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Abstract
Synchronization or phase-locking between oscillating neuronal groups is considered to be

important for coordination of information among cortical networks. Spectral coherence is a

commonly used approach to quantify phase locking between neural signals. We systemati-

cally explored the validity of spectral coherence measures for quantifying synchronization

among neural oscillators. To that aim, we simulated coupled oscillatory signals that exhib-

ited synchronization dynamics using an abstract phase-oscillator model as well as interact-

ing gamma-generating spiking neural networks. We found that, within a large parameter

range, the spectral coherence measure deviated substantially from the expected phase-

locking. Moreover, spectral coherence did not converge to the expected value with increas-

ing signal-to-noise ratio. We found that spectral coherence particularly failed when oscilla-

tors were in the partially (intermittent) synchronized state, which we expect to be the most

likely state for neural synchronization. The failure was due to the fast frequency and ampli-

tude changes induced by synchronization forces. We then investigated whether spectral

coherence reflected the information flow among networks measured by transfer entropy

(TE) of spike trains. We found that spectral coherence failed to robustly reflect changes in

synchrony-mediated information flow between neural networks in many instances. As an

alternative approach we explored a phase-locking value (PLV) method based on the recon-

struction of the instantaneous phase. As one approach for reconstructing instantaneous

phase, we used the Hilbert Transform (HT) preceded by Singular Spectrum Decomposition

(SSD) of the signal. PLV estimates have broad applicability as they do not rely on stationar-

ity, and, unlike spectral coherence, they enable more accurate estimations of oscillatory

synchronization across a wide range of different synchronization regimes, and better track-

ing of synchronization-mediated information flow among networks.
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Introduction
Neuronal oscillatory synchronization refers to the presence of a more or less fixed relationship
among oscillatory modulations in neural activity in different neurons or neuronal populations.
Synchronization is widespread in the nervous system [1–3] and it has been suggested to play a
role in the coordination of spiking activity across neuronal populations [4–6]. In particular, the
phase synchronization [7] of local or distant oscillatory neuronal populations has received sub-
stantial scientific interest [8–17] and is central to influential theories like ‘Communication
through coherence’ (CTC, [8,18]) and the ‘Binding by synchrony theory’ [19,20]. It is hypothe-
sized that oscillatory phase-locking (phase-consistency) between two brain regions optimizes
information transmission [21].

A common property of neural network oscillations is that the spike probability of neurons
is influenced by oscillation phase [3,22]. Oscillation cycles define periods of higher excitability
where neurons spike and are more sensitive to incoming spikes and periods of lower excitabil-
ity where spike probability is low and incoming spikes have lower impact [18,23,24]. If two net-
works can align the oscillatory cycles over time such that the excitability periods are in ‘good’
alignment [18,25], then ‘communication’ (information flow) will be optimized. Given the
potential role of oscillatory phase locking for understanding neural information processing, it
is therefore critical to have a valid and robust approach for experimentally measuring phase-
locking between neural oscillations. Phase-locking is defined here as the amount of consistency
between the instantaneous phases of oscillations, or put differently, how ‘peaky’ (non-uniform)
the instantaneous phase-relation distribution is.

In the field of neuroscience, phase locking strength is often estimated by computing spectral
coherence. For example, in experimental neuroscience, spectral coherence has been frequently
used to detect and quantify coupling between oscillatory signals of two or more brain areas
[8,12–15]. Spectral coherence estimates the linear phase-consistency between two frequency-
decomposed signals over time windows (or trials) [26]. Specifically, spectral coherence reflects
the consistency (mean resultant vector length) of cross-spectral densities between two signals,
normalized by their auto-spectra densities.

Spectral coherence has a long history [26] and has proven to be a useful method for many
scientific questions. Great advantages of spectral coherence are that it is well understood and
studied, computationally fast, relatively robust against noise and allows an easy overview over rel-
evant coherent frequencies in the data. However, spectral coherence relies on several assumptions
regarding the analyzed signal, with the requirements of linearity and stationarity in the signal
being of prime importance. The assumption of (weak-sense) stationarity means that the autocor-
relation structure of a signal is not dependent on the reference time point [27]. The Fourier trans-
form assumes that the signal is linear; i.e. that it can use a linear superposition of trigonometric
functions to represent it [28]. If these assumptions are violated, spectral coherence might give
unreliable estimates. Unfortunately, these critical assumptions are rarely tested in neuroscience
studies and it is uncertain how often the violation of stationarity and linearity assumptions of the
signal affects the reported coherence results. In addition, there is increasing evidence that neural
oscillatory signals show properties of non-stationarity that make them almost by definition
unsuited for analysis by spectral coherence methods [10,29–34].

There are various alternative approaches to spectral coherence, which do not rely on the
strict assumptions underlying spectral coherence, and which estimate phase-locking (mean
vector length) on the reconstructed instantaneous phases [34,35], referred to as the phase-lock-
ing value (PLV) approach [34]. These methods might be more suitable for neural oscillatory
synchronization as they can better deal with non-stationary (frequency-varying) dynamics.
The first aim of the present study was therefore to study the validity and accuracy of spectral
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coherence to estimate phase-locking in a range of oscillatory synchronization regimes, and to
test whether it can robustly track phase-locking dependent changes in information flow
between networks. The second aim was to compare spectral coherence with the PLV approach.
For the reconstruction of the instantaneous phase we used Hilbert-Transform (HT) preceded
by a singular spectrum decomposition (SSD) of the signal into interpretable oscillatory compo-
nents [36].

To test the behavior of spectral coherence and PLV, we generated testing data, by simulating
oscillatory signals with synchronization dynamics [7] using interacting phase-oscillators [37]
as well as interacting excitatory-inhibitory spiking neural networks [38,39]. The resulting sig-
nals were representative for ordinarily recorded neural signals in neurophysiological studies
[40]. Using signals generated by the mathematically simpler phase-oscillator model allowed us
to understand the properties of spectral coherence in terms of mathematical properties. In the
model, we manipulated the phase-locking strength between the oscillations by changing their
detuning parameter (initial frequency difference). The data generated by the more complex
neural network model reproduced the synchronization behaviors observed in the phase-oscilla-
tor model. On the simulated data, we tested to what extent coherence and PLV were able to
capture the (instantaneous) phase relationships among simulated oscillations as well as infor-
mation transfer among spiking neural networks.

We found that spectral coherence, used here with settings common for neuroscientific
research [41,42]deviated, from the expected phase-locking and did not converge to the
expected value with increasing signal-to-noise ratio (SNR). The deviation was particularly
strong when oscillators were not completely synchronized to 1, either because of detuning
(intrinsic frequency difference) or intrinsic noise fluctuations. Moreover, spectral coherence
was sensitive to phase-relation dependent amplitude fluctuations showing that it is not a pure
phase-locking measure (even when amplitude correlation is 0). These deficiencies of spectral
coherence reflect a mismatch between its underlying assumptions and the simulated data,
which we suggest is likely to often also affect the usefulness of coherence when applied to
experimental data. The PLV approach did not show these drawbacks and it converged to the
expected value with increasing SNR. In addition, we used transfer entropy [43] to measure how
well spectral coherence and PLV reflected changes in information flow between spiking neural
networks. We found that spectral coherence did not robustly reflect changes in information
flow between oscillating networks, whereas the PLV did. In summary, these results suggest that
spectral coherence should be applied with prudence to neural oscillatory synchronization data,
whereas PLV methods relying on the estimation of instantaneous phase appear to provide a
more promising approach.

Methods

Theory of phase synchronization
Phase synchronization is the process in which oscillators adjust their rhythms [7], a phenome-
non that has been first described by Huygens in the 17th century for pendulum clocks [44].
Phase synchronization means that the oscillators have a preferred phase-relation to each other
and that the oscillators adjust their phases as a function of their phase difference. The phase
adjustment is defined by the ‘phase response curve’ (PRC), that has been described in various
neuroscience domains [45]. The PRC captures the mutual forces that coupled oscillators exert
on each other depending on their phases. The PRC thus defines how much a given force
exerted by one oscillator at a given phase will delay or advance another oscillator’s phase, as a
function of the latter oscillator’s phase. Hence, the PRC also defines which phase-relations
among oscillators occur preferentially, thus representing fixed attractor points in the phase-

HowQuantifying Neural Oscillatory Synchronization?

PLOS ONE | DOI:10.1371/journal.pone.0146443 January 8, 2016 3 / 37



relations among oscillators. The Theory of Weakly Coupled Oscillators (TWCO) [37,46–48]
describes mathematically the phase dynamics among weakly interacting oscillators. ‘Weak’
means that interactions lead to phase adjustments without strong perturbations of the oscil-
latory generative mechanism. ‘Strong’ coupling can lead to chaotic regimes [49,50] or to ‘oscil-
lation death/quenching’ [7,51]. The TWCO has been applied in many neuroscience fields,
including in gamma-generating neural network models [52]. To simulate oscillatory synchro-
nization data, we used a basic model of phase-oscillators [37] that is simple, yet exhibits plausi-
ble phase synchronization dynamics relevant for neuroscience.

The synchronization properties of two coupled phase-oscillators X and Y (Fig 1A) are gov-
erned by two factors: the level of detuning Δω (intrinsic or natural frequency difference, Δω =
ωX—ωY) and the coupling strength κ. The detuning Δω determines the phase precession fre-
quency (de-synchronization force) and the coupling κ determines the strength of phase adjust-
ments (synchronization force). Both parameters define a two-dimensional space in which the
phase-locking between oscillators can be determined. In this space one can observe inverted
triangles that define the phase-locking region in the detuning versus coupling space. Such tri-
angular phase-locking region looks like a tongue, and is referred to as the ‘Arnold’ tongue [7]
(Fig 1B). The triangular shape derives from the fact that oscillators with stronger coupling
strength κ can converge to a phase-locking state for larger detuning values Δω.

Phase-locking can be formally defined as the constancy of the instantaneous phase-relation
between oscillators (Fig 1C), which hence show no phase precession [7]. This means that
instantaneous phase of one oscillator always perfectly predicts instantaneous phase of the
other, in which case phase-locking has a value of 1. A lower phase locking value represents the
lower probability of making this prediction correctly. The mathematical definition of phase-
locking is given in Eq 1.

jnφYðtÞ �mφXðtÞj ¼ c8t; c 2 R; m; n 2 Z : ð1Þ

The variables n andm are integers and represent the frequency ratios (1:2,2:3,. . ., [7,52]) in
which the oscillators can satisfy the condition of phase-locking despite different frequencies ωX

and ωY. Therefore one can observe several (higher-order) Arnold tongues. Here, we focused on
phase-locking with n = m = 1 (Arnold tongue 1:1). This is because we were interested in the
quantification of phase synchronization between oscillators with nearby frequencies (oscilla-
tors within a ‘frequency band’, e.g. the gamma band).

If ωX 6¼ ωY (different frequency) and coupling strength κ = 0 (no synchronization), then the
phase-relation distribution is uniform (full phase precession, see Fig 1D). Yet, phase-locking is
often neither completely synchronous nor completely asynchronous. The incomplete phase-
locking is called the partially synchronized state [7] in which oscillators exhibit a preference for
particular phase-relations intermixed with periods of phase precession (Fig 1E). This implies
that phase-locking can be of different magnitudes. This is in line with the idea that biological
systems are inherently noisy and time-varying (i.e. variable frequencies over time) and thus
unlikely to engage in complete synchrony.

The fact that the partially synchronized state is characterized by incomplete phase-locking
and therefore phase precession entails that oscillators in this state will traverse all possible
phase-relations over time. As we have described above, the PRC defines the phase adjustments
in terms of positive or negative delays as a function of phase-relation and time. The rate of
phase change over time, which is the time derivative of phase, defines instantaneous frequency
(IF) [7]. Close to the preferred phase-relation, the IF difference between phase-oscillators is
minimized (phase precession slows down), whereas in non-preferred phase-relations the IF
difference is maximized (phase precession is faster and IF approaches the intrinsic frequency).
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Fig 1. Basic properties of oscillatory phase synchronization. (A) The underlying model of this study was phase synchronization of two coupled phase-
oscillators which could correspond to oscillatory signals measured from separate cortical areas. Phase-locking is the amount of consistency of instantaneous
phases between the two oscillators. Phase-locking is resulting from synchronization process governed by two principal factors as described by Theory of
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This will lead to systematic phase-relation-dependent IF fluctuations (PrFM) (Fig 1F). The
main frequency of PrFM equals the phase precession frequency [7]. In addition to PrFM, there
can also be a form of phase-relation dependent amplitude modulation (PrAM). In our raw sim-
ulations, according to the TWCO, the phase-oscillators had unit amplitude, which did not
change during the synchronization dynamics. However, we included PrAM post-hoc to the
simulated oscillatory signals (Fig 1G), based on our observation of PrAM in simulations of
interactions between gamma-oscillation generating excitatory-inhibitory neural networks dur-
ing partial synchronization (see below).

The phase-relation dependent frequency modulations (PrFM) in our simulation of coupled
phase-oscillators can be described with the following equation:

PrFMðφÞ ¼ kPRCðφÞ ð2Þ
where ϕ is the phase-relation between the two oscillators, PRC is the phase response curve
defined here as a sinusoid, and κ the coupling strength. Hence, the modulation function of
PrFM is directly related to the PRC, whereas the strength of the fluctuation depends on the
coupling strength κ.

The phase-relation dependent amplitude modulations (PrAM) were defined as:

PrAMðφÞ ¼ acosðφÞ ð3Þ
where ϕ is the phase-relation between two oscillators, cos is the cosine modulation function
(maximal amplitude at phase 0), and α is the amplitude modulation strength. Note that α was
defined as percentage modulation of oscillation amplitude. For example, a α of 20% modula-
tion means that the oscillation amplitude varies by 20% as a function of phase (e.g. for an
amplitude of 1 the means a variation between 0.8 and 1.2).

Generative models of oscillatory synchronization
Oscillations generated by the phase-oscillator model. For generating testing data with

plausible and well-understood synchronization properties, we used the phase-oscillator model
as the underlying generative model. The model is very similar to the well-known Kuramoto
model [37]. Here, we simulated two zero-mean oscillatory signals X(t) and Y(t) governed by
the phase-oscillator equation. We restricted ourselves for simplicity to the case of unidirec-
tional coupling (X!Y). However, all results can be generalized to the case of mutually coupled
phase-oscillators.

Weakly Coupled Oscillators (TWCO): The intrinsic (natural) frequencyω and the coupling strength κ. The intrinsic frequency difference (detuning Δω)
between oscillators determines the phase precession. The coupling strength κ determines the interaction strength, which is a function of the phase-relation
(defined by the phase response curve, PRC). (B) The detuning Δω and the coupling strength κ defined a 2-dimensional space, in which phase-locking (gray
shading) occurs within certain ranges. In a noiseless system, full synchrony (phase locking of 1) occurs in a limited area of detuning and coupling strength
that appears as inverted triangle (Arnold tongue). The stronger the coupling strength, the more detuning is possible while still reaching full synchrony. Full
synchrony (C) occurs if the oscillators converge on a common frequency (no phase precession). The phase-relation distribution exhibits a strong peak at the
attractor phase relation. (D) Complete asynchrony is only possible when the oscillators are uncoupled. The phase-precession is smooth and the phase-
difference distribution uniform. (E) The state of partial synchrony is characterized by phase-locking between 0 and 1. In most regions in the Δω vs. κ space,
phase-locking might be close to 0. Yet, close to the Arnold tongue the phase-locking might still be relevant. The oscillators do not converge to a common
frequency, but exhibit phase precession. The phase precession does not have a smooth trajectory, but is modulated depending on the phase-relation. This
leads to non-uniform phase-difference distribution with a peak at the phase-relation in which the oscillators have the smallest frequency difference. In noisy
phase-oscillatory systems, the partial synchronized regime can be the most dominant regime. (F) Because the phase-precession (= instantaneous frequency
difference) is not smooth and changes as a function of phase-relation, it implies phase-relation dependent frequency modulations (PrFM). (G) We also
included phase-relation dependent amplitude modulations (PrAM) due to observations in many of our neural network simulations. We assume here that
PrAM, in the ranges included here, did not substantially change the phase trajectories and hence TWCO is still an adequate theoretical framework.

doi:10.1371/journal.pone.0146443.g001
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The phase evolution ϕx(t) of oscillator X, unperturbed by oscillator Y, is defined only by its
intrinsic frequency ωx and an intrinsic phase noise process Npx (if included):

dφXðtÞ
dt

¼ oXðtÞ þ NpXðtÞ ð4Þ

In case of oscillator Y, the exact phase evolution ϕx(t) depends on the interaction term
(phase response curve, PRC) with oscillator X and the coupling strength κ:

dφYðtÞ
dt

¼ oYðtÞ þ ksinðyðtÞÞ þ NpYðtÞ ð5Þ

with θ(t) = ϕy(t)–ϕx(t). The interaction term describes the phase adjustments (phase response
curve, PRC) induced by the other oscillator X depending on the coupling constant κ. As the
interaction term we used a sinusoidal function with an attractor fixed point (in-phase). It has
been shown that the evolution of the phase relation between the two oscillators without intrin-
sic noise (Np = 0) can be described with a single equation, referred to as the Adler equation [7]:

dyðtÞ
dt
¼ DoðtÞ þ k � sinðyðtÞÞ ð6Þ

The equation shows that the time evolution of the phase relation θ(t) is a function of the fre-
quency difference Δω(t) at that time, as well as the coupling strength κ of the sinusoidal inter-
action function. In case of Np = 0 (no intrinsic noise), the phase-locking properties of the two
coupled phase-oscillators can be analytically derived using the Adler equation (Methods A in
S1 File). As described above, the phase-locking properties are a function of the independent
variables detuning Δω and coupling term κ. This means that depending on the chosen parame-
ter ranges for Δω and coupling term κ, phase-locking can vary between 0 and 1 in a manner
that is fully deterministic (as long as the phase oscillator model is noise-free).

Hence, for a given parameter set used for simulating data, we generated the instantaneous phase
traces by numerically solving the differential equations (Euler method, step size 1ms). We gener-
ated 500 trials of 3sec simulation with randomized initial phase conditions and intrinsic frequencies
in the gamma frequency range (30-50Hz). The frequency range is of no importance for the phase-
oscillator model and the results can be generalized to any frequency range. For each trial the first
2sec were discarded to exclude any transient dynamics and to have a state as stable as possible. In
one exceptional case we used 200ms time windows instead of the 1s time window after the first dis-
carded 2sec. The (instantaneous) phase traces were wrapped around ±pi. We generated multiple
shorter trials instead of a long single trial to permit easy application of spectral coherence.

As a next step, we converted the phase-traces into zero-mean real-valued signals to be used
for testing phase-locking estimation methods. In experimental measurement conditions, the
signals always suffer from added extrinsic (measurement noise) which is signal unrelated to the
process of interest. We therefore added different levels of zero-mean extrinsic white noise. The
amount of signal-to-noise ratio (SNR) was defined as defined as:

SNRðoÞ ¼ SSNðoÞ2
SNðoÞ2

� 1 ð7Þ

where SSN(ω)
2 stands for spectral power of the noisy oscillatory signal at frequency ω and SN

(ω)
2 stands for spectral power of just the noise term. This is also the definition of the relative

power ratio. In some conditions, we added phase-relation dependent amplitude fluctuations
(PrAM) in oscillator Y using Eq 3. The amount is defined as amplitude modulation in % of the
mean oscillator amplitude.
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Oscillations generated by spiking excitatory-inhibitory neural network model. To dem-
onstrate that the results from the phase-oscillator equations are generalizable to more biophysi-
cally plausible neuronal network oscillations, we simulated two coupled excitatory-inhibitory
spiking neural networks generating pyramidal-interneuron gamma (PING,[39]) oscillations.

The neural voltage dynamics v were of the Izhikevich-type [38] and defined as follows:

dv
dt
¼ 0:04v2 þ 5v þ 140� uþ I ð8Þ

du
dt
¼ aðbv � uÞ ð9Þ

if v � 30mV ; then

(
v c

u uþ d
ð10Þ

The coupled differential equations were numerically solved using the Euler method (1ms
step size). We simulated 300 trials of 1.3sec length, from which the first 300ms were discarded
to reduce transient dynamics. The networks were both composed of two types of neurons: 400
regular spiking neurons RS (a = 0.02,b = 0.2, c = -65mV, d = 8) and 100 fast-spiking interneu-
ron FS (a = 0.1,b = 0.2, c = -65mV, d = 2). RS were excitatory neurons and FS inhibitory neu-
rons (ratio 4:1). The neural networks were all-to-all synaptically connected. Synapses were
modeled as exponential decaying functions, reset to 1 after the presynaptic neurons fired. Syn-
aptic connection values set the maximum synaptic connection strength (max syn). The synap-
tic strengths were chosen from a random uniform distribution defined between the 0 and the
maximal connection strength.

Within a network, RS neurons projected excitatory synaptic AMPA (decay constant = 2ms)
connections onto FS neuron (max syn = 0.45mV) and among themselves (max syn = 0.05mV).
FS neurons projected synaptic GABA-A (decay constant = 8ms) connections onto RS neurons
(max syn = -0.35mV) and among themselves (max syn = -0.2mV). For cross-connections
between network 1 and 2, we included RS!FS connections (E!I, max syn(default) =
0.015mV) as well as RS!RS connections (E!E, max syn(default) = 0.007mV). We included a
conduction delay of 1ms for all connection types.

The input drive to RS neurons was composed of a fixed input current to each neuron
(10mv), unique Gaussian input noise for a given neuron (SD±3.5mV) and a 1/f1.5 input noise
shared among neurons (±3.5mV std) of the same network. So each network received uncorre-
lated 1/f1.5 input noise to RS neurons with the effect to induce instantaneous frequency varia-
tion of a network over time (similar to intrinsic phase noise in the phase-oscillator model). For
FS neurons, each received a fixed input current (3.5mV) and Gaussian input noise (SD
±3.5mV). FS neurons received further excitatory drive from the RS neurons.

For reconstructing a population field signal for both networks (resembling LFP signals), we
summed the spike trains of all RS neurons for a given network, followed by demeaning and
smoothing with a pseudo-Gaussian kernel (SD = 3ms). For computing the expected PLV, we
Hilbert transformed the signals and computed their instantaneous phase-relations from which
the PLVs were derived. For the generation of the final testing data, we added different levels of
extrinsic noise (here: 1/f1.5 noise).

Phase-locking estimation methods
Was assumed that signals X(t) and Y(t), which might represent two cortical regions, contained
underlying oscillatory processes with instantaneous phase evolution ϕX(t) and ϕY(t). We were
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interested to understand how interdependent or phase-locked the two phase parameters were.
Or in other terms, how consistent the phase-relations θ(t) = ϕX(t)—ϕY(t) were over time. If
one measures the occurring phase-relation θ(t) for a period T, one obtains a distribution of
phase-relations. For quantifying the consistency of phase-relation θ(t), we computed the mean
resultant vector length (MRVL). Each phase can be represented as a vector in the complex
plane. If θ(t) is consistent over time, the vectors have the same angle, therefore the vectors add
up and the MRVL will be non-zero. If vectors are unity (= 1) then the MRVL will be 1. If θ(t) is
not consistent, the vectors will be equally distributed over–π to π and will cancel each other
out. The MRVL will be 0. The MRVL is appropriate if the ϕX(t) and ϕY(t) are linearly interde-
pendent (assumed here).

In this study the MRVL for phase-locking estimation was applied on phase-relation distribu-
tions obtained by two very different approaches. The first one was based on the normalized Fou-
rier cross-spectral coefficients which is referred to as the ‘spectral coherence approach’ [26]. The
second was based on the estimation of the instantaneous phases using Hilbert Transform or
time-frequency representations and is termed the ‘phase-locking value (PLV)’ approach [34] (see
Figure A in S1 File for schematic illustration of the approaches). Both approaches are used cur-
rently in neuroscience. In this study we test explicitly whether the two approaches are appropriate
phase-locking estimation methods for oscillatory synchronization. In the following segment we
introduce the spectral coherence and the PLV approaches in more detail. Note that the reason we
limited ourselves to a description of two specific methods is because we did not aim to make a
detailed investigation of the performance of different variations of spectral coherence and differ-
ent variations of the PLV approach (e.g., testing different signal decomposition methods or dif-
ferent approaches for extracting instantaneous phase). We suggest that the findings we will
report here for the specific spectral coherence and the specific PLV approach used here will be
representative, respectively, for the classes of methods computing phase relations based on spec-
tral methods, and those computing phase relations based on instantaneous phase estimations.

Spectral coherence. Spectral phase-locking measures are used in many experimental stud-
ies and also offered by widely-used analysis toolbox in neuroscience as the principal method to
quantify phase-locking (Fieldtrip [41], Chronux [42]). Commonly used spectral-based mea-
sures are the coherence index [26] or its modification [53] to increase robustness against ampli-
tude correlation. Here, the time-domain signals of each trial are transformed in the frequency-
domain and phase-coupling is assessed frequency-by-frequency. The advantage is that one can
observe, in a computationally efficient manner, frequency-resolved peaks in phase-locking,
which yield a quick overview of phase locking over relevant frequencies. However, the spectral
coherence measure assumes (weak-sense) stationary processes.

To estimate the spectral phase, we computed the discrete Fourier transform of the time
series of the oscillatory signal X(t,n) (t = 0,. . .T-1) of a given trial n with length T.

Sxðo; nÞ ¼
XT�1
t¼0

Xðt; nÞe�i2pot=T ð11Þ

where Sx(ω) is the complex-valued Fourier coefficient at integer ω related by ω / T to normal-
ized frequency. For simplicity we will call ω just frequency assuming appropriate rescaling. The
power spectrum is defined as:

Sxxðo; nÞ ¼ E½Sxðo; nÞSxðo; nÞ�� ð12Þ

where Sxx(ω) is the estimated spectral power of oscillation X at frequency ω, E[] is estimation
of a function and � the complex conjugate. SYY was computed as SXX. The spectral coherence
between two signals X(t,n) and Y(t,n) are based on the cross-spectral density estimate of Sx(ω,
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n) and Sy(ω,n), defined as follows:

Sxyðo; nÞ ¼ E½Sxðo; nÞSyðo; nÞ�� ð13Þ

where Sxy(ω,n) is the estimated complex-valued cross-spectral density at frequency ω, where E
[] is estimation of a function and � is the complex conjugate. The cross-spectral density reflects
both the mean phase-difference as well as the power correlation between Sx(ω,n) and Sy(ω,n).
The spectral (sample) coherence Coh(ω) [53] is the absolute value of the cross-spectral density
normalized by the respective power spectra and is defined as follows:

CohðoÞ ¼
XN

n¼1Sxyðo; nÞ
��� ���ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð
XN

n¼1Sxxðo; nÞÞð
XN

n¼1Syyðo; nÞÞ
q ð14Þ

where n is the trial number (n = 1,.N) used for estimation. A critical point of spectral coherence is
that the Sxy(ω) value depends on the phase as well as the amplitude correlation. Each trial therefore
contributes as a function of amplitude correlation, making spectral coherence sensitive to amplitude
correlation values [34,54].To make spectral coherence not sensitive to amplitude correlation the
spectral coherence formula, used in the following Result sections, was modified [53] as follows:

CohðoÞ ¼ 1

N

XN
n¼1

Sxyðo; nÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Sxxðo; nÞSyyðo; nÞp

�����
����� ð15Þ

Each absolute cross-spectral product for a given trial n and frequency ω is normalized with
the square-root product of the autospectra Sxx(ω,n) and Syy(ω,n). Therefore different levels of
amplitude correlations do not affect the phase-locking measure. It has therefore been assumed
that this spectral coherence formula is a pure phase-locking measure [41,53]. It can be seen as
applying MRVL on the angle values of the complex Fourier cross-spectral coefficients. This for-
mulation was used to assure straightforward comparison to the other phase-locking estimates
used in this study. The results shown in this study for spectral coherence as defined by Eq 14 or
Eq 15 can be expected to be very similar, because the amplitude correlations were negligible in
our simulations (also if PrAM included). The effect of amplitude correlation on spectral coher-
ence has recently been studied systematically [54].

For a given testing data set we first computed the (Fast) Fourier transform (FFT). For sim-
plifying the derivation of the analytical coherence value we did not use tapering or padding.
Then we computed the spectral coherence spectra. We took the maximum (peak height) of the
coherence spectrum. The peak of the coherence spectra was the phase-locking estimate, which
was compared to the expected phase-locking. We applied trial-number correction formula (see
below) for the coherence estimates.

Estimation based on the instantaneous phase: phase-locking value (PLV). Various
methods have been proposed that quantify phase-locking based on the instantaneous phase
[55]. These methods deal better with non-stationary dynamics, which are likely to be present
in neural signals. The main challenge is to decompose the often complex multi-component
measured brain signal into well-defined oscillatory components (e.g. through filtering or wave-
let decomposition techniques) from which the instantaneous phase can be extracted (i.e., after
a Hilbert-Transform or directly from a time-frequency representation (TFR), [35]). Below we
propose an alternative method that is based on singular spectrum decomposition (SSD, see
https://project.dke.maastrichtuniversity.nl/ssd/) [36] and the Hilbert-Transform. We then
applied this method on the simulated two coupled phase-oscillator as well as neural network
signals having intrinsic and extrinsic noise.
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SSD is a recently proposed method for the decomposition of nonlinear and non-stationary
time series [36,56]. In the present work, the method is applied to reduce the influence of noise
and to provide a PLV estimate that unlike spectral coherence is able to handle nonstationary
signals. Additionally, the SSD method is also able to deal with nonlinear signals unlike wavelet-
based approaches. Here, the key ideas underlying SSD are introduced (see [36] for additional
details). The method originates from singular spectrum analysis (SSA), a nonparametric spec-
tral estimation method used for analysis and prediction of time series. The advantage of SSA-
derived components over Fourier-derived sines and cosines is that SSA-components are
model-free (data-driven), and therefore are not necessarily harmonic functions. Being data-
driven, SSA components can capture highly non-harmonic oscillatory shapes, making them
suitable for the analysis of nonlinear and non-stationary time series. In the SSD method, the
choice of the main SSA parameters, the embedding dimension and the selection of the princi-
pal components for the representation of a specific component series have been made fully
data-driven and automated. This makes SSD an adaptive decomposition method. Similar to
empirical mode decomposition (EMD) [57], the decomposition is based on the extraction of
the energy associated with various intrinsic time scales. One advantage of SSD over EMD is
that it tends to avoid mixing components with different frequency bands and provides accurate
separation between intermittent components at the transition points [36].The Hilbert Trans-
form can be used on SSD components when interpreting its outcome with caution. Indeed,
SSD-components contain several frequencies, with no clear indication about how many instan-
taneous frequencies per time instant may be present [57]. However, the narrow-banded fre-
quency content of each SSD-component permits one to consider the results of the Hilbert
Transform as sufficiently reliable under most conditions [36].

For both oscillator signals X(t,n) and Y(t,n) we applied SSD for each trial and oscillator sep-
arately to extract the oscillatory components (SSDcomp). For deriving the instantaneous phase
of a SSD component, we applied the Hilbert transform (HT).

SSDacomp ¼ SSDcomp þ iHTðSSDcompÞ ð16Þ

where HT(SSDcomp) is the Hilbert-Transform of the selected SSD component. The HT in
essence adds the imaginary component to a real-valued signal to reconstruct the analytical sig-
nal. SSDαcomp is the analytical signal of the SSDcomp. The instantaneous phase ϕ and frequency
ω can then easily be derived from the analytical signal:

φ ¼ argðSSDacompÞ and
dφ
dt
¼ o ð17Þ

To compute the phase-locking value (PLV), we first computed the instantaneous phase rela-
tions θ(t,n) = ϕx (t,n)–ϕY(t,n). We then concatenated the trials to compute the overall distribu-
tion of phase relations and to eliminate variable n. The PLV was then computed simply as:

PLV ¼ 1

T

XT

t¼1
eiyðtÞ

�����
����� ð18Þ

with T representing here the overall number of sample time points. Eq 18 is the mean resultant
vector length (MLVR).

Note that in contrast to spectral coherence, which cannot give single-trial estimates, the esti-
mation of phase-locking for single-trials is possible for the PLV approach [34]. This is interest-
ing if one expects that the synchronization properties (e.g. detuning or coupling strength)
change over trials. In all of the work presented in this study, we assume that a given state of
(partial) synchronization is constant for the duration of the trial or time window used.
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Expected phase locking. To determine the expected phase-locking (PL), we computed
(without any extrinsic noise) the instantaneous phase-relation between oscillator X and Y. We
concatenated all the trials again to have an overall instantaneous phase-relation distribution.
From this distribution, we computed the mean resultant vector length. In the case of no intrin-
sic noise (Np = 0), we also analytically derived the expected phase-locking (Methods A in S1
File). The comparison of the numerically and analytically derived expected PL showed that
they were very closely matching (mean square error (MSE) = 1.4e-5).

Trial-number unbiased phase-locking estimates. To compare the estimates of coherence
and PLV in simulated data, we relied on an adapted formula for coherence and PLV that is more
robust against inflation due to finite numbers of trials for coherence [53] or time points for PLV.
The trial correction formula was mainly relevant for the coherence estimates. For clarity, the
number of phase estimates was represented by the number of trials N for coherence and the
number of time points T for PLV. The unbiased estimator of squared PLV is the following [58]:

PLV2 ¼ 1

T � 1
ððPLV2TÞ � 1Þ ð19Þ

where T is the number of sample points. The same was done for deriving the expected PLV (i.e.,
the PLV obtained in the absence of any noise). For coherence the formula is:

Coh2 ¼ 1

N � 1
ð ðCoh2NÞ � 1Þ ð20Þ

where N is the number of trials.

The Transfer Entropy (TE) measure
In addition to the phase-locking estimation, we also quantified the directed information flow
between network X and Y by applying (delayed) transfer entropy measure TE according to
[43]. TE measures a directed flow of information between two processes. The TE measure
allowed us to more concretely demonstrate the relevance of PLV and coherence for informa-
tion transmission among neural networks. For a given spike train from neuron I, TE gives the
amount of reduced uncertainty when using knowledge of preceding time bins in the spike train
from neuron J over using knowledge of preceding time bins in the spike train from neuron I
itself. We quantified the directed information flow from RS neurons of network X to RS neu-
rons of network Y. For quantifying TE, we selected 80 RS neurons of each network defining
80x80 combinations. We concatenated the spike trains of all trials to increase sensitivity. Then
TE was applied for all 80x80 combinations, where the transfer entropy for different delay time
values (delays up to 16ms were included) was computed and then combined. The TE was aver-
aged overall 80x80 combinations. The TE of spike train from neuron I (binary 0/1 vector
where 1 denotes spike) on the spike train from neuron J was computed as follows [43]:

TEI!JðdÞ ¼
X

pðitþ1; it ; jtþ1�dÞlog2
pðitþ1jit ; jtþ1�d Þ

pðitþ1jit Þ
ð21Þ

where d is the delay (here in terms of 1ms time steps),it or jt is the status of spike train at time t
(0 = no spike, 1 = spike) of neuron I or J respectively.

Results
In the following, we will first show simulations of coupled phase-oscillators with no intrinsic
phase noise. We used the simpler case first as it allowed us to analyze the generative model ana-
lytically, in addition to numerical simulations to precisely understand the behavior of spectral
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coherence. In a next step, we added intrinsic phase noise to make the phase evolution more
similar to experimental data and we then also compared the behavior of spectral coherence to
the PLV method. As a last step, we extended the results from the phase-oscillator simulations
to two mutually interacting gamma-generating spiking neural networks representing a bio-
physical plausible model of gamma oscillations.

An evaluation of spectral coherence as a measure of phase locking
between two intrinsically noise-free coupled phase-oscillators as a
function of added extrinsic noise
We systematically investigated the behavior of coherence, for different SNRs, as a function of
detuning Δω (PrFM) and different levels of PrAM without intrinsic phase noise. To that aim,
we compared in our simulations the analytically derived expected PL2 of two interacting
phase-oscillators with the analytically derived spectral coh2 as well as the numerically estimated
coh2.

We first show two illustrative example conditions. In the first example (Fig 2A), the phase-
oscillators were uncoupled and the oscillators X and Y had a detuning Δω of 3Hz. In the middle
panel of Fig 2A, the Fourier power spectra can be observed with two power peaks; one for each
oscillator. The right hand panel in Fig 2A shows the absence of a coherence peak as expected.
In the second example (Fig 2B), oscillator X interacted unidirectionally with oscillator Y with
κ = 1. Strikingly, in the power spectrum of oscillator Y, two side peaks can be observed around
the central power peak with a distance of ±Δω = 3Hz. These are so-called modulation side-
bands, which have been described in the cross-frequency coupling (CFC) literature [59–61].
They arise because the synchronization force induced by oscillator X on Y (see interaction
term) leads to systematic phase-relation dependent frequency modulations (PrFM) at the 3Hz
detuning frequency Δω. Notice that the left modulation sideband power peak of oscillator Y
and the power peak for oscillator X are at the same frequency. To the right, a strong coherence
peak can be observed which is much higher than the expected phase-locking value. The coher-
ence peak is at the frequency where oscillator X and the left modulation sideband of oscillator
Y have their power peak. The coherence peak hence reflects the phase-locking between the
PrFM of oscillator Y (induced by oscillator X) with oscillator X itself.

We then systematically compared the numerical and the analytically derived coh2 (Fig 2C)
with the true phase-locking, for different SNR of extrinsic noise, as a function of detuning fre-
quency Δω. The SNR was manipulated by changing the level of extrinsic noise. The oscillator X
was unidirectionally coupled to oscillator Y by κ = 0.75 (horizontal line in left upper panel Fig
2C). Oscillator X had a frequency of 40Hz. At the constant coupling strength, the frequency of
oscillator Y was shifted from 40 to 48Hz in step size of 0.25Hz (detuning Δω 0 to 8Hz; schemat-
ically shown in top right panel Fig 2C). The values chosen corresponded to a half cross-section
of the (1:1) Arnold tongue. In the above-defined conditions, we evaluated SNRs of 500, 50, 10,
5 and 2 on coherence (Fig 2C bottom panel). The numerically and analytically derived coh2

(red symbols, black line in Fig 2C bottom panel) matched well for all conditions, and we there-
fore do not distinguish them further. For low detuning Δω (inside the Arnold tongue) and high
SNR, the oscillators were in full synchrony and showed a coh2 value of 1, matching the true
phase locking (blue line). For lower SNR the noise started to affect the coh2 estimate more sub-
stantially. As white noise was uncorrelated between oscillators, the white noise tended to
decrease the coh2. At an SNR of 2, the coh2 gave an estimate reduced by 50%. At a particular
detuning frequency (Δω = 1.5Hz, around the edge of the Arnold tongue) the phase-locking
between the oscillators started to drop (partially synchronized state). The oscillators were
therefore not completely frequency-frequency locked and had disparate frequencies. In this
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case, the coh2 (red symbols in Fig 2C bottom panel) deviated strongly from the PL2 indicated
in the blue line in Fig 2C (bottom panel), and depended strongly on the SNR. Without any
additive white noise (high SNR), the coh2 estimates were 1 or approached 1 despite the PL2

being very low. The lower the SNR, the more noise affected the estimate and the more coh2

turned towards 0. Importantly, with higher SNR, the estimates converged not on the true
phase-locking (with the exception of perfect locking), but towards a phase-locking of 1. Never-
theless, the coh2 estimates reflected to a certain degree the underlying changes in the PL2 as a
function of detuning if noise was present. This is because the amplitude of the modulation side-
band (induced by PrFM) is a function of the PL (see below). The noise unmasks this depen-
dence. This is because the amplitude of the modulation sideband decreases with detuning, the
SNR decreases as well if noise is present. Because coherence is sensitive to SNR, the value will
reflect the SNR changes of the modulation sideband peak. Notice that at very low SNR the val-
ues (<2) coh2 converged to 0 as the noise was uncorrelated between oscillators.

We then investigated the dependence of coh2 estimates on the presence of PrAM. For sim-
plicity, we used conditions in which the phase-oscillators were uncoupled (black dot Fig 2D
upper panel) and hence the true phase-locking was 0 for all conditions (blue line bottom panel
Fig 2D). The oscillators had a detuning of 3Hz. We evaluated different levels of PrAM ranging
from 0 to 100%. We used the same SNR conditions as before. Again, the numerically and ana-
lytically derived coh2 estimates matched well. We observed that coh2 estimates deviated from
the true phase-locking as a function of both the level of PrAM and the level of SNR (Fig 2B).
The higher the PrAM was set, the higher the coh2 values became, and hence the more coh2

deviated from true locking. This was because higher PrAM leads to higher amplitude of the
modulation sideband making it more dominant above to the noise. Therefore, similar to the
case with PrFM, with increasing SNR, the coh2 estimates did not converge towards the
expected phase-locking of 0, but to a phase-locking of 1. These results show that spectral coher-
ence is not a pure phase-locking measure, but also reflects phase-relation dependent amplitude
fluctuations. Note that only one oscillator had amplitude fluctuations, hence the amplitude cor-
relation between oscillators was 0.

Conceptual and mathematical understanding of the underlying cause of spectral coher-
ence deviations from expected phase-locking. Oscillatory processes that exhibit phase syn-
chronization without complete phase locking, are in a partially synchronized state, and will
show characteristic PrFM and likely also PrAM during phase precession. These systematic
modulations of the oscillation frequency and amplitude occur at the frequency of the phase
precession (equal to the frequency difference between oscillators). These types of modulations

Fig 2. Analytical and numerical results of Coherence estimation of phase-locking with different levels of extrinsic (measurement) noise. In (A-B)
we first show two examples. In (A) oscillator X and Y had a detuning of 3Hz and did not interact. The power spectra (middle panel) show the two power peak
of the two oscillators. The coherence spectrum (right panel) was flat as expected. In (B), the oscillators did interact (κ = 1), where oscillator X influenced the
phase trajectory of oscillator Y. The power spectra of oscillator Y show two extra power peaks with ± the detuning. These are the so-called modulation
sidebands, well described in the cross-frequency coupling literature [62]. Notice that one of the sidebands overlap with the power peak of oscillator X. The
coherence spectrum show a strong phase-locking estimate, much higher than expected. This is because the coherence estimate reflected mostly the locking
between the sideband of oscillator Y and the main power peak of oscillator X, which can be completely unrelated to the actual phase-locking of oscillators X
ad Y. (C) Rendering of the Arnold tongue, shown with a 1/2 cross-section at the level of a 0.75 coupling strength, for which phase locking values are plotted
as a function of positive, increasing intrinsic frequency differences between oscillators X and Y (Δω). Here, we did not add PrAM to the oscillatory signal. We
compared the numerically (red dot) and analytically derived (black line) Coherence with the analytically derived true phase-locking (purple line) between two
oscillators as a function of frequency detuning (Δω) and different levels of SNR. We used trial-number corrected squared coh values to minimize inflation due
to a finite number of trials. In the partially synchronized states associated with different Δω values in the selected coupling condition, we observed strong
deviations of Coherence from the true locking. The coh2values becamemore inflated with higher SNR. The numerically computed coh2 matched with the
analytically derived coh2. (D) The impact of different levels of PrAM is shown with different level of SNR. The oscillators were uncoupled and hence
asynchronous (in the condition indicated by the fat dot at the bottom of the Arnold tongue) and the true locking was therefore 0. The oscillators had a phase
precession of 3Hz (chosen condition is located off the midline of the Arnold tongue). We observed strong deviations from the true locking with increasing
PrAM and SNR. The numerically and analytically derived values matched.

doi:10.1371/journal.pone.0146443.g002
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can be seen as a form of cross-frequency coupling ‘CFC’ [62], here between oscillators of
nearby frequencies and with the phase-relation as the modulation variable. The CFC between
two oscillations of nearby frequencies (e.g. 42Hz and 45Hz) leads to so-called modulation side-
bands (SM) that are located ±3Hz nearby the main power peak. These ‘modulation sidebands’
between lower and higher-frequency oscillations have been previously described in CFC litera-
ture, with specific reports on the modulation of the amplitude of the higher frequency oscilla-
tions by the phase of the lower frequency oscillation [59–61]. We will describe below in more
detail the underlying causes of SM.

Here, we were interested in computing the CFC phase-phase locking between the two oscil-
latory signals [63]. To that aim, one would need to compute the relationship of the phases at
the higher frequency (45Hz) to the phases at the lower frequency (42Hz). Spectral coherence
was not being expected to be applicable here because the oscillators X and Y did not share
power at common frequencies. Yet, when applied, spectral coherence measures yielded inflated
values. This was because one of the modulation sidebands (by definition) overlapped with the
power peak of other oscillators. Note that this coherence estimate is bound to be incorrect,
because it computes coherence frequency per frequency, yet here, one would need to compute
coherence across frequencies. Notice also that in practice, it might be difficult to discover these
modulation sidebands in largely overlapping power spectra in experimental data due to intrin-
sic and extrinsic noise, yet they might still affect the computations of coherence. In fact, as we
show below, this type of CFC interactions occur even if power spectra completely overlap (zero
mean difference), yet there is frequency variation from trial to trial.

Below, we explain in more detail why the modulation sidebands are induced by PrFM and
PrAM and how phase-locking computed with coherence leads to erroneous estimates of phase
locking under these conditions. To understand why spectral coherence gave incorrect esti-
mates, one needs to understand how these modulation sidebands arose and how they affected
the coherence estimates. Oscillatory synchronization can lead to systematic PrFM and PrAM
which both can induce modulation sidebands. In the Methods A in S1 File we show mathemat-
ically how for the noiseless case the modulation sideband SM is related to PrFM and PrAM. It
can be shown that the amount of modulation sideband induced by PrFM (if PrAM is also
absent) is a function of the (expected) phase locking scaled by the oscillation amplitude.

SMPrFM ¼ APL ð22Þ

Hence, for a given oscillation amplitude, the amount of SM was proportionally related to
PL. For SM induced by PrAM (without PrFM, PL = 0) it can be shown that it is a direct func-
tion of PrAMmodulation strength (α) scaled by the oscillation amplitude.

SMPrAM ¼ A
a
2
; if PL ¼ 0 ð23Þ

The SM induced by either PrFM or PrAM in oscillator Y has a constant phase-relation to
the oscillator X inducing the PrAM or PrFM. Hence, in the noiseless case the coherence peak
between the modulation sideband SM of oscillator Y and the oscillatory X has to be 1 (Methods
A in S1 File). So whatever detuning one chooses or even in the case of no coupling, the coher-
ence peak will be 1 (if ωx 6¼ ωy). Adding extrinsic noise to the signals, being uncorrelated
between the oscillators, had the overall effect of decreasing the coherence estimates. Increasing
the extrinsic noise level caused the coherence estimates to converge towards 0.

However, the effect of adding noise to the signal had more implications than decreasing the
coh2 values towards 0. Adding extrinsic noise made the coh2 related to the true underlying
phase-locking changes with detuning. By ‘related’ we mean that the coh2 and the (expected)
PL2 values were correlated, yet not implying that the values matched exactly. In Fig 2C, for
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different SNRs the coh2 deviated substantially from the PL2 values. Yet, they shared the prop-
erty that they overall decreased with detuning. One could raise the question of how this is pos-
sible given that the coherence peak reflected the phase consistency between the modulation
sideband of oscillation Y and oscillation X, while this phase consistency was defined as perfect
for all coupling and detuning conditions. The reason for this lies in the property of SMPrFM to
change its amplitude as a function of PL (see Eq 22). The effect of including extrinsic noise can
now be understood as follows: In the simulations (Fig 2C), when the detuning decreased, the
PL increased. Because the PL increased, the amplitude of SMPrFM increased, and given a spe-
cific fixed noise level the ratio of SMPrFM amplitude versus noise amplitude also increased,
which meant that the SMPrFM SNR increased. Because the SMPrFM SNR increased, the coh2 val-
ues increased. Through this relationship, for a large range of extrinsic noise levels, there was a
rough relation between the PL and the coherence estimates. Note that this is only the case for
SMPrFM, because SMPrAM is unrelated to the underlying PL (see Eq 23).

Deriving analytically the spectral coherence estimates. Adding uncorrelated white noise
(simulated ‘measurement error’) decreased the coherence values in general. The amount of
reduction was a function of the ratio between the signal power and the noise power (the SNR).
The essential ratio determining the spectral coherence peak is the ratio between the amplitude
of the modulation sideband and the white noise amplitude. There are four variables affecting
the true phase difference between the two oscillators: the amplitudes of two independent white
noise processes and their phase values. The power from a white noise process is known to have
a chi-square distribution of order 2 [64] with mean power being equal to its variance. For
amplitudes it corresponds to a chi-distribution of order 2, for which the probability density
function is given by:

wðA; kÞ ¼ 21�k=2Ak�1e�
A2
2

G k
2

� � ð24Þ

wðA; 2Þ ¼ Ae�
A2
2 ð25Þ

The phase distribution of a white noise process is the uniform distribution:

φWðtÞ ¼
1

2p
; � p � t � p

0; otherwise
ð26Þ

8<
:

The actual phase of each oscillator is the complex vector addition of the signal and noise.
The product of these complex values between the two oscillators gives the actual phase differ-
ence. The spectral coherence evaluated at the frequency where the oscillation X shares power
with the modulation sideband of oscillation Y is:

Coh ¼
ZAX¼1

AX¼0

ZAY¼1

AY¼0

ZφXw¼þp
φXw¼�p

ZφYw¼þp
φYw¼�p

wðAX ; 2ÞwðAY ; 2Þφ2
We

iArgððAXe
iφXwþSXeiφX ÞðAYe

iyφþSYeiyφÞÞdφXwdφYwdAXdAY

�������
�������ð27Þ

where AX and AY represent the amplitudes of the white noise. φXw and φYw represent the
phases of the white noise of the oscillator X and Y respectively. SX is the amplitude of oscillator
X and SY is the amplitude of the modulation sideband of Y. We assumed for simplicity that the
characteristics of PrAM and PrFM are constant therefore the oscillator X and the sideband
modulation of oscillator Y had a constant phase relationship (ϕX—ϕy = constant). The accu-
racy of the estimates can be seen in Fig 2C and 2D. They fitted the numerically estimated
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coherence estimate well, demonstrating that the induction of SM by PrAM and PrFM as well
as the SNR were the underlying determinants of the peaks in the coherence spectra.

Comparing coherence with PLV as measures of phase locking between
two coupled intrinsically noisy phase-oscillators as a function of added
extrinsic noise
The previous sections have demonstrated severe limitations for coherence as a measure of
phase locking. In various studies [28,34,35,65] it has been proposed that phase locking
approaches like the phase-locking value (PLV)—which are based on the reconstruction of the
instantaneous phase, here by applying Hilbert transform (HT) and singular spectrum decom-
position (SSD)—can be a viable alternative to coherence. To make a fair comparison between
coherence and PLV, it is necessary to do this on model data that more accurately reflect data as
they could be measured empirically. We achieved this by making the phase oscillators intrinsi-
cally noisy. In previous sections this was not done, as the main aim in preceding sections was
to illustrate maximally the conceptual and mathematical problems of using coherence as a
measure of phase relations between oscillators. Here, the aim will be to use model data that
show noisy characteristics closer to those that could be recorded empirically (e.g., in
electrophysiological recordings), but still with the underlying phase relations known, which are
to be estimated by coherence and PLV. In addition to including intrinsic noise, we added dif-
ferent levels of extrinsic (measurement) noise as in previous simulations to manipulate SNR.

Intrinsic noise was modeled as a noise process Np(t) (pink, scaling factor of 1, SD =
~1.5Hz) added in the phase-oscillator equation affecting the phase evolution of the oscillator.
The properties of the intrinsic noise process did not change over the simulations conditions. It
is termed ‘noise’ as the phase variability is of unknown origins. Notice that including intrinsic
noise affects the phase-evolution, but this variation is of biological interest and needs to be
included for phase-locking estimation. This contrasts with extrinsic (measurement) noise,
which is unrelated to the dynamics of interest and should be ignored. What is the effect of
using phase oscillators that are intrinsically noisy? Without noise and thus with a fixed intrinsic
frequency, oscillations were very narrow-banded and the frequency distributions of the two
coupled oscillations in many cases non-overlapping. Under these conditions, coherence was
shown to be a poor estimator of phase relations. Measured neural oscillations however (e.g.
gamma-band) have broader spectral power peaks [14,30,66,67]. This indicates that neural
oscillations exhibit rapid phase and frequency dynamics, which can be expected from noisy
and complex networks [68] of which brain networks are prime examples. Sources of the vari-
ability in oscillation frequencies and relative phases include intrinsic noise/instability within a
network [66], perturbations from other networks [17] and cross-frequency interactions
[69,70].

In Fig 3, we show data where oscillator X was unidirectionally coupled with oscillator Y (κ =
1, X!Y). The pink noise (applied to X and Y) was uncorrelated between the oscillators. Includ-
ing the pink noise term had two effects: It broadened the range of frequencies of the oscillator.
Second, because the intrinsic frequency varied due to noise, the oscillators did not have a pre-
cise position on the detuning dimension anymore, but it varied over time. That makes full syn-
chrony very difficult to achieve, because strong noise fluctuations kick the oscillators out of
their ‘attractor’ phase-relation [7]. Even if the mean detuning is Δω = 0, the phase-locking
strength might be lower than 1 due to the intrinsic phase noise. In the simulations described in
Fig 3 a systematic comparison was made between the ability of coherence to estimate expected
phase locking and the ability PLV to estimate true phase locking, for 5 different SNR (0.8, 5, 10,
23 and 47). Note that SNR refers here to extrinsic (measurement) noise that is uncorrelated
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Fig 3. Comparison of spectrally and non-spectrally based approaches for the estimation of phase locking. The figure shows numerical results of
Coherence and PLV estimates of phase-locking between phase-oscillators with both dynamical noise (more broadband) and different level of extrinsic
(measurement) noise (uncorrelated between oscillators). First two examples are shown. (A) Oscillators X and Y are interacting (κ = 1 X-> Y) with a detuning
of 2Hz (X = 38Hz, Y = 40Hz). The power spectra (here in the gamma range, although exact range is irrelevant here) are shown in the middle-panel. The
power spectra do largely overlap and the modulation sidebands cannot be easily observed (but are present in the data). The coherence spectrum (right
panel) gave a phase-locking estimate larger than expected with a peak at 38Hz (where the left modulation sideband of oscillator Y overlaps with the power
peak of oscillator X). In (B) the detuning was increased to 6Hz (X = 34Hz, Y = 40Hz) with same coupling conditions. Now the left modulation sideband of
oscillator Y can be observed as a small peak at 34Hz. The coherence spectrum gave a phase-locking estimate much larger than expected reflecting the
influence of the modulation sideband. (C) A 1/2 cross-section of the Arnold tongue, similar to Fig 3A, is shown. The continuous lines represent simulations
without PrAM and the dashed lines represent simulation with a PrAM of 20%. We compared the coherence to the expected phase-locking. We used the
noise-free instantaneous phases of the phase-oscillators to compute the PL2, which was a good estimator of the analytically derived true phase-locking. We
observed that the coh2 values deviated strongly from the expected phase-locking. The exact deviation depended on the detuning frequency and SNR.
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between oscillators. Further, we evaluated conditions without any PrAM and conditions with
20% PrAM. Simulated data comprised for each condition 500 trials of 3s length. The first 2s were
discarded of each trial to assure that the oscillators reached stable state. For coherence, we ana-
lyzed data using the full 1s window or by splitting the 1s window into 0.2s windows. For these
simulations, we did not derive the analytical phase-locking between the two oscillators, but relied
on a numerical estimation only. For the same conditions as described above, we then computed
PLV and compared with the expected phase locking PL (i.e. the known phase locking prior to the
addition of extrinsic noise sources). Below we describe the simulation results in detail.

Two examples are shown illustrating the behavior of coherence under two conditions of
detuning. In Fig 3A (left panel) oscillator X and Y (κ = 1, X!Y) had a detuning of Δω = 2Hz.
Their power spectra (middle panel) overlapped largely. Note that experimentally reported rela-
tive power values can range from�1 to�25 (or higher), depending on the oscillation band,
the recording method used and neuronal structure investigated. Hence, the (high SNR) power
values simulated here are in line with experimentally possible values. Note furthermore that
the modulation sidebands are basically invisible. However, they are still present (e.g. they can
be observed in single-trial power spectra) and affect considerably the resulting coherence spec-
tra as depicted to the right in Fig 3A as the coh2 estimate (peak height) was higher than
expected (right hand panel). In Fig 3B we used the same configuration, but now with a detun-
ing of Δω = 6Hz. Notice that now, the left modulation sideband of oscillator Y, induced by
oscillator X can be seen (indicated by arrow) as a small peak coinciding with the peak power
frequency of oscillator X. Also in this case, the peak of the coherence spectrum was much larger
than expected.

In Fig 3C, we systematically modulated the detuning Δω to observe the behavior of spectral
coherence estimates. The PL2 was at ~0.3 for a mean 0Hz detuning (Fig 3C). Despite the fact
that the mean frequency of the oscillators matched, considerable instantaneous frequency vari-
ation was present centered around 0. Due to the phase noise the oscillators could not reach full
synchrony, and instead exhibited phase precession. We then compared coh2 estimates com-
puted for a 1sec trial length to the PL2 values. The coh2 estimates were dependent on the SNR.
With higher SNR, coh2 did not converge to the PL2, but exceeded it. Including a 20% PrAM led
to a further inflation of the coh2 estimates. Hence, despite the oscillators having a matching
mean frequency, coh2 estimates showed deviations (Fig 3C, left panel) from the expected value.
Increasing the detuning frequency Δω led to a smooth decrease of the expected phase-locking.
The coh2 estimate of the highest SNR did not decrease at all for a large range of detuning val-
ues. Moderate SNR levels (23, 10, 5) showed a very slow decrease of coh2 as function of detun-
ing, but still deviated from the PL2. At low SNRs the effect of the extrinsic white noise became
dominant and coh2 estimates were converging to 0 (as the noise was uncorrelated between
oscillators). Applying the 20% PrAM led to an overall inflation of the coh2 estimates. Note that
the inflation by PrAM increased with increasing SNR (as expected from Fig 3C). These results
show that also under more realistic oscillatory dynamics, spectral coherence exhibits strong
deviation from the PL, thus confirming the analysis of the previous simulations without intrin-
sic phase noise.

We re-analyzed the same simulation data, but restricted the coherence estimation to 0.2sec
trials length (Fig 3D) by using the time window 2–2.2sec after simulation onset (the first 2

Including a PrAM of 20% led to a further inflation of the coh2 values. Note also the deviations of coh2 from the PL2 at a zero detuning frequency. (D) The same
analysis as in (C) but with PLV values estimated by the SSD-HTmethod. We observed that for higher SNR the estimate behaved better and remained close
to the expected phase locking. At lower SNR the PLV2 showed lower than expected values due to the effect of (uncorrelated) noise. Including a PrAM of 20%
led to an inflation of PLV2 values in the lower SNR only.

doi:10.1371/journal.pone.0146443.g003
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seconds were discarded). We explored the 0.2sec time-window coherence, because spectral
coherence is also applied in the context of TFR, e.g. using short-time Fourier transform. We
used 0.2sec time-windows also because it is a typical time-scale used for the TFR analysis of
higher frequency oscillations in neuroscience [8,71]. For lower oscillations longer windows are
usually used. The use of a 0.2sec time-window restricted the frequency resolution to 5Hz. This
had an impact on the coherence estimation properties. For detuning conditions below 5Hz, the
coh2 estimates converged to the expected phase-locking with higher SNR. Starting from detun-
ing ~4Hz the coh2 estimates lost this property and deviated again as shown in Fig 3C, obtained
with 1sec trial lengths. Including 20% PrAM affected the coh2 estimates, yet much less below
4Hz than above 4Hz detuning (Fig 3D), and also much less compared to 1sec trial length
coherence (Fig 3C). The particular detuning value at which the coh2 estimates started to lose
the property of converging towards the PL with increasing SNR, was a function of the time-
window length and its associated frequency resolution. This is because the coherence deviation
from the PL depends on the separation of the oscillation band and the modulation sideband. If,
due to short time-window length, the frequency resolution is low and spectral leakage is large,
the phase estimates of the cross-spectral density will largely reflect the oscillation band (and
not the modulation sideband). This is because the oscillation band has larger amplitude than
the modulation sideband.

Comparing Fig 3C and 3D, one could argue that decreasing the time-window for coherence
estimation to 0.1sec or lower (generally problematic for lower frequency oscillations) could
solve the issue of coherence misestimations induced by modulation sidebands. Using very
small time-window for coherence estimation can be seen as approximating instantaneous
phase, however with the cost of low frequency resolved coherence spectra. It can be questioned
whether spectral coherence was designed for this, and whether it is not better to use methods
that were specifically designed for instantaneous phase reconstruction. A further drawback of
very short-time window coherence is that, if the signal consists of several components (for
example any combination of theta, alpha, beta or gamma components), the coherence esti-
mates might be affected by component mixing due to the very low frequency resolution. In
comparison, SSD helps to avoid this problem in a completely data-driven manner [36].

In Fig 3E, we show the PLV2 estimates based on the same testing dataset as used in Fig 3C.
In brief, for the PLV approach, the signals were first decomposed using SSD [36,56]. We chose
the SSD oscillatory component with the most power in the expected frequency range. The SSD
helped to reduce impact of extrinsic noise on the instantaneous phase estimation and further
assured that the signals were mono-component. We applied the Hilbert transform to the
extracted components, to extract the instantaneous phases. From the instantaneous phase-rela-
tion we then computed PLV2. We observed that for increasing SNR the PLV2 estimates con-
verged to the PL2 over the whole detuning frequency range (0 to 8Hz). For lower SNRs, the
PLV2 estimates were lower than the PL2, because the extrinsic noise started to affect the esti-
mates more substantially. At the lowest SNR, the PLV2 estimates were very close to 0. The addi-
tion of a 20% PrAM affected the lower SNR condition, but not the higher SNR conditions.
Because the amplitude (or power) fluctuates with phase-relation, the SNR fluctuates with
phase-relation, as the SNR is the ratio of signal amplitude and the (extrinsic) noise level. This
leads to an SNR-weighted phase-relation distribution causing the PLV estimate to increase. For
higher SNR this effect vanished. Overall, the PLV2 estimates behaved much more appropriately
in the conditions tested compared to coh2 estimates, particularly in the higher SNR ranges. A
drawback of PLV (which is the same for all methods reconstructing instantaneous phase) is
that it is less robust against extrinsic noise (e.g. compare blue lines of Fig 3E with Fig 3C).
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Comparing coherence with PLV during manipulations of input drive and
connectivity between two coupled gamma-generating excitatory-
inhibitory neural networks
So far, we have used a rather abstract model of oscillatory phase synchronization. Although it
has been shown that the phase-oscillator equations and the theory of weakly coupled oscillators
(TWCO) constitute a fruitful and powerful framework to describe and understand oscillatory
synchronization in biophysical systems like neural networks [7,37,45–48,52,72–77], we will
now show that the same principles described in the data generated by two coupled phase-oscil-
lators, hold true in more complex datasets generated by two interacting excitatory-inhibitory
spiking neural networks [40,52,72,73]. The networks used here generated gamma oscillations
of the so-called ‘pyramidal-interneuron gamma’ PING type [39]. The overall structure of the
network is shown in Fig 4A and the derivation of the network oscillatory signal is described in
Fig 4B (see also Methods). In short, each network consisted of excitatory (E-cells) and inhibi-
tory cells (I-cells) which interacted through synaptic AMPA (excitatory) and GABA-A (inhibi-
tory) interactions [40]. The two networks interacted through weak AMPA connections
targeting E-cells as well as I-cells of the other network. For each network we derived a popula-
tion oscillatory signal which was computed as the smoothed combined spiking of all E-cells.
For changing the noise-levels we added different amount of 1/f1.5 noise to the population
signals.

As with the phase-oscillator generated data, we applied in the same manner spectral coher-
ence and PLV. In addition to the phase-locking estimation, we also quantified the directed
information flow between network X and Y by applying transfer entropy measure TE accord-
ing to [43]. TE measures a directed flow of information between two processes. We quantified
the directed information flow from E-cells of network X to the E-cells of network Y (and vice
versa). The TE measure allowed us to more concretely demonstrate the implications of
coherence misestimations for the understanding of information transmission among neural
networks.

Below we will show results from network simulations where we manipulated the detuning
Δω as done in previously described phase-oscillator simulations. It has been shown that the fre-
quency preference of gamma oscillations shifts as a function of input drive, both in experimen-
tal studies [13,14,78,79] and in computational studies of gamma-generating networks
[14,23,41]. Therefore, one can manipulate input drive to change the frequency preference of a
network and hence the detuning Δω. This relationship was exploited here to replicate the
coherence and PLV findings from the phase-oscillator simulations. For manipulating detuning
Δω, we altered the mean fixed input current to the E-cells of network Y (Fig 4C) while keeping
input current fixed to network X. These manipulations are reported in Fig 4D and 4E. In addi-
tion, we will also show results from network simulations in which we changed the cross-net-
work synaptic strengths. For manipulating coupling strength κ, we altered E!E, connection
strength or E!I connection strength (both excitatory AMPA type). These manipulations are
reported in Fig 5B–5E.

Interacting networks receiving different levels of input-drive (detuning). We first
manipulated the detuning Δω by changing the input drive for a given fixed bi-directional cou-
pling E-E and E-I coupling values (Fig 4A). In Figure B in S1 File we show the same results for
the uni-directional connectivity case which gave similar results. The testing data were gener-
ated as described above (Fig 4B). To demonstrate that we could shift the oscillation frequency
difference by changing the input drive difference, we plotted in Fig 4C the intrinsic frequency
difference between network X and Y as a function of the input drive difference. Here, the net-
works were uncoupled to have an accurate measure of the intrinsic (natural) frequency
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Fig 4. Testing performance of coherence and PLV in the estimation of phase-locking performance and information flow of two interacting gamma-
generating spiking networks receiving different detuning levels. (A) The network architectures. Two interconnected excitatory-inhibitory networks
consisting of 100 inhibitory cells (fast-spiking type) and 400 excitatory cells (regular spiking) were simulated using Izhikevich formalism [39]. Neurons were
interconnected with AMPA (excitatory) and GABAA (inhibitory) connections. The networks generated so called ‘pyramidal-interneuron network gamma’
(PING). The two networks where weakly interconnected by E-I and EE interconnections. The detuning was manipulated by altering the difference in
excitatory input drive (to E-cells) between the networks. We used the experimentally and theoretically established observation that the frequency of gamma
oscillations is tightly linked to input drive. (B) Generation of test-signals. From each of the 300 1sec trials the ‘LFP’ (population signal) was extracted from
each network by summing and smoothing (pseudo Gaussian function of 3ms width) the E-cell spikes. Then we added 1/f noise (exponent = 1.5) to
manipulate SNR. Compared to the phase-oscillator model, phase-relation dependent amplitude modulations (PrAM) were generated intrinsically in the
model. (C) By changing the relative excitatory input drive to E-cells between the networks, we could manipulate the detuning (frequency difference). (D) Coh2

(in the gamma frequency range 30-50Hz) and PLV2 as a function of input drive difference (ΔE-drive) between networks. Different line colors represent
difference SNR (relative power). The black line represents the PLV2 with no noise added (PL). (E) Information flow (combined directions), as measured by
transfer entropy (TE), as a function of input drive difference (ΔE-drive) between networks. (F) Variance in information flow explained by coh2 (black) and PLV2

(red) as a function of SNR derived by computing pearson correlation.

doi:10.1371/journal.pone.0146443.g004
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difference. In Fig 4D, the coh2 and the PLV2 estimates are plotted as a function of excitatory
input drive (ΔE-drive), where different lines represent different SNR levels (0.3,
2.2,4.8,9.1,36.2). The black line represents the PL (Fig 4D), which decreased rapidly with
increasing excitatory input difference (ΔE-drive). The coh2 (left panel Fig 4D) showed strong
overestimations particulary in the high SNR range and at higher ΔE-drive. By contrast, the
PLV2 (right panel Fig 4D) converged with higher SNR towards the PL2 (computed from the
noise free signals). With low SNR the PLV2 underestimated the PL2. In Fig 4E, we plot the
information flow (TE) between network X and Y as a function of ΔE-drive. The information
flow between the networks declined overall as a function of ΔE-drive in a manner very similar
to the dependency of PLV2 on ΔE-drive, confirming that information flow can be highly
dependent on oscillatory synchronization [18,21]. Note that the changes in information flow
were achieved here without changing the synaptic coupling values, and relied purely on shifting
the input frequency (E-drive) to the networks. Importantly, PLV2 tracked the synchrony-
dependent information flow changes accurately, whereas coh2 appeared rather unrelated to
information flow changes, particularly in the higher SNR range. We quantified these observa-
tions in Fig 4F by plotting the squared correlation coefficient (given an estimate of explained
variance) between information flow TE measure and coh2 (black line) or between TE and
PLV2 (red line), as a function SNR (in log scale). It can be seen that the explained variance in
TE measured by coh2 is lower than by PLV2, particulary for the higher SNR ranges.

Interacting networks with different strengths of excitatory-to-excitatory and excitatory-
to-inhibitory connections. We then explored the behavior of coh2, PLV2 and TE on testing
data obtained after systematic and independent manipulation of the cross-network connec-
tions of E!I and E!E between network X and Y (Fig 5A). The detuning Δω was 2Hz (ΔE-
drive = 2.5mV) for all conditions reported below. The power spectra were largely overlapping.
Before describing the effects of the E!I and E!E connectivity manipulation, we will summa-
rize the main findings. Remarkably, we found that E!I connections were powerful in tuning
the phase synchronization strength between networks (increasing PrFM), whereas E!E con-
nections only weakly changed phase synchronization strength, but induced robust PrAM in
the network signals. This can be understood by considering that the I-cells neurons are thought
to be critical in determining the gamma dynamics [39,80], hence E!I connections might be
particularly well-placed for inducing synchronization between the networks. On the other
hand E!E connections are less powerful for inducing synchronization, yet strongly modulate
the spike probability of the receiving neurons. If the network oscillations are in-phase, E!E
connections increase the spike-probability and hence the number of spikes in the receiving net-
work, contributing to the gamma wave by giving it a higher amplitude. If the network oscilla-
tions are in anti-phase, E!E connections are not very effective in increasing spike-probability
and instead they decrease the resulting gamma wave amplitude. Therefore PrAM was an inher-
ent property of the oscillatory interactions compared to the phase-oscillator interactions. Note

Fig 5. Testing performance of coherence and PLV in estimation of phase-locking performance and information flow of two interacting gamma-
generating spiking networks among which the coupling is manipulated by changing the strength of cross-network synaptic connections. (A) The
network architecture as shown in Fig 4. Here, the coupling strength κ between the networks was manipulated changing the E!I and E!E values. The input
drive difference was kept the same (Δ1.5mV). B) Example (SNR = ~10) of EE- strength manipulation (0 to 0.02mV) with a fixed IE strength of 0.02mV. The
top-plot shows the information flow as measured by transfer entropy (TE), combined for both directions as a function of EE-strength. Middle- and lower
panels show the same for coherence2 and PLV estimate respectively. For this particular combination the coh2 estimate behaved oppositely to PLV2 and
information flow. (C-F) Surface plots representing effects of all combinations of E!I and E!E strengths on information flow (C), coh2 (D), PLV2 (E) and PrAM
strength (F). A comparison of surface plots reveals that coherence not only reflects changes in PLV or information flow with coupling manipulations, but also
changes in PrAM. (G-H) Variance in coh2 and PLV2 explained by PrAM (G) and by information flow (TE) (H) plotted as a function of SNR. Changes in coh2

values predominantly reflected changes in PrAM (G), yet explained little variance in information flow between networks with coupling manipulations (H). The
opposite was true for PLV2.

doi:10.1371/journal.pone.0146443.g005
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that despite the presence of PrAM, the phase synchronization dynamics could be well under-
stood within the framework of the phase-oscillator model (TWCO framework) for the parame-
ter ranges used here. We observed in these E!E and E!I manipulations that both types could
have, in particular parameter ranges, a desynchronization effect. This is the case because E!E
and E!I prefer synchronization at different preferred phase-relations. Hence, if both connec-
tions types are strong, there will be interference between the effects exerted by the two types of
connectivity leading to an overall desynchronization. A detailed investigation of these phenom-
ena goes beyond the scope of this paper. Of importance here is the question whether coh2 was
able to represent robustly the PL2 and information flow TE in these different synchronization
conditions.

To demonstrate the effect of connectivity manipulations between networks X and Y, we first
show (in Fig 5B) an E!E connection strength manipulation (0mV– 0.02mV) for a fixed E!I
connection strength (0.02mV). The top panel shows the information flow (TE), which
decreased approximately monotonically with E!E strength. As shown in the middle panel of
Fig 5B, the coh2 estimates increased monotonically with E!E strength. Similarly to TE, the
PLV2 decreased monotonically with E!E strength. This striking example shows that in these
configurations coh2 behaved opposite to PLV2 and information flow (TE).

In Fig 5C–5F, we show the behavior of TE, PLV2, coh2 as well as estimated PrAM strength
as a function of both E!I and E!E connection strength (SNR of ~10). The TE increased for
both E!I and E!E, but more strongly for the former (Fig 5C). When both were relatively
strong the information flow was low. The same pattern could be observed with PLV2 (Fig 5D)
indicating that phase synchronization to a large extent formed the basis for changes in infor-
mation flow. By contrast, coh2 (Fig 5E) increased for both E!I and E!E, but more strongly in
the latter case, hence showing a very different pattern compared to TE and PLV2. For all simu-
lation conditions, we estimated PrAM (modulation strength in %, Fig 5F). PrAM clearly
increased with increases in E!E strength, but not with increases in E!I strength. These
results indicate that coh2 estimates substantially reflected changes in PrAM (which were less
predicative for changes in information flow). We quantified these observations in Fig 5G and
5H. We computed the squared correlation coefficient between changes in PrAM and changes
in coh2 (black line) as well as the between changes in PrAM and PLV2 (red line) as a function
of different SNR (Fig 5G). The results show that coh2 strongly reflected changes in PrAM
induced by E!E connections, with explained variance increasing with SNR. On the other
hand PLV2 estimates did not explain variance in PrAM, with explained variance approaching 0
with increasing SNR. In Fig 5H we computed the squared correlation coefficient between
changes in information flow (TE) and changes in coh2 (black line) as well as between changes
in information flow (TE) and PLV2 (red line), again as a function of SNR. Here the picture was
opposite. PLV2 reflected well the information flow, and even more so with increasing SNR.
Coh2 on the other hand, could hardly explain any changes in information flow with values
tending towards 0 when SNR was increased. This shows that spectral coherence in certain
parameter regimes poorly reflects changes in oscillatory phase-locking as well as the associated
changes in information flow.

Discussion
In this study, we have demonstrated that spectral coherence exhibited serious problems over a
large parameter range in quantifying phase-synchronization and its influence on information
flow among oscillating neural networks. As an alternative approach for quantifying phase rela-
tions, we explored the behavior of a phase-locking value (PLV) method that is based on the
reconstruction of the instantaneous phase. To derive phase information we used singular
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spectrum decompositions (SSD) followed by the Hilbert Transform. We will now discuss in
more details the implications of the results.

Can spectral coherence be used for quantifying neural phase
synchronization?
Spectral coherence or magnitude squared coherence [26] has been and still is a very useful sta-
tistical measure for quantifying frequency-resolved linear interdependencies between neural
signals. Its robustness against noise, its mathematically well-analyzed statistical properties as
well as its availability in neural data analysis software (Fieldtrip [41], Chronux [42]) makes
spectral coherence estimation attractive to many neuroscientists. However, the validity of
coherence estimation relies on the principal assumptions of weak-sense stationarity and linear
interdependency, which need to be fulfilled by the data. In neuroscience, spectral coherence is
largely used to determine the interdependency or ‘phase consistency’ of neural oscillations in
different frequency bands (e.g., delta, theta, alpha, beta and gamma) between cortical or sub-
cortical regions. The intriguing hypothesis investigated by many neuroscientists is that the
amount of phase consistency among synchronizing neural oscillators might have important
consequences for information processing and transmission in the brain [17,18,52,80–82].

The fundamental reason why spectral coherence in a large number of conditions cannot
robustly estimate the phase locking among synchronizing oscillations lies in the process of synchro-
nization itself. According to the physical definition of synchronization, going back to Huygens’ first
description of interacting pendulums nearly 350 years ago [7,44], synchronization is a process in
which ‘oscillators mutually adapt their frequency’. In other words, oscillators synchronize towards
a common frequency by influencing the instantaneous frequency (phase derivative) of each other.
These mutual influences among oscillators are described by the phase response curve [45]. Hence,
phase synchronization goes hand in hand with systematic frequency variations over time, which
makes the process non-stationary. Therefore, it violates an essential assumption that is required for
computing spectral coherence. The underlying problem of spectral coherence to estimate phase
synchronization has its roots in the phase estimation of the signal, rather than in the quantification
of the phase-relation distribution. In other words, the problem lies in what the phases represent
that are derived from the Fourier cross-spectral density for a giving frequency. Therefore, the spec-
tral coherence behavior reported in this paper can be generalized to any other spectral approach
that uses a distribution of phases derived from the Fourier cross-spectral densities.

As we have shown in detail, the synchronization process leads to phase-relation dependent
frequency modulations (PrFM) as well as potentially to phase-relation amplitude modulations
(PrAM). These systematic modulations lead to modulation sideband peaks in the Fourier peri-
odogram. These modulation sidebands lead to high coherence values, because a modulation
sideband induced by oscillator X in the Fourier periodogram of oscillator Y shares frequency
and consistent phase-relations with oscillation X itself. These modulation sidebands are well
known from the cross-frequency coupling CFC literature [59,60], where interdependencies
between frequency bands (e.g. between theta 3-7Hz [10,63,83,84] or alpha~ 8-12Hz [85,86]
and gamma ~30-80Hz) are investigated. In particular, systematic power modulation of a higher
frequency oscillation (e.g. gamma) as a function of the phase of a slower frequency oscillation
(e.g. alpha) has been described [62,87]. This is similar to the PrAM effect described in this
paper with the difference that PrAMs are induced by as a result of interactions between oscilla-
tions within the same frequency band. Further, the modulation is not a function of the phase of
an oscillation, but a function of the phase-relation between two given oscillations.

In the present study, we show that the modulation sidebands induced by both PrFM and
PrAM can strongly affect the spectral coherence estimate, because the Fourier estimated phases
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not only represent the phase of the oscillation, but also the phase of the modulation sidebands
(PrFM, PrAM). Most relevant to experimental neuroscience, when oscillatory data were simu-
lated using not only extrinsic (measurement) noise but also intrinsic (phase) noise, which lead
to realistic, broad power spectra, the modulation sidebands still affected the coherence spectra.
As a consequence, for each frequency of the Fourier cross-spectral density, the phase might
represent the phase of the oscillation and/or the phase of the modulation sideband. In other
words, the phase-relation distribution in this case did not reflect the true underlying phase-
relation distribution between two given synchronizing oscillations, but a distribution modified
by the presence of the modulation sidebands. We have demonstrated this phenomenon in
abstract phase-oscillator models (which can be applied to any frequency band) as well as in
detailed spiking neural network models (specific for gamma-band oscillations). In the latter
neural network simulations, we showed that spectral coherence did not robustly reflect the syn-
chronization-dependent information flow between two oscillating networks when input
strength or connectivity strength was manipulated. Particularly disastrous for the idea that
coherence is related to information transmission in the brain were the effects of changes in the
strength of cross-network E!E synaptic connections, which modulated the magnitude of
PrAM. This E!E connectivity manipulation firstly confirmed that spectral coherence is not a
pure phase-locking estimate, but instead strongly reflects amplitude fluctuations. This held
true even for the modified coherence formula that has been shown to be robust against ampli-
tude correlation [41,53]. Secondly, we found that spectral coherence was weakly related to
information flow. We would like to emphasize that the effects of PrAM should not be confused
with the known effects of amplitude correlation on coherence [34,54], because PrAM still
affects coherence if amplitude correlation is 0, as was the case in our simulations. This is
because amplitude fluctuations in the form of PrAM only need to be present in one of two
oscillators. The mixture of PrFM and PrAM with the true phase-locking between oscillators
makes coherence values difficult to interpret, as shown by the weak relation between coherence
and information transmission for certain conditions. Hence, it could be argued that spectral
coherence often will not be the preferred method to test particular theories on phase relations
and information transmission during neural oscillatory synchronization in brain networks.

Generality of simulation and analysis results
The question can be asked whether the limitations revealed by our work for the use of spectral
coherence for estimating phase locking is due to the use of the particular phase-oscillator
model for generating simulated oscillatory data. However, the phase-oscillator model used here
is a very general model (theory of weakly coupled oscillators, TWCO) and that the underlying
synchronization theory [7] is widely accepted. It describes the core concepts of the phase
response curve (PRC) and the Arnold tongue. These concepts are widely used for describing
interactions of oscillations of various types including (noisy) limit-cycle as well as chaotic oscil-
lations [7,50]. Moreover, synchronization theory is used in many scientific fields, for example,
to describe the synchronization of electrochemical oscillations [88], of molecular circadian
rhythms [89] among individual fireflies [90], and of climate oscillations [91]. In (theoretical)
neuroscience these concepts are also well established [37,45,73,76] and have been used to
understand synchronization properties of single neurons [45], the emergence of neural net-
work oscillations [40] and their oscillatory interactions [52] and traveling wave properties [73].
Since neural networks should be seen as dynamical oscillating systems, similar in their basic
characteristics to other dynamical systems in nature, we expect that the synchronization theory
is a plausible and relevant framework for understanding neural oscillatory interactions. By the
same token we expect that the results of the present study has general relevance for any type of
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neural oscillations in the brain, and perhaps also for the study of oscillations outside neurosci-
ence. However, to further strengthen the methodological investigation of coherence (and the
PLV approach), we also used a neural network model that generated gamma oscillations
according to known neural principles [40]. This neural network represents a biophysical more
plausible implementation of the principles shown with the phase-oscillator model. When using
the simulated data from this neural network, we could confirm the results from the phase-oscil-
lator model [40].

Another question that can be asked relates to potentials limitation of our work due to
restricting our analysis to continuous network field signals. The effects of the various manipu-
lations in our simulated data on Spike-Field coherence (SFC), which quantifies the locking of
spike probability to a particular field oscillation phase, were not investigated. However, it can
be expected that estimating the locking of spikes from spike trains in network X to the field sig-
nal from network Y will lead to similar problems for SFC as we have described for spectral
coherence. This is because also here, the phase estimate from the field signal will be affected by
modulation sidebands. These distorted phases will also be problematic for SFC. Further, phase-
relation dependent amplitude fluctuations might also affect SFC estimates. Note that in neuro-
science, other methods are used that assume weak-sense stationarity, such as frequency-
resolved granger directionality analysis [92,93]. We expect that also these techniques might
show problems due to the non-stationary nature of oscillatory synchronization.

The partial synchronization state: Realistic for neuronal oscillatory data?
Using simulated data from both the phase oscillator model as well as neural network models
demonstrated severe limitations of spectral coherence to accurately capture phase locking and
information transmission across a broad range of conditions. Nevertheless, the question can be
asked whether the non-stationary nature of the synchronization process that follows from it is
biologically plausible and likely.

We have indeed stressed that the synchronization among neural networks (oscillators) is
inherently non-stationary, and leads in a broad range of conditions to partial (intermittent)
synchronization. In this regime, oscillators do have frequency differences (do phase precess),
yet they still have preferred phase-relations that are reflected in non-uniform phase-relation
distributions. In a complete or perfect phase-locking state, the phase-relation is constant (no
phase precession) and the synchronized oscillators do not have a frequency mismatch. Why
would the partially synchronized regime (being problematic for spectral coherence) be the
most likely regime for neural oscillatory data? Even in the hypothetical case of noiseless empiri-
cal data, it would be unlikely (due to detuning) that synchronization would be perfect, and
imperfect synchronization by definition leads to a complex state of partial synchronization,
characterized by changes in phase relations and frequency among oscillators over time. In real
empirical data, noise is inescapably present, and noise will further degrade the imperfect phase
locking between oscillators (or neural networks approximated by oscillators) [7,52]. With
noise we mean intrinsic (phase) noise that changes the instantaneous frequency of the oscilla-
tions. ‘Noise’ can for example be due to the inherent instability of the oscillation (e.g. low syn-
chrony among neurons generating the network oscillation). Hence, given the noisiness and
complexity of cortical networks we believe that the partially synchrony regime can be expected
to be the dominant regime. These theoretical considerations are supported by experimental
data. A few studies have directly investigated and shown partial (intermittent) synchronization
in cortical activity [32,94]. Moreover, there is indirect evidence from studies showing that for
cortical gamma oscillations the frequency and amplitude evolution over time is noisy and com-
plex [30], and changes as a function of cortical state [71,85]. Neuronal oscillations in general
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behave rather like very noisy limit-cycle oscillations or chaotic oscillations, and clearly not like
noiseless oscillators [95]. Furthermore, several experimental papers have indicated phase-lock-
ing among neural oscillations of slightly different frequencies [8,12,13] indicating that detuning
among interacting neural oscillation does exist. Another study on cortical gamma oscillation
showed synchronization and phase precession at the same time [17] indicating a state of partial
synchronization. Therefore, theoretical as well experimental indications suggest that partial
synchrony should be expected as the most likely regime.

Testing the underlying assumptions of spectral coherence
The concept of systematic frequency variation and frequency differences among oscillations
within a ‘frequency band’ has only recently attracted scientific interest [23,31,78,79,96]. This
might explain why the problem of frequency variation of neural oscillatory signals for station-
ary methods like spectral coherence is still not commonly recognized. It is striking that till
today most research studies using spectral coherence are published without including a test of
the assumption of weak-sense stationarity (nor linearity), despite that experimental and theo-
retical work suggests that neuronal oscillations are likely to be non-stationary. Whether one
assumes a phase synchronization model or not underlying oscillatory interactions, it is impor-
tant to validly test for weak-sense stationarity (or at last have good reasons to assume stationar-
ity) before applying spectral coherence on neural signals. A reason this is rarely done might be
that appropriate tests of weak-sense stationarity are not well-known in the neuroscientist com-
munity and not always available in popular software packages. The weak-sense stationarity
assumption states that the auto-correlation function of a process should not systematically
change over time. If for example an oscillatory signals has periods of higher frequency followed
by periods of lower frequency, the signal violates the weak-sense stationarity assumption.
Methods have been proposed [27,97] that statistically test the null hypothesis of weak-sense
stationarity by quantifying the variability in time-frequency representation of a signal and by
testing whether it deviates from expected variation of a stationary random process.

The testing of stationarity in empirical data is necessary assuming that the analysis is
directed at single trial data. It is only in single trial data that the detailed non-stationary interac-
tions can be appropriately quantified. Yet, it often is common practice to justify the use of spec-
tral coherence based on the stability of the trial-averaged TFR. For example, a stimulus onset
trial-averaged TFR [98] shows often transients shortly after stimulus onset and then it looks
rather stable. Therefore, the transients are typically excluded from analysis, after which spectral
coherence is applied on the ‘sustained part’ of the (trial-averaged) TFR. Importantly, trial-aver-
aging eliminates all frequency or power variations that are not strictly locked to the stimulus-
onset (or the event to which the data are aligned). An example of variation lost by trial averag-
ing is the presence of effects induced by saccadic or microsaccadic eye movements during pre-
sentation of a stimulus. It is known that saccadic eye-movements strongly affect the oscillatory
properties [29,71,99,100] in the ‘sustained part’ of the trial-averaged TFR of signals in visual
cortex, and that these saccadic effects can be useful indicators of perceptual and cognitive states
[101]. However, these TFR variations are not locked to stimulus onset, but to saccades which
occur at various time points within a trial, and therefore these interesting single-trial TFR vari-
ations are removed by classical stimulus-onset triggered trial averaging. Hence, trial-averaged
TFR cannot be used to assess whether signals in certain periods are stationary or not.

Another condition that needs to be satisfied for spectral coherence methods to be applied in
a valid manner is linearity. In the present study, the phase coupling in the phase-oscillator
model as well as in the neural network model was linear. This was evident in phase-phase plots
of pairs of oscillators, which exhibited clear straight lines indicating that the phases were indeed
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linearly related. Hence, in our simulated data the linearity assumption for the application of
spectral methods was satisfied. However, similarly to the weak-sense stationarity assumption,
the nature of phase coupling should be investigated in empirical data before using linear meth-
ods such as spectral coherence or the phase-locking value. Moreover, methods derived from
information theory are suitable for linear as well non-linear interactions [102] and should be
used by default if one does not know whether phase relationships are linear.

Alternative phase locking estimation approaches
The problem of non-stationarity in neuronal signals has been previously reported [33–
35,103,104] and several alternative methods, based on instantaneous phase, have been pro-
posed and successfully used. Below, we will give a short overview of possible strategies to esti-
mate instantaneous phase in experimental multi-component signals.

It is noteworthy that the concepts of ‘instantaneous phase’ and particularly ‘instantaneous
frequency’ could be regarded with skepticism, because of the time-frequency uncertainty prin-
ciple [105], and because instantaneous phase or frequency cannot be easily defined for signals
like those observed in the brain. It is correct that in a TFR, higher time resolution leads to
lower frequency resolution, and vice versa. At the same time, the higher the time resolution,
the more the estimated phase will approximate the instantaneous phase, at the cost of low fre-
quency resolution. Hence it is impossible to get an accurate estimate of both phase and fre-
quency at the same time. However, the instantaneous frequency as a mathematical concept is
nothing else than the derivative of the instantaneous phase, and hence, if instantaneous phase
is known then the instantaneous frequency can be. Nevertheless, instantaneous phase or fre-
quency can only meaningfully be defined if the signal is mono-componential (e.g., not mixed
with two or more oscillations, trends or transients). That means that the signal must be well
described by a single peak frequency at each point in time. Because neuronal signals (like the
local field potential) usually consist of many components, a decomposition technique of some
sort must precede the estimation of instantaneous phase, such that phase estimates can be
linked with a well-defined frequency component. Further, instantaneous phase estimations
have their own challenges. For example, they can be affected by amplitude variation properties
of the signal [106] and are often more sensitive to noise leading to phase slips [55]. In practice,
TFR techniques approximating instantaneous phase might give appropriate estimates for most
cases [35].

There are two basic analysis strategies from which the instantaneous phase can be approxi-
mated, one based on complex TFR representations (based on wavelet or short-time Fourier
transform) and the other based on the Hilbert Transform (HT) preceded by a decomposition
of the signal. The first strategy convolves the signal with e.g. complex wavelets [35] to estimate
the complex wavelet TFR. From each complex value in the time-frequency plane the phase can
be estimated. The advantage of the approach is that it is relatively robust against noise and that
wavelets are well understood. Disadvantages are the lower time resolution of the phase trace
and that the selection of points in the TFR for reconstructing the phase trace is not straightfor-
ward. Furthermore, the decomposition is linear [36]. The second strategy uses the Hilbert
Transform (HT) [105], which converts a real-valued signal into a complex analytical signal
from which the instantaneous phase can be extracted. The instantaneous phase is only well
defined if the signal is mono-componential [57,107,108]. Oscillatory brain data are multi-com-
ponential and therefore these signals need to be decomposed. One approach is filtering the sig-
nal in a predefined frequency range in which most of the oscillatory power is expected to be.
This approach is often used in neuroscience, for example for estimating cross-frequency cou-
pling CFC [60,62,85,102]. An advantage of filtering is computational efficiency, yet with the

HowQuantifying Neural Oscillatory Synchronization?

PLOS ONE | DOI:10.1371/journal.pone.0146443 January 8, 2016 31 / 37



disadvantage of fixed frequency borders, defined by the researcher based on pre-knowledge.
Another approach is based on empirical mode decomposition EMD [57] which decomposes in
a data-driven manner the signal into intrinsic mode functions (IMF), which are well-suited for
applying the HT. Similarly, singular spectrum decomposition (SSD) decomposes the signal in
oscillatory narrow-band components on which HT can be applied [36,56]. An advantage of
SSD is that it has good de-mixing properties [36], assuring that signals are narrow-banded.
Moreover, the SSD algorithm has been optimized to be useable for neurophysiological datasets
[56]. In this study, we used the SSD approach in combination with HT to reconstruct the
instantaneous phases.

Our results showed that PLV estimates based on the instantaneous phase reconstructed by
SSD-HT gave more robust estimates of the true underlying phase-locking values and reflected
better variations in synchronization–dependent information flow between neural networks
compared to spectral coherence. The estimates were robust against amplitude fluctuation in
the form of PrAM, although small effects of PrAM could be observed in the low SNR regimes.
Although PLV could severely underestimate phase locking for lower SNR, increasing SNR
allowed the PLV to approach the expected phase locking value. Moreover, in terms of
explained variance of information flow changes between networks, the PLV estimates were
superior to coherence for any SNR investigated. We expect similarly superior results for all
approaches that are based on reconstruction of the instantaneous phase (based on the use of
wavelets or the Hilbert transform preceded by some decomposition technique). Finally,
although there are conditions in which spectral coherence might be appropriate, methods that
combine appropriate signal decomposition with instantaneous phase reconstruction permit a
more detailed and accurate look on time-dependent changes in synchronization properties of
neural signals. This provides definite advantages when trying to determine neural network
mechanisms underlying perception, cognition, and behavior.
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simulation (Simulation Code A) and simulation of gamma–generating neural network (Simu-
lation Code B).
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