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Abstract

Lung 4D computed tomography (4D-CT) plays an important role in high-precision radiother-

apy because it characterizes respiratory motion, which is crucial for accurate target defini-

tion. However, the manual segmentation of a lung tumor is a heavy workload for doctors

because of the large number of lung 4D-CT data slices. Meanwhile, tumor segmentation is

still a notoriously challenging problem in computer-aided diagnosis. In this paper, we pro-

pose a new method based on an improved graph cut algorithm with context information con-

straint to find a convenient and robust approach of lung 4D-CT tumor segmentation. We

combine all phases of the lung 4D-CT into a global graph, and construct a global energy

function accordingly. The sub-graph is first constructed for each phase. A context cost term

is enforced to achieve segmentation results in every phase by adding a context constraint

between neighboring phases. A global energy function is finally constructed by combining

all cost terms. The optimization is achieved by solving a max-flow/min-cut problem, which

leads to simultaneous and robust segmentation of the tumor in all the lung 4D-CT phases.

The effectiveness of our approach is validated through experiments on 10 different lung

4D-CT cases. The comparison with the graph cut without context constraint, the level set

method and the graph cut with star shape prior demonstrates that the proposed method

obtains more accurate and robust segmentation results.

I. Introduction

The accurate radiation target definition for a moving object, such as a lung tumor, in cancer

radiation therapy has been drawing much attention for the past decades. An accurate target

definition enables the precise delivery of a high-radiation dose to tumor and maintains a low

dose to the surrounding organs at risk [1]. The information used for target definition usually

comes from images acquired by computed tomography (CT). CT images have an advantage in
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spatial resolution, but ordinary free-breathing CT scan cannot synchronously characterize the

anatomic motion and deformation caused by respiration. Artifacts caused by this motion and

deformation are commonly observed in thoracic CT images. These artifacts cause distortion of

the target volume and incorrect positional and volumetric information, which make an accu-

rate target definition a challenging problem. Therefore, implementing a precise dose delivery

and protecting healthy organs are difficult.

Precise radiation planning and dose have become possible in lung cancer radiotherapy by

the use of lung 4D computed tomography (4D-CT). 4D-CT is usually obtained by sorting mul-

tiple free-breathing CT segments depending on the respiratory motion recorded by extra

instruments and internal anatomical features. The respiratory motion information captured

by lung 4D-CT is tremendously valuable for precise target definition. Lung 4D-CT has been

routinely used during lung cancer radiotherapy [2, 3, 4]. As regards the current tumor radio-

therapy, oncology doctors still manually outline the target slice-by-slice. However, the lung

4D-CT dataset for each patient contains many times of slices more than the 3D-CT data,

which makes manual target delineation a heavy workload for doctors. Thus, computer-aided

image segmentation techniques, which can guarantee satisfying segmentation results, are

eagerly needed to help doctors delineate the tumor.

In recent works, different methods have been proposed to segment lung tumors. Cui et al.

[5] presented a prior knowledge enhanced random walk to segment lung tumor from low con-

trast CT images. The authors used prior knowledge acquired from PET to automatically select

foreground seeds, background seeds and the walking range to increase the speed and accuracy

of lung tumor segmentation. Based on the “click & grow” algorithm, Gu et al. [6] proposed a

single click ensemble approach to delineate lung tumors. An ensemble segmentation was

obtained from multiple regions that were grown from different seed points followed by voting.

Vivanti et al. [7] proposed a method for the segmentation of lung tumors. Their method con-

sists of four steps: deformation registration, segmentation of lung tumor, leaks detection and

tumor boundary regularization. Plajer et al. [8] presented an active contouring algorithm for

lung tumor segmentation based on a mixed internal-external force and on a cluster function.

Awad et al. [9] used sparse field active models to segment 3-D lung tumors from CT image.

Multi-parameter level set with a sphere shape prior was integrated in the model.

Up to now, lung tumor segmentation still remains as a notoriously challenging task consid-

ering the ability of a technique to segment the challenging types of tumors, the automation

level of the technique and its robustness [10]. The main objective of this paper is to enhance

automation and robustness of lung 4D-CT tumor segmentation, which is achieved by con-

structing a global graph of 4D-CT data and integrating context information constraint into the

phases.

The graph cut algorithm has become one of the leading techniques among interactive meth-

ods since it has been proposed [11, 12]. The basic idea of the algorithm is to formulate the seg-

mentation problem as an energy minimization problem [13, 14], which can be solved by max-

flow/min-cut [15, 16]. The graph cut algorithm has been widely applied to the segmentation

of bones, organs, vessels, and tumors, among others, in different medical modality images

because it has many advantages [17–21]. The graph cut algorithm not only provides a globally

optimal solution but can also easily incorporate various regional and boundary constraints.

A variety of studies have incorporated extra constraint information with the graph cut algo-

rithm, such as shape priors, to achieve more accurate and robust segmentation results. Shape

priors reduce the ambiguity by ruling out inconsistent segments with them and lead to

improved results [22–25]. However, they only come into effect when the object fits a certain

shape, which restricts their wide applications. Shape priors are not suitable for tumor segmen-

tation. The irregular growth of tumor makes its size, shape, and location highly variable.

Segmentation of tumor in lung 4D-CT data

PLOS ONE | https://doi.org/10.1371/journal.pone.0178411 June 16, 2017 2 / 16

and the Science and Technology Program of

Guangzhou under Grant No. 201607010097.

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pone.0178411


Moreover, tumors typically show invasive growth, which likely includes peritumoral edema,

and are prone to adhere to nearby tissues. Hence, tumor segmentation needs more specific

and effective extra constraint information to guarantee accuracy.

In a clinical setting, doctors always use the context information of lung 4D-CT when they

manually contour the tumor. They focus not only on the image of the current phase but also

on that of the adjacent phases. The context information helps doctors provide a more accurate

target definition, especially when the tumor boundary of the current phase is weak and unclear

or even missing. The image information lost in one respiratory phase may appear in other

phases. Fig 1 shows an example of this situation.

Inspired by this idea, in this paper, we propose a novel segmentation method based on the

graph cut framework for the lung 4D-CT tumors. We construct a global energy function,

which contains regional terms, boundary terms of all phases, and new energy terms which

make use of context information. Our global approach for the 4D-CT data provides two

advantages. First, users only need to select object and background seeds in the slices of one

phase and then the tumors in all phases can be simultaneously segmented. This approach

decreases the interaction of users and relieves the doctors’ burden during radiotherapy. Sec-

ond, a more accurate and robust segmentation can be achieved using context constraints. The

results show that our method demonstrates better qualitative and quantitative performance

than the graph cut algorithm without context constrains, the level set method [26] and the

graph cut with star shape prior [24] compared with the ground truth provided by clinical

experts.

The rest of our paper is organized as follows: the materials and the details of our method for

the tumor segmentation of the lung 4D-CT data will be presented in Section II. The experi-

mental results and evaluation are demonstrated in Section III. The discussion and conclusion

are provided in Section IV and Section V.

Fig 1. Weak edges in one phase become clear in the other phase. The same slices in different phases are shown in

the first row. The areas in red boxes are enlarged and shown in the second row. The red arrows point to the tumor edges.

https://doi.org/10.1371/journal.pone.0178411.g001
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II. Materials and methods

II.A. Lung 4D-CT data

This study was approved by the Ethics Committees of Nanfang Hospital, Southern Medical

University. Patient records/information were anonymized and de-identified prior to analysis.

We validate the proposed approach on ten different 4D-CT cases. The first two cases are from

the DIR Lab at the University of Texas MD Anderson Cancer Center [27], which are acquired

as part of the standard planning process for the treatment of thoracic malignancies by employ-

ing a GE medical system (General Electric Discovery DT PET/CT scanner). Each case contains

ten phases, with a section spacing 2.5 mm, and a reconstruction matrix of 512 × 512 pixels. In-

plane pixel spatial resolution is 0.97 × 0.97 mm. The third case comes from the Léon Bérard

Cancer Center (Lyon, France) on a Philips 16-slice Brilliance Big Bore Oncology Configura-

tion (Phillips Medical Systems, Cleveland, OH) [28]. It contains ten phases and the image size

is 512 × 512 × 139 with a voxel size of 1.17 × 1.17 × 2.00 mm. The rest of cases are from the

Nanfang Hospital of Southern Medical University. They are acquired by employing the Philips

Brilliance CT Big Bore containing six phases. The in-plane grid size is 512 × 512, and the in-

plane voxel dimension ranges from 0.83 × 0.83 mm to 1.10 × 1.10 mm. Table 1. shows the

detailed information regarding the dataset.

II.B. Graph cut method

A brief review of the graph cut method [11] is presented in this section.

Segmentation is achieved in this framework by first constructing a graph G = (V, E) corre-

sponding to the image. V is a set of vertices representing the image voxels. Two additional ter-

minal vertices exist in V, namely, s (source) and t (sink), which correspond to the object

(tumor) and the background, respectively. E is a set of weighted edges representing the rela-

tionships of voxels in the image. Two types of edge sets are used, namely, t-links, the edges

connecting the vertices to the terminals, and n-links, the edges connecting the neighboring

vertices. The six-connected neighborhood system (N) is used here. Each edge e2E has a non-

negative weight we representing the penalty. The weights of the t-links represent the likelihood

of a voxel belonging to the object or background region. They are obtained using the image

intensity histogram modeled from the seeds provided by the user. The weights of the n-links

represent the similarity between two neighboring voxels. The greater the similarity between

the two neighboring voxels, the greater the weight of the edge connecting them. An s-t cut C is

a subset of E. V is partitioned into two sets S (s2S) and T = V−S (t2T) when C is removed from

G. Therefore, the cut in a graph represents the segmentation of the object region from the

Table 1. Summary of the 10 cases of the data that we consider.

Data Set In-plane Grid Size In-plane Dimensions (mm) No. of Slices Phase Number Slice Spacing (mm) Tumor Type

Texas 1 512×512 0.97 × 0.97 128 10 2.50 No tumor adhesion

Texas 2 512×512 0.97 × 0.97 120 10 2.50 Messy with adhesion

Lyon 512×512 1.17 × 1.17 139 10 2.00 Messy with adhesion

Nanfang 1 512×512 0.94 × 0.94 130 6 3.00 Messy with adhesion

Nanfang 2 512×512 0.86 × 0.86 144 6 3.00 Messy with adhesion

Nanfang 3 512×512 1.05 × 1.05 150 6 3.00 Messy with adhesion

Nanfang 4 512×512 0.94 × 0.94 125 6 3.00 Messy with adhesion

Nanfang 5 512×512 0.94 × 0.94 136 6 3.00 Messy with adhesion

Nanfang 6 512×512 1.10 × 1.10 138 6 3.00 Messy with adhesion

Nanfang 7 512×512 0.83 × 0.83 121 6 3.00 Messy with adhesion

https://doi.org/10.1371/journal.pone.0178411.t001
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background region in the image. The cost of cut C is the sum of its edge weights: jCj ¼
X

e2c

we.

The minimum cut is the cut with the smallest cost and the objective is to determine the mini-

mum cut and corresponding segmentation. The max-flow/min-cut algorithm can then be

used.

The image segmentation is formulated as a binary labeling problem in this framework.

Each voxel in the image is assigned a label from the label set L = {0, 1}, where 0 and 1 represent

the background and the object, respectively. Let v be the voxel in the image and (v, w) be the

voxel pairs. Let fv 2 L be the label assigned to voxel v and f = {fv | v 2 V} be the collection of all

the label assignments. The energy function used for the segmentation is as follows:

Eðf Þ ¼
X

v2V

RvðfvÞ þ l
X

ðv;wÞ2N

Bvwðfv; fwÞ ð1Þ

The first term on the right of Eq (1) is called the regional term because it represents the

regional constraints. The term measures how well the voxels fit into the object or background

models. Rv(fv) is the penalty for assigning label fv to voxel v relating to the weight of t-links.

The second term on the right of Eq (1) is called the boundary term because it represents the

boundary constraints. A segmentation boundary occurs if two neighboring voxels are assigned

with different labels. Bvw(fv,fw) is the penalty for assigning labels fv and fw to the neighboring

voxels relating to the weight of the n-links. Parameter λ� 0 is the coefficient to balance the

regional and boundary terms. Smaller values of λmean that the regional constraints are more

dominant in Eq (1). The minimum cut and corresponding segmentation is found by minimiz-

ing the energy function Eq (1) using max-flow/min-cut algorithm.

II.C. Lung tumor segmentation incorporating context information

We now show how to make use of the context information to construct a global graph of the

lung 4D-CT to implement the multi-phase simultaneous segmentation of tumors.

The proposed method formulates the tumor segmentation problem of the lung 4D-CT as a

global graph based problem. The subgraphs for each phase are first constructed. The context

information between the neighboring phases is then incorporated as a context constraint term,

which is enforced by adding inter-subgraph arcs between the correspondent nodes of the

neighboring subgraphs. Fig 2 shows the construction of global graph for lung 4D-CT.

The energy function for the single phase I0 is derived from the graph cut and comprises a

regional term R0,v and a boundary term B0,(v,w). As commonly used, we set R0,v as negative log-

likelihoods:

R0;v ¼
� ln PrðI0;vjOÞ; fv ¼ 1

� ln PrðI0;vjBÞ; fv ¼ 0
ð2Þ

(

where O and B are the set of voxels marked by the user as object and background seeds, re-

spectively. fv is the assigned label for voxel v. I0,v is the intensity of v. For any object seed v pro-

vided by the user, Rv(0) =1, and for any background seed v provided by the user, Rv(1) =1.

Pr(I0,v | O) and Pr(I0,v | B) denote the probability of how well the unmarked voxel v fits into

the histograms of the marked voxels for object and background intensity distribution, respec-

tively. Notably, a similar intensity distribution of the tumor (object) is observed for each

phase. Therefore, the R0,v formulation can be used as a regional term of each other phase Ii

denoted by Ri,v.

Segmentation of tumor in lung 4D-CT data
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We employ an ad-hoc function [11] with the following formulation for the cost design of

the boundary term:

B0;ðv;wÞ ¼ l1expð�
ðI0;v � I0;wÞ

2

2s1
2
Þ �

1

distðv;wÞ
ð3Þ

where σ1 is a given Gaussian parameter, and λ1 is the scaling constant. Similarly, the boundary

cost Bi,(v,w) for each other phase would have the same formulation.

A context term is introduced to make the best incorporation of the context information

of the lung 4D-CT data. We consider the case of the Potts model [13], i.e., B0;ðv;v0 Þ ¼ C0;ðv;v0 Þ�

Tðfv 6¼ fv0 Þ for single phase I0. Voxels v and v0 are the corresponding voxels from I0 and its

neighboring phase I1. We can incorporate contextual information into our energy function by

allowing C0;ðv;v0 Þ to vary depending on intensities I0,v and I1;v0 . We then define

C0;ðv;v0 Þ ¼
2l2s2 if jI0;v � I1;v0 j � t

l2s2 if jI0;v � I1;v0 j > t
ð4Þ

(

where C0;ðv;v0 Þ is employed to penalize the disagreement ðfv 6¼ fv0 Þ between the labels of the cor-

responding voxels v and v0; σ2 is the Potts model parameter; τ is the threshold parameter; and

Fig 2. Global graph construction for simultaneous segmentation of lung 4D-CT. The black dots denote the voxels in the

phase. The red dots denote the terminals: source and sink. The t- and n-links are indicated in red and black lines, respectively.

Inter-subgraph arcs (blue and brown lines) denote the examples of added context information.

https://doi.org/10.1371/journal.pone.0178411.g002
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λ2 is the scaling constant. Similarly, the contextual cost Ci;ðv;v0 Þ for each other phase would have

the same formulation.

We have so far defined the regional and boundary terms for each phase. The contextual

term relative to the inter-phase is also defined. We can then achieve the global graph energy

function for the lung 4D-CT tumor segmentation in the following method:

Egðf Þ ¼
Xk

i¼0

fRi;vðfvÞ þ Bi;ðv;wÞðfv; fwÞ þ Ci;ðv;v0 Þðfv; fv0 Þg ð5Þ

where k is the number of phases in the lung 4D-CT. The optimal solution of this new energy

function can be found by computing the max-flow/min-cut algorithm. In this study, we

employed Boykov-Kolmogorov’s algorithm [15] to find the max-flow/min-cut, since this algo-

rithm has been proven to be effective [16]. Eq (5) makes use of the context information of

4D-CT to complete multi-phase tumor simultaneous segmentation. The tumors in the images

of each phase can be concurrently segmented with the object and background seeds selected

by users in one phase.

II. D. Evaluation strategy

Both the visual and quantitative results will be presented to demonstrate the performance of

different methods. For quantitative evaluation, the segmentation performance is compared

with the ground truth. The ground truth are the manual contours delineated by experienced

radiation oncologists applying the Eclipse (Varian) or Monaco (Elekta) radiotherapy planning

system. It usually takes doctors approximately 30 minutes to accomplish target delineation of

one lung 4D-CT dataset.

The segmentation result is termed A, whereas the ground truth is termed G. We use the

dice similarity coefficient (DSC) for the volumetric error measurement and the average sym-

metric surface distance (ASSD) for the boundary surface distance error. All DSC and ASSD

values are computed in 3D [29].

The DSC values are obtained using:

DSC ¼
2jA \ Gj
jAj þ jGj

ð6Þ

The DSC values range between 0 and 1. DSC = 0 means the segmentation result and the

ground truth has no overlap at all, whereas 1 indicates their perfect agreement.

The ASSD values are obtained using:

ASSD ¼

X

a2A
minb2Gdistða; bÞ þ

X

b2G
mina2Adistða; bÞ

NA þ NG
ð7Þ

where a and b are the border voxels on the segmentation result surface and the ground truth

surface, respectively. dist(a, b) represents the distance between a and b. NA and NG are the

number of border voxels on A and G, respectively. A small ASSD value indicates an accurate

segmentation. ASSD = 0 means a perfect segmentation.

III. Results

III.A. Initialization

The initialization of our method is accomplished by asking the doctor to identify the tumor

location and select object and background seeds only in one respiratory phase (Fig 3(A) and 3
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(B)). This is the only step requiring user interaction. Segmentation is performed afterward,

and the results of each phase are generated. The manual contours by the experienced oncolo-

gist are used to demonstrate the performance of our method in comparison to the graph cut

without context constrain, the level set method, and the graph cut with star shape prior. The

initialization of graph cut algorithm with star shape prior is similar to our proposed method

(Fig 3(C)). However, it is necessary to select the background and foreground points at each

Fig 3. Example of initializations. Red: object seeds. Blue: background seeds.

https://doi.org/10.1371/journal.pone.0178411.g003
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phase. The initialization contour of the level set method [26] is a rectangle, as shown in Fig 3

(D).

III.B. Visual inspection

Fig 4 shows the representative segmentation results. Different views, namely, coronal, sagittal,

and transverse, are demonstrated from top to bottom. The ground truth is shown in red in all

images. The segmentation results of the graph cut without context constrains (yellow), our

proposed method (deep blue), the level set method (green) and the graph cut with star shape

prior (pale blue) are shown in the first, second, third and fourth columns, respectively.

From Fig 4, we can see that when the level set method is applied, leaking problems can be

clearly observed. For the graph cut without context constrains method, the unsatisfying perfor-

mance is most likely caused by the weak boundary due to the low intensity contrast between

tumor and its surroundings. In comparison with the level set method and the graph cut with-

out context constrains, the proposed approach works well. Using the context information of

lung 4D-CT, our proposed method provides more accurate and robust segmentation results,

exhibiting expected improvement. In comparison with our proposed method, the graph cut

with star shape prior provides similar segmentation results in visualization. However, tumors

in each phase are segmented simultaneously by our method with little user interaction due to

the construction of the global graph, which is what the single graph cannot accomplish.

III. C. Quantitative evaluation

Fig 5 shows the quantitative comparison for all 10 lung 4D-CT dataset among the four meth-

ods. It is clear that in these cases our method achieves the highest DSC and lowest ASSD val-

ues. Our method obtained tumor segmentation accuracy characterized by DSC = 0.855±0.048

on average, which was higher than that of the graph cut without context constraints (0.638

±0.119), the level set method (0.763±0.072) and the graph cut with star shape prior (0.831

±0.068). The average ASSD value of our method was 6.88±2.35, which was lower than that of

the graph cut without context constraints (13.73±4.83), the level set method (14.49±2.99) and

the graph cut with star shape prior (7.80±2.86).

The proposed method utilizing the context information of 4D-CT outperformed the other

three methods and provided more accurate and robust segmentation results. The perfor-

mances exhibited expected improvement and indicated that our method has the ability to

more accurately segment the challenging types of tumors.

IV. Discussion

We presented a lung 4D-CT tumor data segmentation algorithm in this paper. We utilized the

characters of the lung 4D-CT data to construct a global energy function, which combined the

sub-graph of each phase and the contextual cost terms between the neighboring phases. We

reduced the user interaction and increased the accuracy and robustness of tumor segmenta-

tion. Our method was tested on different 4D-CT cases and demonstrated consistent improve-

ments over the graph cut without context constrains, the level set method and the graph cut

with star shape prior in visual evaluation and quantitative assessment.

IV.A. Parameter setting

To achieve the best segmentation for our proposed approach, several critical parameters need

to be fine-tuned. We used several cases to test the influence of parameter λ1, λ2, σ1 and σ2. The

DSC values with respect to the use of different parameter values are shown in Fig 6(A), 6(B)

Segmentation of tumor in lung 4D-CT data
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Fig 4. Visual comparison of segmentation results given by different methods. The 1st column: the graph

cut without context constrains (yellow) and ground truth (red) are overlaid. The 2nd column: our proposed

Segmentation of tumor in lung 4D-CT data
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and 6(C). It is clear that σ1 = 0.5, σ2 = 0.1 and λ2 = 1 provided the better segmentation results

in term of DSC values. Meanwhile, it can be seen that the segmentation results seemed not

to be strongly affected by the setting of λ1. Hence, we set λ1 = λ2 = 1, σ1 = 0.5 and σ2 = 0.1

throughout all experiments. The value of parameter τ was set according to the default parame-

ter value given in [13].

IV.B. Robustness to initialization

The proposed algorithm was implemented in Matlab with a graphical user interface (GUI).

The sole user interaction involved was selecting object and background seeds on a slice in one

phase using a 2D brush tool. Different users were asked to perform the initializations indepen-

dently on the whole datasets. We tested the segmentation accuracy varies relative to different

initializations on the whole datasets. Fig 7 shows the examples of the three different initial

selections of two cases. Fig 8 shows the DSC and ASSD of the segmented results with respect

to the three different initializations. It can be seen that our proposed method achieved highly

stable results over those three initializations.

IV. C. Future work

Our algorithm was implemented in Matlab language on a standard PC with a 3.20 GHz Intel

Core i5-6500 CPU and 8 GB memory, running 64-bit Windows system. Current implementa-

tion required about 30 minutes for each dataset. We’re aware that the current code is not fully

optimized, it could be improved further in the future work.

method (deep blue) and ground truth (red) are overlaid. The 3rd column: The level set method (green) and

ground truth (red) are overlaid. The 4th column: the graph cut with star shape prior (pale blue) and ground truth

(red) are overlaid.

https://doi.org/10.1371/journal.pone.0178411.g004

Fig 5. Quantitative and comparative performance evaluation. 1: our proposed method, 2: the graph cut without context constrains, 3: the level

set method, 4: the graph cut with star shape prior.

https://doi.org/10.1371/journal.pone.0178411.g005
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Fig 6. Influence of parameters.

https://doi.org/10.1371/journal.pone.0178411.g006

Fig 7. Examples of different initializations. Red: object seeds. Blue: background seeds.

https://doi.org/10.1371/journal.pone.0178411.g007
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The initialization of the object and background seeds can actually be automated. Threshold

and clustering are usually proposed for automatic initialization, which further alleviates the

human burden in specifying the object and background seeds [30, 31].

Lung tumors usually adhere to nearby vessels, diaphragm, and liver, among others, because

of their invasive growth. Leaking problems are prone to happen when segmenting such a

tumor. However, the boundary surface of structures around the tumor can serve as valuable

Fig 8. Quantitative results for our method using different initializations.

https://doi.org/10.1371/journal.pone.0178411.g008
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prior information to help segmentation. Hence, we plan to obtain those boundary surfaces in

the future and make use of them to improve the segmentation results.

Moreover, we tend to apply machine-learning methods based on training datasets in the

future to find appropriate parameter settings although those parameters are empirically deter-

mined in this study.

In this study, we focused only on the lung 4D-CT tumor segmentation. It also may have

potential applications to other 4D medical images (e.g., 4D MRI and 4D ultrasound). Our

future study will focus on further improving the proposed method and evaluating the feasibil-

ity of applying our method to multimodality images.

V. Conclusion

Computer-aided segmentation techniques can greatly benefit target definition in cancer radia-

tion therapy. The proposed method addressed this problem by providing a graph cut-based

approach, which utilized the context information of the lung 4D-CT. Compared with previous

studies, our method offered an effective method of obtaining more accurate and robust seg-

mentation results. Our method can be especially useful for lung tumors characterized by weak

edges and low contrast with surrounding normal structures. As long as doctors select object

and background seeds in the image of one phase rather than in each phase, tumors in each

phase will be simultaneously segmented, which has the potential to greatly decrease the time

for clinicians to perform target definition.
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