝑗𝑗 store direction of participation. Reaction flux bounds 𝑣𝑣𝑗𝑗𝐿𝐿𝐿𝐿 and 𝑣𝑣𝑗𝑗𝑈𝑈𝐿𝐿 are determined 
manually based on reaction direction (reversible, irreversible forward, or irreversible backward), limitations 
on nutrient uptake rates, and reaction state (either on or off depending on genotype, nutrient availability). 
Equation (6) ensures that at least one database reaction holds flux. Equation (2) specifically identifies if 



reaction j participates in the solution TIC by requiring some small, minimum reaction flux, 𝜖𝜖, for participating 
reactions such that equation (12) is true. Further, it identifies the direction of that reaction.  
 
�𝑣𝑣𝑗𝑗� ≥ 𝜖𝜖 ∀𝑗𝑗 ∈ �𝐽𝐽�𝜂𝜂𝑗𝑗 = 1� (12) 

 
Equation (3) ensures that if any reaction does not meet the reaction flux threshold to participate in the TIC 
solution, that the reaction flux is constraint to zero. 
 
Identifying positive flux participation in the TIC 
Equations (7) through (9) are a linearized version of the following statement. 
 
𝛼𝛼𝑗𝑗 ≤ 𝜂𝜂𝑗𝑗�1 − 𝛽𝛽𝑗𝑗� (13) 

 
The linearization in equations (7) through (9) functions the same as (13) because ηj and βj are binary 
variables. This linearization is made in order to preserve the linear nature of the TFP. A linear optimization 
problem can guarantee both global solution optimality and that all solutions in the solution space can be 
enumerated, which in this case guarantees that all TICs are found of a given size.  
 
Integer Cuts for Repeated Solutions 
Equations (10) and (11) are integer cuts which prevent repetition of solutions. It should be noted that these 
repeated solutions include direction. Therefore, to be identified as the same TIC, the set of participating 
reactions and the directions in which they participate must be the same. Consider the following set of 
chemical equations for an illustration of how these integer cuts prevent repeated solutions.  
 
1 𝐴𝐴 ↔ 1 𝐵𝐵 
1 𝐵𝐵 ↔ 1 𝑇𝑇 
1 𝑇𝑇 ↔ 1 𝐴𝐴 
 
The TFP, because of these integer cuts, would identify two TICs existing in this set of chemical reactions. 
The first would be all reactions listed above proceeding in the forward direction, while the second would be 
all reactions listed above proceeding in the backward direction. These are identified separately because 
their reaction directions are different, although the participating reactions are the same.  
 
Modified TIC-Finding Problem (mTFP) 
The TFP can be modified for the identification of TICs inherent to a metabolic model to aid in model curation. 
The modified TIC-Finding Problem (mTFP) can be formulated via equations (1) through (5) and equations 
(7) through (11). All set, parameter, and variable definitions are the same as in the unmodified TFP. 
 
First Connecting Problem (CP1) 
The connecting problems are the series of optimization problems which are solved following the solving of 
the TFP. First discussed will be the first Connecting Problem (CP1). The solution to a CP is a set of database 
reactions which, when added to the model, will increase model connectivity. The solution to CP1 gives the 
maximum number of model metabolites which could be connected using the database. The formulation of 
CP1 is given below.  
 
𝑚𝑚𝑎𝑎𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑍𝑍𝑚𝑚𝑚𝑚𝑚𝑚 = � 𝑓𝑓𝑖𝑖𝑚𝑚

𝑖𝑖𝑚𝑚∈𝐼𝐼𝑀𝑀
  (14) 

Subject to   
� 𝜁𝜁𝑗𝑗𝑑𝑑𝑑𝑑

𝑗𝑗𝑑𝑑𝑑𝑑∈𝐽𝐽𝐷𝐷𝐷𝐷
≥ 1  (15) 

𝜌𝜌𝑗𝑗𝑑𝑑𝑑𝑑𝑣𝑣𝑗𝑗𝑑𝑑𝑑𝑑
𝐿𝐿𝐿𝐿 ≤ 𝑣𝑣𝑗𝑗𝑑𝑑𝑑𝑑 ≤ 𝛿𝛿𝑗𝑗𝑑𝑑𝑑𝑑𝑣𝑣𝑗𝑗𝑑𝑑𝑑𝑑

𝑈𝑈𝐿𝐿 ∀𝑗𝑗𝑑𝑑𝑑𝑑 ∈ 𝐽𝐽𝐷𝐷𝐿𝐿 (16) 
𝜃𝜃𝑗𝑗𝑣𝑣𝑗𝑗𝐿𝐿𝐿𝐿 ≤ 𝑣𝑣𝑗𝑗 ≤ �1 − 𝜃𝜃𝑗𝑗�𝑣𝑣𝑗𝑗𝑈𝑈𝐿𝐿 − 𝜖𝜖𝜃𝜃𝑗𝑗 ∀𝑗𝑗 ∈ 𝐽𝐽 (17) 
�1 − 𝜆𝜆𝑗𝑗�𝑣𝑣𝑗𝑗𝐿𝐿𝐿𝐿 + 𝜖𝜖𝜆𝜆𝑗𝑗 ≤ 𝑣𝑣𝑗𝑗 ≤ 𝜆𝜆𝑗𝑗𝑣𝑣𝑗𝑗𝑈𝑈𝐿𝐿  (18) 



𝑓𝑓𝑖𝑖 ≤��𝜆𝜆𝑗𝑗𝜉𝜉𝑖𝑖,𝑖𝑖 + 𝜃𝜃𝑗𝑗𝜓𝜓𝑖𝑖,𝑗𝑗�
𝑗𝑗∈𝐽𝐽

 ∀𝑚𝑚 ∈ 𝐼𝐼 (19) 

𝑓𝑓𝑑𝑑 = 1 ∀𝑛𝑛 ∈ 𝐵𝐵 ⊂ 𝐼𝐼 (20) 
�𝑆𝑆𝑖𝑖𝑗𝑗𝑣𝑣𝑗𝑗
𝑗𝑗∈𝐽𝐽

= 0 ∀𝑚𝑚 ∈ 𝐼𝐼 (21) 

𝜁𝜁𝑗𝑗𝑑𝑑𝑑𝑑 ≤ ��𝜆𝜆𝑗𝑗𝜉𝜉𝑖𝑖,𝑖𝑖 + 𝜃𝜃𝑗𝑗𝜓𝜓𝑖𝑖,𝑗𝑗�
𝑖𝑖∈𝐼𝐼

 ∀𝑗𝑗𝑑𝑑𝑑𝑑 ∈ 𝐽𝐽𝐷𝐷𝐿𝐿 (22) 

𝛿𝛿𝑗𝑗𝑑𝑑𝑑𝑑 + 𝜌𝜌𝑗𝑗𝑑𝑑𝑑𝑑 − 𝜔𝜔𝑗𝑗𝑑𝑑𝑑𝑑 = 𝜁𝜁𝑗𝑗𝑑𝑑𝑑𝑑 ∀𝑗𝑗𝑑𝑑𝑑𝑑 ∈ 𝐽𝐽𝐷𝐷𝐿𝐿 (23) 
𝜔𝜔𝑗𝑗𝑑𝑑𝑑𝑑 ≤ 𝛿𝛿𝑗𝑗𝑑𝑑𝑑𝑑 ∀𝑗𝑗𝑑𝑑𝑑𝑑 ∈ 𝐽𝐽𝐷𝐷𝐿𝐿 (24) 
𝜔𝜔𝑗𝑗𝑑𝑑𝑑𝑑 ≤ 𝜌𝜌𝑗𝑗𝑑𝑑𝑑𝑑 ∀𝑗𝑗𝑑𝑑𝑑𝑑 ∈ 𝐽𝐽𝐷𝐷𝐿𝐿 (25) 
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0 𝑙𝑙𝑟𝑟ℎ𝑚𝑚𝑛𝑛𝑙𝑙𝑚𝑚𝑠𝑠𝑚𝑚

 



𝑓𝑓𝑖𝑖 = �1 𝑚𝑚𝑜𝑜 𝑟𝑟𝑙𝑙𝑚𝑚𝑚𝑚𝑚𝑚𝑟𝑟𝑟𝑟𝑚𝑚𝑏𝑏 𝑚𝑚𝑙𝑙𝑏𝑏𝑚𝑚𝑠𝑠 𝑢𝑢𝑛𝑛𝑙𝑙𝑏𝑏𝑛𝑛𝑟𝑟𝑚𝑚𝑠𝑠 𝑚𝑚𝑚𝑚𝑟𝑟𝑎𝑎𝑛𝑛𝑙𝑙𝑠𝑠𝑚𝑚𝑟𝑟𝑚𝑚 𝑚𝑚
0 𝑙𝑙𝑟𝑟ℎ𝑚𝑚𝑛𝑛𝑙𝑙𝑚𝑚𝑠𝑠𝑚𝑚

 
𝜎𝜎𝑠𝑠𝑐𝑐 ∈ [0,1] ≡ 𝑛𝑛𝑚𝑚𝑚𝑚𝑎𝑎𝑛𝑛𝑏𝑏 𝑣𝑣𝑎𝑎𝑛𝑛𝑚𝑚𝑎𝑎𝑛𝑛𝑠𝑠𝑚𝑚 𝑙𝑙ℎ𝑚𝑚𝑟𝑟ℎ 𝑚𝑚𝑚𝑚𝑠𝑠𝑛𝑛𝑛𝑛𝑚𝑚𝑠𝑠 𝑟𝑟ℎ𝑎𝑎𝑟𝑟 𝑟𝑟ℎ𝑚𝑚 𝑠𝑠𝑙𝑙𝑠𝑠𝑛𝑛𝑟𝑟𝑚𝑚𝑙𝑙𝑚𝑚 𝑚𝑚𝑠𝑠 𝑛𝑛𝑚𝑚𝑚𝑚𝑈𝑈𝑛𝑛𝑚𝑚 𝑜𝑜𝑛𝑛𝑙𝑙𝑚𝑚 

𝑢𝑢𝑛𝑛𝑚𝑚𝑣𝑣𝑚𝑚𝑙𝑙𝑛𝑛𝑠𝑠 𝑠𝑠𝑙𝑙𝑠𝑠𝑛𝑛𝑟𝑟𝑚𝑚𝑙𝑙𝑚𝑚𝑠𝑠 𝑚𝑚𝑚𝑚 𝑎𝑎𝑟𝑟 𝑠𝑠𝑚𝑚𝑎𝑎𝑠𝑠𝑟𝑟 𝑙𝑙𝑚𝑚𝑚𝑚 𝑏𝑏𝑚𝑚𝑛𝑛𝑚𝑚𝑟𝑟𝑟𝑟𝑚𝑚𝑙𝑙𝑚𝑚 𝑙𝑙𝑜𝑜 𝑙𝑙𝑚𝑚𝑚𝑚 𝑏𝑏𝑎𝑎𝑟𝑟𝑎𝑎𝑛𝑛𝑎𝑎𝑠𝑠𝑚𝑚 𝑛𝑛𝑚𝑚𝑎𝑎𝑟𝑟𝑟𝑟𝑚𝑚𝑙𝑙𝑚𝑚 
𝜏𝜏𝑠𝑠𝑐𝑐 ∈ [0,1] ≡ 𝑛𝑛𝑚𝑚𝑚𝑚𝑎𝑎𝑛𝑛𝑏𝑏 𝑣𝑣𝑎𝑎𝑛𝑛𝑚𝑚𝑎𝑎𝑛𝑛𝑠𝑠𝑚𝑚 𝑙𝑙ℎ𝑚𝑚𝑟𝑟ℎ 𝑚𝑚𝑚𝑚𝑠𝑠𝑛𝑛𝑛𝑛𝑚𝑚𝑠𝑠 𝑟𝑟ℎ𝑎𝑎𝑟𝑟 𝑟𝑟ℎ𝑚𝑚 𝑠𝑠𝑙𝑙𝑠𝑠𝑛𝑛𝑟𝑟𝑚𝑚𝑙𝑙𝑚𝑚 𝑚𝑚𝑠𝑠 𝑜𝑜𝑛𝑛𝑚𝑚𝑚𝑚 𝑜𝑜𝑛𝑛𝑙𝑙𝑚𝑚 𝑇𝑇𝐼𝐼𝑇𝑇𝑠𝑠 𝑚𝑚𝑚𝑚 

𝑟𝑟ℎ𝑎𝑎𝑟𝑟 𝑎𝑎𝑟𝑟 𝑠𝑠𝑚𝑚𝑎𝑎𝑠𝑠𝑟𝑟 𝑙𝑙𝑚𝑚𝑚𝑚 𝑏𝑏𝑚𝑚𝑛𝑛𝑚𝑚𝑟𝑟𝑟𝑟𝑚𝑚𝑙𝑙𝑚𝑚 𝑙𝑙𝑜𝑜 𝑙𝑙𝑚𝑚𝑚𝑚 𝑏𝑏𝑎𝑎𝑟𝑟𝑎𝑎𝑛𝑛𝑎𝑎𝑠𝑠𝑚𝑚 𝑛𝑛𝑚𝑚𝑎𝑎𝑟𝑟𝑟𝑟𝑚𝑚𝑙𝑙𝑚𝑚𝑠𝑠 𝑙𝑙ℎ𝑚𝑚𝑟𝑟ℎ 𝑟𝑟𝑙𝑙𝑛𝑛𝑠𝑠𝑏𝑏 𝑟𝑟𝑎𝑎𝑛𝑛𝑠𝑠𝑚𝑚 𝑎𝑎 𝑇𝑇𝐼𝐼𝑇𝑇 𝑚𝑚𝑠𝑠 𝑚𝑚𝑙𝑙𝑟𝑟 
𝑎𝑎𝑏𝑏𝑏𝑏𝑚𝑚𝑏𝑏 𝑚𝑚𝑚𝑚 𝑟𝑟ℎ𝑚𝑚 𝑇𝑇𝐼𝐼𝑇𝑇 − 𝑟𝑟𝑎𝑎𝑛𝑛𝑠𝑠𝑚𝑚𝑚𝑚𝑛𝑛 𝑏𝑏𝑚𝑚𝑛𝑛𝑚𝑚𝑟𝑟𝑟𝑟𝑚𝑚𝑙𝑙𝑚𝑚 𝑜𝑜𝑙𝑙𝑛𝑛 𝑚𝑚𝑎𝑎𝑟𝑟ℎ 𝑇𝑇𝐼𝐼𝑇𝑇 𝑚𝑚𝑏𝑏𝑚𝑚𝑚𝑚𝑟𝑟𝑚𝑚𝑜𝑜𝑚𝑚𝑚𝑚𝑏𝑏 𝑛𝑛𝑏𝑏 𝑟𝑟ℎ𝑚𝑚 𝑇𝑇𝑇𝑇𝑇𝑇 

 
Where IM is defined as the set of metabolites in the model and is a subset of I. When CP1 is solved, the 
optimal value of Zmet is the maximum number of metabolites which can be connected in the model by adding 
reactions from the database, given all previous solutions (if any) and all identified potential TICs. It should 
be noted that all sets and parameters have the same definitions here as in the TFP, with the additions of 
JM being the set of model reactions which is a subset of J, of IM being the set of model metabolites which is 
a subset of I, sc being the set of all previous connecting problem solutions, so being the set of all previous 
connecting problem solutions with at least one reversible reaction being added from the database, and B 
being the set of all metabolites which are involved in the biomass equation which is a subset of I.  
 
The following statements give, broadly, the rational for each constraint equation. Equation (14) ensures that 
at least one reaction is added from the database for each solution. Equation (15) ensures that each 
database reaction only has flux if it is added. Equation (16) ensures that the user-defined reaction flux 
bounds hold. Equations (17) through (19) determine which metabolites the fixed model can produce, 
equation (19) ensures that the fixed model can produce biomass. Equation (20) ensures mass balance. 
Equation (21) ensures that added reactions are productive, e.g. that the added reaction does produce one 
or more metabolites. Equations (22) through (24) ensure that each database reaction for the connecting 
solution is added as a forward, backward, or reversible reaction (e.g. both as a forward and a backward 
reaction). Equations (25) though (28) are integer cuts preventing repeated solutions, while Equations (29) 
and (30) are integer cuts preventing the full addition of a TIC through the CP solution. The following 
subsections will describe some of the above equations constituting the CPs in greater detail. The CPs are 
included in File S4 as GAMS (Generalized Algebraic Modeling System) code. The following subsections 
will describe some of the above equations constituting the CPs in greater detail.  
 
Determination of Metabolite Production 
Important to CPs is the determination of whether or not a metabolite is produced in the connected model. 
Equations (17) and (18) are used to determine which direction reactions proceed in the connected model. 
Equation (19) essentially states that a metabolite is produced if at least one reaction produces that 
metabolite by having flux in the direction of that metabolite (either through backwards flux and a negative 
stoichiometric coefficient or forward flux and a positive stoichiometric coefficient). Equation (20) ensures 
that all metabolites necessary for growth (those involved in biomass production) are produced, as all models 
of metabolism should be capable of producing biomass, even if biomass is not ultimately the objective used. 
For instance, alternate objectives could include the maximization of production of a given metabolite 
(Herrgård, Fong, & Palsson, 2006)(Price, Reed, & Palsson, 2004), the minimization of the uptake of a 
particular substrate  (Gomes de Oliveira Dal’Molin, Quek, Saa, & Nielsen, 2015), or minimization of 
metabolic adjustment (MOMA) (Herrgård et al., 2006)(Price et al., 2004). Ultimately, each objective type 
some fixed or variable non-zero level of biomass production and therefore all models require some ability 
to grow, making these constraints reasonable for reconstructions regardless of the ultimate objective used. 
Equation (22) ensures that reactions added from the database are productive, e.g. that each added reaction 
is capable of producing at least one metabolite. This constraint ensures that reactions incapable of carrying 
flux are not added to the model.  
 
Direction of Added Database Reactions 
Equations (22) through (25) largely deal with the direction in which reactions are added from the database. 
Equations (22) ensures that reactions added from the database are productive. Equation (23) ensures that 
ζjdb is equal to 1 if reaction jdb is added to the model as part of this solution, and zero otherwise. Equations 
(23) through (25) are the linearization of the multiplication of two binary variables stated below. 
 
𝜔𝜔𝑗𝑗𝑑𝑑𝑑𝑑 = 𝛿𝛿𝑗𝑗𝑑𝑑𝑑𝑑𝜌𝜌𝑗𝑗𝑑𝑑𝑑𝑑 (31) 



 
This linearization is done for the same reasons that the TFP has been linearized. The sum of these 
constraints ensures that any reaction added reversibly is treated as a reaction added both forward and 
backwards for the purposes of integer cuts to avoid repeated solutions.  
 
Integer Cuts for Repeated Solutions 
Equations (26) through (28) define integer cuts used to avoid repeat solutions. Equations (26) and (27) 
have been designed on similar lines to (10) and (11), designed to avoid repeat solutions. Through the 
integer cuts in equations (26) through (28), both the reactions and their directions are integral to the solution; 
therefore, any different between solutions in reaction direction or reactions included is recorded as a second 
solution. Equation (28) prevents the repetition of a solution that could be caused by changing a reversible 
database reaction addition into an irreversible one.  
 
Integer Cuts for TIC-less Connecting 
Equations (29) through (30) define integer cuts which ensure that a TIC is not added to the connecting 
solution. This is done by considering both reaction identity and direction for both the addition of database 
reactions and for the avoidance of TICs. This results in a minimum perturbation to the solution space of 
CPs caused by each TIC. As with other directional integer cuts, only one cut needs be in effect at minimum 
in order to define a new solution. 
 
Modified First Connecting Problem 
A modified CP1 was used to get an initial count of the maximum number of metabolites which the raw 
model can produce. This modified CP1 made use of equations (14), and (16) through (30). In place of 
equation (15) the following equation was used to ensure that no database reactions were considered in 
maximizing the number of metabolites which may be connected.  
 

� 𝜁𝜁𝑗𝑗𝑑𝑑𝑑𝑑
𝑗𝑗𝑑𝑑𝑑𝑑∈𝐽𝐽𝐷𝐷𝐷𝐷

= 0  (32) 

 
Second Connecting Problem 
The second Connecting Problem (CP2) is defined as equations (15) through (30) with the addition of the 
objective function and constraint equation (34) stated below. 
 
𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑍𝑍𝑟𝑟𝑟𝑟𝑟𝑟 = � 𝜁𝜁𝑗𝑗𝑑𝑑𝑑𝑑

𝑗𝑗𝑑𝑑𝑑𝑑∈𝐽𝐽𝐷𝐷𝐷𝐷
 (33) 

s.t.  
Equations (15) through (30)  
� 𝑓𝑓𝑖𝑖𝑚𝑚

𝑖𝑖𝑚𝑚∈𝐼𝐼𝑀𝑀
= 𝑍𝑍𝑚𝑚𝑚𝑚𝑚𝑚,𝑜𝑜𝑜𝑜𝑚𝑚 (34) 

 
Where Zmet,opt is defined as the optimal objective value of CP1. When CP2 is solved, the optimal value of 
Zrxn is the minimum number of reactions which, when added from the database, can connect the previously 
determined maximum number of model metabolites, given all previous solutions (if any) and all identified 
potential TICs.  
 
Third Connecting Problem 
The third Connecting Problem (CP3) is defined as equations (15) through (30), equation (34), and constraint 
equation (36) stated below. 
 
𝑚𝑚𝑎𝑎𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑍𝑍𝑟𝑟𝑚𝑚𝑟𝑟 = � 𝜔𝜔𝑗𝑗𝑑𝑑𝑑𝑑

𝑗𝑗𝑑𝑑𝑑𝑑∈𝐽𝐽𝐷𝐷𝐷𝐷
 (35) 

s.t.  
Equations (15) through (31), (34)  



� 𝜁𝜁𝑗𝑗𝑑𝑑𝑑𝑑
𝑗𝑗𝑑𝑑𝑑𝑑∈𝐽𝐽𝐷𝐷𝐷𝐷

= 𝑍𝑍𝑟𝑟𝑟𝑟𝑟𝑟,𝑜𝑜𝑜𝑜𝑚𝑚 (36) 

 
Where Zrxn,opt is defined as the optimal objective value of CP2. When CP3 is solved, the optimal value of 
Zrev is the maximum number of reversible reactions which can be used to achieve the minimum number of 
reaction additions to maximize model connectivity, given all previous solutions (if any) and all identified 
potential TICs. The solution of CP3 is the solution accepted as optimal. 
 
CP3 has been found to be needed due to allowing database reactions to be added forward, backward, and 
reversibly. Since adding a reaction reversibly rather than irreversibly in some cases has made no difference, 
this resulted in an inconsistent number of solutions to the set of CPs. Therefore, in one run two solutions 
would be returned (the irreversible solution has been returned, then the reversible), where in a subsequent 
run perhaps only one solution would be returned if the reversible solution has been returned first, and then 
integer cuts (26) and (27) would preclude the irreversible solution. This third connecting problem has been 
added to deal with such situations by forcing the reversible solution to be returned first, resulting in a 
standardized, minimized set of solutions.  
 
FBA of Connected Model 
Once the CPs have been solved and the identity and direction of models to be added from the database to 
the model for a given solution are known, Flux Balance Analysis (FBA) is performed on the connected 
model. As the models are not physically merged, this takes the following form.  
 
𝑚𝑚𝑎𝑎𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑍𝑍𝑑𝑑𝑖𝑖𝑜𝑜 = 𝑣𝑣𝑑𝑑𝑖𝑖𝑜𝑜𝑚𝑚𝑏𝑏𝑠𝑠𝑠𝑠  (37) 
s.t.    
�𝑆𝑆𝑖𝑖𝑗𝑗𝑣𝑣𝑗𝑗
𝑗𝑗∈𝐽𝐽

= 0 ∀𝑚𝑚 ∈ 𝐼𝐼 (38) 

𝑣𝑣𝑗𝑗𝑚𝑚
𝐿𝐿𝐿𝐿 ≤ 𝑣𝑣𝑗𝑗𝑚𝑚 ≤ 𝑣𝑣𝑗𝑗𝑚𝑚

𝑈𝑈𝐿𝐿 ∀𝑗𝑗𝑚𝑚 ∈ 𝐽𝐽𝑀𝑀 (39) 
𝜌𝜌𝑗𝑗𝑑𝑑𝑑𝑑,𝑠𝑠𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
′ 𝑣𝑣𝑗𝑗𝑑𝑑𝑑𝑑

𝐿𝐿𝐿𝐿 ≤ 𝑣𝑣𝑗𝑗𝑑𝑑𝑑𝑑 ≤ 𝛿𝛿𝑗𝑗𝑑𝑑𝑑𝑑,𝑠𝑠𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
′ 𝑣𝑣𝑗𝑗𝑑𝑑𝑑𝑑

𝑈𝑈𝐿𝐿 ∀𝑗𝑗𝑑𝑑𝑑𝑑 ∈ 𝐽𝐽𝐷𝐷𝐿𝐿 (40) 
 
All variables, parameters, and sets are the same as in previous equations, and in addition scurr represents 
the current connecting solution. In the above formulation, equation (39) takes into account the current 
solution of the CPs. A biomass maximization objective function was chosen for this work, but other objective 
could be selected depending on what part of metabolism is of most interest.  
 
Creation of Test Models and Databases 
Test model have been created in tandem with their databases using KEGG maps of pathways to identify 
sets of reactions which might produce a functional metabolic model. The first Test Model (TM1) and Test 
Database (TDb1) have been built from the “starch and sucrose metabolism” (map00500) and the 
“glycolysis/gluconeogenesis” (map00010) metabolic maps with the goal of producing a minimal prokaryotic 
model which utilizes sucrose, produces ethanol and biomass, and has some TICs which exist between the 
database and model where TM1 cannot produce biomass (without some TDb1 reactions) and contains no 
inherent TICs. Since only sucrose metabolism and glycolysis have been included in this model, biomass 
for this model is based on glucose, fructose, and an arbitrary growth-associated maintenance (GAM) value 
of 2. The coefficient of glucose in the biomass equation has then been scaled such that the molecular 
weight of biomass is 1000 g/mol. Non-Growth Associated Maintenance (NGAM) has also been defined 
arbitrarily as 2. TM1 and TDb1 have been constructed rationally with as many reversible reactions as 
possible, such that 22 of the 28 reactions are reversible in TM1 and all 17 reactions are reversible in TDb1.  
Once TM1 and TDb1 have been constructed, OptFill has been applied to them. This has resulted in the 
identification of 31 TICs consisting of 3 to 12 reactions by the TFP using the CPLEX solver. See results 
section for detail. 
 
The first solution reported by OptFill for TM1/TDb1 has been added to TM1 to create the initial second Test 
Model (TM2). Added manually to this initial TM2 model is portions of the “pentose phosphate” pathway 
(map00030) and fatty acid biosynthesis” (map00061) pathway. The biomass equation has been updated 



to include a small amount (stoichiometric coefficient 0.01) of fatty acid products (8-, 10-, 12-, 14-, 16-, and 
18-carbon fatty acid products) and the coefficient of glucose has again been adjusted to ensure biomass 
molecular weight was 1000 g/mol. Certain reactions in both pathways have been selected to constitute the 
second Test Database (TDb2), again with the aim of being a small prokaryotic model which utilizes sucrose, 
produces ethanol, produces biomass, and has some TICs which exist between the database and model 
where TM2 cannot produce biomass (without some TDb2 reactions) and contains no inherent TICs. In total, 
TM2 consists of 77 reactions (with 65 being reversible), and TDd2 consists of 34 reactions (all reversible). 
Once TM2 and TDb2 have been constructed, OptFill has been applied to them, see results section for 
details. 
 
As with the construction of TM2, the third Test Model (TM3) has initially been constructed from the first 
solution of OptFill applied to TM2/TDb2 added to a test model. This test model has then been expanded to 
include “nitrogen metabolism” (map00910, with ammonium uptake), “sulfur metabolism” (map00920, with 
sulfate uptake), and synthesis pathways for all 20 amino acids. The biomass equation has been updated 
to include a small amount (stoichiometric coefficient 0.1) of each of the 20 primary amino acids, following 
which the coefficient of glucose has again been adjusted to ensure biomass molecular weight was 1000 
g/mol. Unlike previous test models, this working test model (e.g. capable of producing biomass) with some 
TICs has first been developed, split between reactions belonging to TM2 or OptFill solution thereof, and 
“other” reactions. Then each of these “other” reaction has been assigned a random value (between 0 and 
1) and those with a value greater than or equal to 0.7 have been assigned to the third Test Database 
(TDb3), and those with a value less than or equal to 0.8 have been assigned to the third Test Model (TM3). 
The code to perform this is included as part of the GitHub OptFill (10.52.81/zenodo.8475) or Mendeley Data 
(10.17632/npdwbmb7d7.1) repositories accompanying this work. Following this, the mTFP has been 
applied to TM3 in order to ensure that the model is TIC-less. For removing TICs from TM3, the number of 
occurrences of each reaction participating in all TICs has been counted, that has the highest occurrence, 
excluding those reactions from TM2 and TDb2, has been moved to TDb3. In the case of ties, the reaction 
with the highest reaction ID number has been moved to TDb3. In total, TM3 consists of 210 reactions (196 
reversible), and TDb3 consists of 77 reactions (all reversible). Once TM3 and TDb3 have been constructed, 
OptFill has been applied to them, see results section for details. 
  
It should be noted that for all instances of OptFill applied to test models some low number of execution 
errors have been allowed, five are allowed in this example option allowing execution errors: “execerr=5”. 
This has been done because GAMS throws an execution error if the RHS and LHS of a constraint are fixed 
and those fixed values do not satisfy the constraint. In the case of OptFill, this is not necessarily an issue, 
as it simply indicates that there are no more feasible solutions and that the program should continue onto 
the next problem or step. Graphical summaries comparing project runtimes have then been generated in 
Table S2. Result summaries, graphs and biomass calculations related to Figure 4 (Microsoft Excel) to 
produce Figure 4. Trend line and Pearson correlation values included in this figure have been generated 
automatically by Microsoft Excel. Linear, logarithmic, exponential, and power trend lines have been 
investigated, and the best fit line is displayed for each dataset. Polynomial trend lines have not been 
investigated as these trend lines can lead to overfitting errors.       
 
Application of iAF1260 to iJR904 
In the application of OptFill to published Escherichia coli GSMs, iJR904 (Reed, Vo, Schilling, & Palsson, 
2003) was treated as the model and iAF1260 (Feist et al., 2007) as the source of reactions to build the 
database for OptFill. Minor formatting of both of these models was accomplished using the code in the 
GitHub OptFill or Mendeley Data repositories accompanying this work. Such formatting changes include 
changing of how reaction arrows appeared and location of metabolite compartment notation. Following this 
formatting, all exchange reactions were removed from iAF1260, as it was decided to use the media 
definition provided for iJR904 by Reed et al., 2003, specifically for the case of aerobic growth on acetate. 
Whereas very large bounds in iJR904 have been defined as 1e30, these have been redefined as 1e3 as 
both quantities are sufficiently large in the context of GSMs to be a red flag should any reaction flux reach 
that quantity. Further, 1e3 is the value of M used elsewhere in the code, resulting in a standard value for a 
“very large number”.  
 



Once the aforementioned changes had been made, iAF1260 (sans exchange reactions) and iJR904 were 
compared in Table the GitHub OptFill or Mendeley Data repositories accompanying this work so that 
reactions that are in both model would be removed from iAF1260. These modifications resulted in 1441 
reactions remaining in the initial iAF1260-based database. The initial iAF1260-based database is provided 
in the GitHub OptFill or Mendeley Data repositories accompanying this work, as is the GAMS code used in 
this application of OptFill. The OptFilling of iJR904 using an iAF1260-based database is different from the 
code used for the test models/database only in formatting of the output file (identifiers used were 
considerably longer than KEGG identifiers causing formatting issues). This was allowed for seven days to 
attempt to solve, in which time it did not return a single CPs solution; therefore, it was decided that the 
database needed to be made smaller. Both the initial iAF1260-based database and iJR904 were combined 
into a single pseudo-model file, to which Flux Variability Analysis (FVA) was applied. Those reactions which 
hold flux, 715 reactions, formed the second iAF1260-based database.  
 
OptFill was applied to this second database, but still resulted in very long solution times; therefore, those 
reactions which participated in solutions which were achieved in 24 hours (four solutions) were chosen to 
form the final iAF1260-based database. This database consists of 182 reactions. It was found that this 
resulted in no TFP solutions; therefore, six more reactions were added to produce a database which had 
25 potential TICs with the iJR904 model. OptFill was then applied to iJR904 using this final iAF1260-based 
database of 188 reactions.   
 
CPLEX Solver Options 
As the order of solutions presented is important, solver options which allowed non-optimal solutions or 
created relaxations by which the truly optimal solution could not be reached, or a sub-optimal solution would 
be accepted, were disabled. In particular, the infeasibility gap was set to the lowest possible value, small 
infeasibilities were disallowed, no relaxation was allowed in the value of integers, no optimality gap was 
allowed in the solution, and solver cuts which could result in non-optimal solutions were disabled. These 
cuts included zero-half, flow, clique, cover, mixed integer rounding, GUB cover, and Gomory fractional cuts. 
While the lack of these relaxation options and cuts no doubt increased solution time, these relaxations 
would decrease solution accuracy and order which was deemed unacceptable. The list of CPLEX 
relaxations used in this work can be found in the GitHub OptFill or Mendeley Data repositories 
accompanying this work. 
 
Available Hard- and Soft-ware Tools 
The University of Nebraska-Lincoln Holland Computing Center Crane Cluster was used. The nodes used 
on this cluster for this work have 64 GB RAM, Intel Xenon E5-2670 2.60 GHz processors, and 2 CPUs per 
16 nodes for 548 nodes. In addition, Crane uses an old version of GAMS, version 24.7.4 released in March 
2016 as opposed to the current version 28.1.0 released August 2019; therefore, algorithms used in this 
work may be sub-optimal compared to those which may be available at present. Further, this version of 
GAMS corresponds to CPLEX library 12.6, which was release in January 2014. Therefore, solution time 
may be different, and significantly so, for users with access to different hard- and soft-ware tools. It should 
also be noted that the solution times are not static. That is, each time OptFill is run, it may have different 
values for solution times; however, the patterns of solution time and distributions should remain relatively 
consistent.  
 
Acronyms Used 
LHS – Left Hand Side 
RHS – Right Hand Side 
TFP – TIC-Finding Problem 
CPs – Connecting Problems 
FBA – Flux Balance Analysis 
TM1 – First Test Model 
TDb1 – First Test Database 
TM2 – Second Test Model 
TDb2 – First Test Database 
TM3 – Third Test Model 
TDb3 – First Test Database 



GAM – Growth Associated Maintenance 
NGAM – Non-Growth Associated Maintenance 
 
QUANTIFICATION AND STATISTICAL ANALYSIS 
The software used to calculate statistics presented in this work was GAMS; however, as GAMS has no 
built-in statistics tools, these calculations were performed in the code included in File the GitHub OptFill or 
Mendeley Data repositories accompanying this work. The two statistics calculated include mean and 
standard deviation. In this study, the arithmetic mean was used, and the standard deviation calculation 
used was that of a population (as opposed to a sample), as the full population of solutions was used in the 
test statistic.  



SUPPLEMENTAL REFERENCES 
All works referenced in the Transparent Methods are referenced in the main body of the this work. 
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