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Abstract 

Background:  Ras is a key cellular signaling hub that controls numerous cell fates via multiple downstream effector 
pathways. While pathways downstream of effectors such as Raf, PI3K and RalGDS are extensively described in the 
literature, how other effectors signal downstream of Ras is often still enigmatic.

Methods:  A comprehensive and unbiased Ras-effector network was reconstructed downstream of 43 effector pro-
teins (converging onto 12 effector classes) using public pathway and protein–protein interaction (PPI) databases. The 
output is an oriented graph of pairwise interactions defining a 3-layer signaling network downstream of Ras. The 2290 
proteins comprising the network were studied for their implication in signaling crosstalk and feedbacks, their subcel-
lular localizations, and their cellular functions.

Results:  The final Ras-effector network consists of 2290 proteins that are connected via 19,080 binary PPIs, increas-
ingly distributed across the downstream layers, with 441 PPIs in layer 1, 1660 in layer 2, and 16,979 in layer 3. We 
identified a high level of crosstalk among proteins of the 12 effector classes. A class-specific Ras sub-network was 
generated in CellDesigner (.xml file) and a functional enrichment analysis thereof shows that 58% of the processes 
have previously been associated to a respective effector pathway, with the remaining providing insights into novel 
and unexplored functions of specific effector pathways.

Conclusions:  Our large-scale and cell general Ras-effector network is a crucial steppingstone towards defining the 
network boundaries. It constitutes a ‘reference interactome’ and can be contextualized for specific conditions, e.g. 
different cell types or biopsy material obtained from cancer patients. Further, it can serve as a basis for elucidating 
systems properties, such as input–output relationships, crosstalk, and pathway redundancy.
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Background
Since their discovery in the 1960s, the three oncopro-
teins of the Ras family—HRAS, NRAS, and KRAS—have 
been in the spotlight of cancer research [1]. Many dif-
ferent tumors harbor mutations in these proteins that 
play a role in cancer initiation and progression, includ-
ing altered metabolism, circumvention of the immune 
system repression, and metastasis [2]. Ras proteins can 
coordinate and dispatch various cellular processes of 
the signal transduction machinery, functioning as sign-
aling hubs [3]. Their centrality has important repercus-
sions on the network’s plasticity, and whenever they get 

deregulated, the result is a differential rewiring of the 
interactome [4, 5].

The first proteins interacting with Ras, known as Ras 
effectors, modulate the downstream signaling events 
through signaling cascades. Effectors are characterized 
by the presence of a Ras binding domain (RBD, a ubiq-
uitin-like domain ββαββαβ) that permits the Ras-effector 
interaction. The number of Ras effectors has been grow-
ing considerably in the last decades [6–8], and our pre-
vious work has identified 56 RBD-containing proteins 
as potential Ras effectors and classified them accord-
ing to their contribution to the assembly of Ras-effector 
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complexes in the colon context [9] and in 29 human tis-
sues [10]. In particular, our in silico computational simu-
lations highlighted 41 effectors, of the abovementioned 
56, that are predicted to be key players for Ras signal-
ing for a specific context, stimulation, or condition [10]. 
More research, however, is needed to experimentally 
validate those predictions and confirm if such physical 
interactions biochemically occur.

Ras binds to its effector proteins in a mutually exclu-
sive fashion and previous studies demonstrated that 
(context-specific) differential protein expression can 
drive differential pathway activation and functional 
diversity [11]. Moreover, tissue-specific concentrations 
and context-specific apparent binding affinities can alter 
the specific Ras-effector complex formations [9], making 
these parameters critical to establish the outcome of the 
competition for binding to Ras. As a consequence, effec-
tor recruitment to the plasma membrane (due e.g. to a 
stimulus) is an additional factor to consider. This typically 
endorses a selective increase of the effector local concen-
tration, thus an enhanced interaction with Ras, which is 
especially ‘advantageous’ for those effectors that gener-
ally have a weak affinity for Ras [10].

The mechanism of interaction competition allows 
for response specificity through network rewiring, that 
drives the signal transduction outcome. This process 
requires active decision making, checkpoints authori-
zation and information processing, which is exerted via 
positive/negative feedback regulation, protein scaffold-
ing, crosstalk with other signaling molecules, etc. Despite 
being the foundational unit for biological systems analy-
sis, a signaling pathway is hard to delimit—both in terms 
of its extent and pathway members,—as a result, its defi-
nition is far from being set and standard [12]. The chal-
lenges around pathway boundary and constraints echo 
the betimes contradictory knowledge deposited in differ-
ent protein–protein interaction (PPI) databases [13]. This 
adds up to the ambiguity derived from the nomenclature 
that is not yet univocal, and the heterogeneity of path-
way data, annotation and database features that all can 
depend on the scope for which each database was com-
piled and developed for [14].

Pathway reconstruction for physiologically-relevant 
analyses (e.g. [15, 16]) requires the inclusion of a suf-
ficient number of molecular species and reactions, that 
must be neither too small nor too large, to the detriment 
of limited model interpretability and use, or inadequate 
compound interconnectivity. The identification of the 
proteins participating in the signaling network down-
stream a hub such as Ras is definitely a major challenge. 
The most well-studied Ras-mediated pathways are the 
mitogen-activated protein kinase (MAPK) and the phos-
phatidylinositol 3-kinase (PI3K) cascades, triggered by 

the effectors RAF and PI3 kinases, respectively. Beside 
these two effectors, at least 10 others have been detected 
[6]. However, the limited knowledge about less-studied 
effectors has implications for both drug development and 
therapeutic target discovery. A recent study experimen-
tally recognized some new efficient Ras-binding proteins 
(including RIN1, RIN2, RADIL, and RALGDS-family 
proteins), by performing oncoRas-dependent PPI sub-
networks and genetic interactions mapping, in different 
cell lines [17]. These findings support the need to bring 
‘alternative’ Ras effectors in the spotlight beyond the 
classic kinases RAF and PI3K, whose poorly-understood 
functions may prove to be crucial in particular contexts, 
microenvironments or diseases [4, 7].

In this study, we generated a large-scale Ras-effector 
signaling network, characterized by a wide-spread cross-
talk downstream the different Ras effector pathways. Our 
(cell general) network represents a ‘reference interac-
tome’ that can be refined and contextualized for specific 
tissues and cell types. Here, we tested it in the intestine 
and colorectal cancer context, focusing on Caco2-derived 
data issued from published BioID (proximity-dependent 
biotinylation identification) [18] and in-house AP-MS 
(affinity purification coupled with mass spectrometry) 
measurements.

Materials and methods
High‑confidence Ras effectors and associated pathways
Previously we described 56 effectors that contain a 
structural domain (RBD, i.e. Ras binding domain) with 
the potential ability to bind to Ras oncoproteins [9]. Of 
those, 43 were predicted to be high-confidence effec-
tors, because they (i) either have a high affinity in com-
plex with RasGTP via their RBD or (ii) are predicted to 
be in significant amount in complex with RasGTP using 
a model that includes both, binding of the RBD to Ras 
(with generally weak binding affinities) and binding of 
additional domains in effectors to the plasma membrane 
(recruitment of proteins to the plasma membrane via 
two domains is strongly enhancing the complex forma-
tion, which is referred to as “piggy-back mechanism” by 
Kholodenko et al. [19]; comprising the effectors from the 
‘efficient binder’ groups 1 and 2 in [10]). This network is 
centered on the oncoproteins HRAS, KRAS, and NRAS 
and not on other Ras family members like MRAS, RAP1, 
etc., although some of the effectors considered in this 
work have also been shown to bind to other Ras family 
members—sometimes even with higher binding affinity 
[20, 21].

The set of 43 effectors considered in this study (grouped 
into 12 associated functional pathway classes) are the fol-
lowing—(1) RAF-MEK-ERK signaling, with the effec-
tors ARAF, BRAF, and RAF1; (2) PI3K-AKT signaling, 



Page 4 of 19Catozzi et al. Cell Communication and Signaling           (2022) 20:24 

with the effectors PIK3CA, PIK3CB, PIK3CD, PIK3CG, 
PIK3C2B, and PIK3C2A; (3) RalGEF-Ral-PLD-Sec5 sign-
aling, with the effectors RALGDS, RGL1, and RGL2; 
(4) Afadin-Actin-cadherin signaling, with the effector 
AFDN; (5) PLCε-DAG-IP3 signaling, with the effector 
PLCE1; (6) RIN-ABL-RAB signaling, with the effectors 
RIN1, RIN2, RIN3, and SNX27; (7) RhoGEF-RAC-PAK 
signaling, with the effectors TIAM1, ARHGAP20, 
ARAP1, ARAP2, and DGKQ; (8) RASSF-MST-Hippo 
signaling, with the effectors RASSF1, RASSF2, RASSF3, 
RASSF4, RASSF5, RASSF6, RASSF7, and RASSF8; (9) 
RapGEF-RAP signaling, with the effectors RAPGEF2, 
RAPGEF3, RAPGEF4, RAPGEF5, RAPGEF6, APBB1IP, 
and RAPH1; (10) Myosin-Actin signaling, with the effec-
tor MYO9B; (11) RGS-GPCR signaling, with the effector 
RGS12; and (12) RTK-Grb signaling, with the effectors 
GRB7, GRB10, and GRB14.

Pathway and PPI databases
To reconstruct pathways and direct binary PPIs down-
stream of the 43 effectors, five different resources were 
used. The PPIs for Homo sapiens were retrieved from 
three pathway databases. We downloaded the complete 
dataset of interactions from SignaLink 2.0 [22] (http://​
signa​link.​org); thereof we extracted the PPIs related to 
our 43 Ras effectors and selected the interactions labeled 
either as “Directed” or “Predicted as directed”, in order 
to be strict—but comprehensive—about the set of first 
interactors of the Ras effectors. Hence, those consti-
tuted the layer 1 (L1) interactions between a source (L0 
protein) and a target (L1 protein). To construct layers 
L2 and L3 PPIs, we iterated the database mining from 
the target proteins of the previous layer, then taken as 
sources for the following interaction (Additional file  1: 
Table S1). Finally, we obtained a collection of PPIs down-
stream Ras distributed across three layers. Moreover, 
we complemented our signaling network with knowl-
edge from other pathway databases such as KEGG [23] 
and WikiPathways [24] whose graphical representations 
of the “Ras signaling pathway (H. sapiens)” were trans-
formed into a list of binary (directed) interactions (like 
in SignaLink), to complete the former PPIs table. Still, 
for 28 effectors (APBB1IP, ARAP1, ARAP2, ARHGAP20, 
DGKQ, MYO9B, PIK3C2A, PIK3CD, PLCE1, RALGDS, 
RAPGEF2, RAPGEF3, RAPGEF4, RAPGEF6, RAPH1, 
RASSF2, RASSF3, RASSF4, RASSF5, RASSF6, RASSF7, 
RASSF8, RGL2, RGS12, RIN2, RIN3, SNX27, TIAM1) 
no pathway information was available from the databases 
mentioned above. Therefore, we decided to include undi-
rected interactions retrieved from STRING [20] (https://​
string-​db.​org/; by setting “Experiments” and “Databases” 
for the active interaction sources, “Medium confidence 
of 0.5” for the minimum required interaction score, and 

“All interactors of the 1st shell”) and from the HuRI data-
base [21] (http://​www.​inter​actome-​atlas.​org). Eventually, 
only 2 effectors (ARHGAP20 and ARAP2) were left with 
no known interactors, according to any of the above-
mentioned databases (SignaLink, KEGG, WikiPathways, 
STRING, HuRI). The final interaction data is presented 
as an Excel file of binary PPIs, identifying a source pro-
tein and a target protein, complemented with annota-
tions about both the proteins and their interaction (e.g. 
protein’s main subcellular localization, interaction type, 
etc.—see details further down in Materials and Meth-
ods). All the data integration and treatment were per-
formed with the Python library pandas.

Network boundary
The upper network boundary is set to include all effec-
tor proteins. This boundary follows the main purpose 
of the Ras-network, which is to assist in the analysis 
of experimental data obtained from AP-MS or BioID 
data on the level of Ras-effector interactions with Ras 
as bait.

The proteins identified in such experiments partici-
pate in larger complexes mediated by Ras. As Ras inter-
acts with effectors in a mutually exclusive fashion, our 
assumption is that different Ras-mediated subcomplexes 
exist. These subcomplexes are expected to impact sign-
aling pathways and cellular phenotypes. Hence, there is 
a strong focus on including a maximum of effector pro-
teins as part of the upper boundary. The lower network 
boundary is set to include three layers. First, including 
three layers enables the inclusion of famous signaling 
cascades like RAF/MEK/ERK, PI3K/AKT/mTOR, but 
also RASSF10/NPM/RNF2 [25], p38MAPK-p53-sur-
vivin [26]. Second, already after three layers, the network 
comprises more than 10% of all human proteins (around 
20  k). Including more downstream layers would have 
massively increased the number of network proteins. 
Additionally, this would shift the focus away from Ras 
and effectors and scatter the analysis to almost all cellular 
processes coordinated by Ras.

Official gene symbols
In order to avoid duplicates in the combined dataset, the 
protein nomenclature (possibly inconsistent from one 
database to the other) was standardized against a refer-
ence set of 19,300 protein-coding genes [27]. Only three 
gene names (PIP3, IP3, and CCNYL3) were missing from 
the reference collection [27] and have been discarded 
from our PPI dataset, together with the related subse-
quent interactions (i.e. CCNYL3 interacting with PPARD, 
CUL1, NCOA1).

http://signalink.org
http://signalink.org
https://string-db.org/
https://string-db.org/
http://www.interactome-atlas.org
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Global expression levels of network proteins in human 
tissues
The Human Protein Atlas tissue database, which contains 
transcript and protein expression data [28] (https://​www.​
prote​inatl​as.​org/​human​prote​ome/​tissue) across all major 
organs and tissue types in the human body, was used to 
assign each network protein to a tissue expression class 
(“Not detected”, “Detected in single”, “Detected in some”, 
“Detected in many”, and “Detected in all”). This was done 
by downloading protein names provided in the pie chart 
(panel B) following this link https://​www.​prote​inatl​as.​
org/​human​prote​ome/​tissue/​tissue+​speci​fic, by clicking 
on the respective area of the pie.

Gene ontologies and subcellular localization
The SysGO database was used to obtain gene-specific 
ontologies and subcellular localization information [27]. 
The SysGO database contains (main) functional annota-
tion for each protein-coding gene (321 classes; “SysGO—
set 1”), of which 132 are related to signaling functions 
[27]. For visualization purposes, some classes are merged, 
resulting in a total of 58 groups (“SysGO—set 2”) [27]. 
This can be further reduced to 15 groups (“SysGO—set 
3”) [27] that correspond to the classes of “Signaling”, 
“Metabolism”, “Protein translation, folding, modification 
and degradation”, “Transcription”, “Unknown”, “Cytoskel-
eton”, “Organelles”, “Other”, “Immune system and Inflam-
mation”, “Chromatin organization and DNA repair”, 
“Neuronal System, synapses, channels”, “ECM organiza-
tion”, “Cell junction and adhesion”, “Developmental”, and 
“DNA Replication”. Further, SysGO contains 47 subcel-
lular localization groups (“SysGO localization—set 1”). 
For visualization purposes, these groups can be further 
merged into 19 classes, namely “Ribosomes”, “Cytosol”, 
“Nucleus” (merging of Nucleus, Nuclear envelope, Nucle-
oplasm, Chromatin, Nucleoli fibrillar center, Nuclear 
speckles, Nuclear bodies, and Necleoli), “Cell mem-
brane”, “Microfilaments” (merging of Microfilaments 
(Actin), Intermediate filaments (Keratin, filaments), and 
Microtubules), “Mitochondria”, “Endoplasmic reticulum”, 
“Extracellular”, “Cell-ECM junctions”, “Golgi apparatus”, 
“Proteasome”, “Other vesicles” (merging of Melanosomes, 
Endosomes, Outer segments, and Lipid droplets), “Cilia, 
centrosome” (merging of Cilia, Centrosome, Microtu-
bule organising centre, Midbody, and Mitotic spindle), 
“Cell–cell-junctions”, “Lysosomes”, “Peroxisomes”, “Focal 
adhesion sites”, “Cell cortex”, and “UNKNOWN”. The GO 
(gene ontology) functional enrichment was performed 
by running the PANTHER (protein annotation through 
evolutionary relationship; [29]) Overrepresentation Test 
(Released 20,210,224) for biological processes, by setting 
“GO biological process complete” as the annotation data 
set, “Homo Sapiens” as the reference list (20,595 genes), 

and by using a Fisher’s exact test at 95% level of confi-
dence and false discovery rate correction (http://​geneo​
ntolo​gy.​org/). Following an analogous procedure, but 
with the annotation “PANTHER Pathways”, we obtained 
pathway enrichment scores for the network proteins 
downstream the Ras effector classes.

Feedback loops
Our binary PPIs data is organized as an oriented graph 
(as defined in [30]) displaying directed interactions 
between pairs of proteins, clearly identifying the source 
and the target of every interaction. This formalism 
allowed us to determine the molecular feedbacks within 
our reconstructed network, by verifying the presence 
of a certain protein in the following downstream lay-
ers. In practice, we considered the signaling pathways 
downstream each L0 (Ras effector) and L1 protein, and 
searched the whole network to check if any downstream 
protein retroactively points to the given target (i.e. either 
L0 or L1 proteins), thus defining a feedback loop. Impor-
tantly, a feedback was defined as a backward regulation 
acting on a protein located at least 2 layers upstream 
(from L2 and L3 back to L0 proteins, and from L3 back to 
L1 proteins). This means that we excluded L1 to L0, or L2 
to L1, interactions as these are not necessarily regulatory 
feedbacks, but may be e.g. scaffolding bounds or mem-
bers of larger complexes.

Literature analysis of SyGO processes linked 
to Ras‑effectors
In order to find publications to validate the predicted 
SysGO process enrichments for the different effec-
tor classes, we used the search function of the PubMed 
database (https://​pubmed.​ncbi.​nlm.​nih.​gov/). For each 
search, the name of the effector together with the process 
(sheet 1 of Additional file 10: Table S7) was used, and if 
publications were found, the content of the publication 
was reviewed and the pubmedID (PMID) was inserted 
(sheet 3 of Additional file 10: Table S7). If no publication 
was found, alternative protein names of effectors were 
inspected.

Culturing of Caco‑2 cells
Caco-2 cells (ATCC©HTB-37) were cultured in Dul-
becco’s Modified Eagle’s Medium (Gibco, ThermoFisher 
Scientific, 21969-035) supplemented with 2  mM L-glu-
tamine (Gibco, ThermoFisher Scientific, 25030-024), 
10% (v/v) Foetal Bovine Serum (Gibco, ThermoFisher 
Scientific), and 1% Penicillin/streptomycin (Gibco, Ther-
moFisher Scientific), here called normal growth medium.

https://www.proteinatlas.org/humanproteome/tissue
https://www.proteinatlas.org/humanproteome/tissue
https://www.proteinatlas.org/humanproteome/tissue/tissue+specific
https://www.proteinatlas.org/humanproteome/tissue/tissue+specific
http://geneontology.org/
http://geneontology.org/
https://pubmed.ncbi.nlm.nih.gov/
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Plasmids for exogenous expression of KRAS wildtype 
and mutant proteins
The four plasmids used in this work are based on the 
same backbone; pMDS_TetOn3G kozak-flag-GOI and 
differ only by their gene of interest (GOI) which are 
KRAS wildtype (WT), and KRAS mutant with the G12D, 
G12V, or G12C mutation (see also [31]). Plasmids were 
giftd by Hannah Benisty/ Luis Serrano (CRG Barcelona).

Transfection, cell lysis and protein concentration
Caco-2 cells were seeded in 10-cm dishes in culture 
growth medium at day 0 and grown to 70–80% of con-
fluency. Cells were transfected with 15  µg of plasmids 
(containing KRAS WT or KRAS G12D or KRAS G12V 
or KRAS G12C as gene of interest) using Lipofectamine 
2000 (Invitrogen, 11668-019) according to the manu-
facturer’s instructions in OPTI-MEM reduced serum 
medium (Gibco, ThermoFisher Scientific, 31985-062) for 
6 h. The medium was replaced by culture growth medium 
and for the KRAS WT supplemented with 50  ng/ml of 
doxycycline (Sigma-Aldrich). After 24  h cells were har-
vested, washed with phosphate buffer saline (PBS), 
and resuspended in 300  µl of lysis buffer [50  mM TRIS 
HCL pH 7.5, 1 mM EDTA, 1 mM EGTA, 150 mM NaCl, 
2 mM MgCl2, 1 mM DTT, and 1% IGEPAL/NP-40 sup-
plemented with PhosSTOP (Roche) and cOmplete, Mini 
protease inhibitor cocktail (Roche)]. Cells were lysed 
for 30 min on rotator at 4 °C and after centrifugation at 
14000 rpm for 30 min at 4 °C, the supernatants were col-
lected. Protein concentration was determined using the 
Pierce 660-nm Protein Assay (ThermoFisher Scientific).

Affinity purification experiments in Caco‑2 cells
Cell lysate from the Caco-2 cells transfected with the 
KRAS WT or MUTANT plasmids were precipitated 
from 800  µg of cell lysate using anti-Flag-M2 magnetic 
beads (Sigma, M8823) so that the immunoprecipitation 
protocol of the KingFisher DuoPrime purification sys-
tem (ThermoFisher) can be used. Beads were washed in 
TBS (according to the manufacturer’s instructions) for 
5 min, twice, at low speed. Then beads were collected by 
the KingFisher magnet and discarded into the samples 
wells and mixed at slow speed for 1 h. Then, beads-anti-
body-samples were collected and went through differ-
ent wash salted solutions [Wash 1 and 2: RIPA buffer 
with 150 mM NaCl; Wash 3: RIPA buffer with 500 mM 
NaCl], mixed at low speed for 30  s. Then, beads-anti-
body-samples were eluted in 50 µl of glycine [0.1 M, pH 
3.0] for 5 min. Immediately after, samples were neutral-
ized with 20 µl of TRIS BASE (1 M, pH 8.0). To prepare 
for MS, samples were homogenized and denatured in 
urea (final concentration, 4 M), ammonium bicarbonate 
(100 mM), and calcium chloride (100 mM), then reduced 

in dithiothreitol (DTT) (final concentration, 1  mM) for 
15  min and alkalinized in iodoacetamide (IAA) (3  mM) 
in the dark for 15 min. The next steps were carried out 
using the KingFisher; magnetic hydrophobic and hydro-
philic beads (Sera-Mag SpeedBead Carboxylate-Modified 
Magnetic Particles) were added to the samples and mixed 
at low speed for 10  min, then beads-proteins were col-
lected and washed in 80% of ethanol and released into 
the trypsin well (Promega, V5111) at a 50:1 (w/w) pro-
tein to protease ratio and mixed at low speed for 4 h of 
digestions at 37 °C. Beads were discarded and the result-
ing peptides were desalted, cleaned, and concentrated on 
C18Tips (ThermoFisher Scientific, 87784) [32] according 
to the manufacturer’s instructions, then resuspended in 
0.15% trifluoroacetic acid and 2.5% acetic acid in mass 
spectrometry grade water.

Mass spectrometry analysis
After trypsin digestion the samples were cleaned using 
C18 HyperSep SpinTips (Thermo Scientific), Sam-
ples were run on a Bruker timsTof Pro mass spectrom-
eter (Bruker Daltonik) connected to a Bruker nanoElute 
nano-lc chromatography system (Bruker Daltonik). Tryp-
tic peptides were resuspended in water with 0.1% (v/v) 
trifluoroacetic acid 0.1%. Sample was loaded on to a C18 
trap (stainless steel trap cartridge, C18, 1 mm i.d. × 5 mm, 
(Part 160434, Thermo Fisher Scientific) at a approx. flow 
rate of 10ul/min with 100% buffer A (LC–MS grade water 
99.9% and LC–MS grade acetonitrile with 0.1% (v/v) 
trifluoroacetic acid) Fisher Scientific (Thermo Scien-
tific). Each sample was loaded onto a C18 analytical col-
umn Aurora UHPLC column (25 cm × 75 μm ID, C18, 
1.6 μm) (Ionopticks). Separation was done in a linear gra-
dient from 0 to 23 min buffer B increases from 5 to 32% 
at a flow rate of 300 nl/min, from 23 to 24 min buffer B 
increases from 32 to 95%, from 24 to 30 min the column 
is washed with 95% buffer B. The mass spectrometer, 
Bruker timsTof Pro was operated in positive ion mode 
with a capillary voltage of 1500 V, dry gas flow of 3 l/min 
and a dry temperature of 180  °C. All data was acquired 
with the instrument operating in trapped ion mobility 
spectrometry (TIMS) mode. Trapped ions were selected 
for ms/ms using parallel accumulation serial fragmenta-
tion (PASEF). A scan range of (300–1500 m/z) was per-
formed at a rate of 10 PASEF MS/MS frames to 1 MS 
scan with a cycle time of 1.15 s.

The raw data was searched against the Homo sapi-
ens subset of the Uniprot Swissprot database (reviewed, 
release-2020_02/) using the search engine Maxquant 
(version 1.6.17.0) using default parameters for trapped 
ion mobility spectra data dependent acquisition (TIMS 
DDA). Default search engine Maxquant were used with 
the following criteria: enzyme was set to trypsin/P with 
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up to 2 missed cleavages. Carbamidomethylation (C) and 
oxidation (M)/acetylation (protein N-term) were selected 
as a fixed and variable modifications, respectively. Label-
free quantification (LFQ) analysis was performed by 
employing the MaxLFQ algorithm as described (Cox 
et  al., 2014). Peptide FDR 1%; Protein FDR 1%. “Label‐
Free Quantitation; LFQ”, “iBAQ”, and “Match Between 
Run” settings were selected. No additional normalization 
steps were performed, as the resulting LFQ intensities are 
normalized by the MaxLFQ procedure [33]. The average 
number of peptides per protein was 8.6 and the average 
number of unique peptides per protein was 7.2. Protein 
IDs were matched to a unique gene name based on the 
SysGO database [27]. Six among the 43 effectors of the 
Ras-network were identified in the KRAS WT, G12D and 
G12V datasets (AFDN, ARAF, BRAF, RAF1, RIN1, RIN2) 
and four effectors were identified in the KRAS G12C 
AP-MS samples (AFDN, ARAF, RAF1, RIN1). Proteins 
identified in at least one of the KRAS AP-MS experi-
ments (WT, G12D, G12V, G12C) were merged (1732 
proteins) and used for comparison with proteins in the 
Ras network (Venn diagram in Fig. 7a).

List of proteins identified by BioID in Caco‑2 cells
A published dataset by Kovalski et  al. [18] was used to 
obtain a list of proteins in complex with KRAS WT and 
KRAS G12D in Caco-2 cells. Data were obtained from 
Supplementary Table  S1 “Mass Spectrometry Peptide-
Spectrum Match Counts and SAINT Scores”, where all 
proteins with non-zero peptide intensities (based on col-
umns F and G) were included. Protein IDs were matched 
to a unique gene name based on the SysGO database 
[27]. Three among the 43 effectors of the Ras-network 
were identified in the KRAS WT dataset (AFDN, RAF1, 
RASSF8) and nine effectors were identified in the KRAS 
G12D AP-MS samples (AFDN, RAF1, BRAF, RASSF8, 
RIN1, PIK3CA, ARAF, RAPGEF6, RASSF5). Proteins 
identified in at least one of the KRAS AP-MS experi-
ments (WT, G12D) were merged (649 proteins) and used 
for comparison with proteins in the Ras network (Venn 
diagram in Fig. 7a).

Protein complex databases
The Bioplex database [34] (https://​biopl​ex.​hms.​harva​rd.​
edu/​index.​php) was used to obtain larger complexes of 
effectors obtained from multiple AP-MS experiments in 
HEK293 cells of individually flag-tagged Ras effectors. 
For 34 among the 43 effectors of the Ras network, AP-MS 
data were available in the BioPlex database (ARAF, 
BRAF, RAF1, AFDN, PIK3CA, PIK3CB, PIK3C2B, RIN1, 
RASSF1, GRB10, GRB14, SNX27, RASSF7, PIK3CD, 
PIK3C2A, PLCE1, RIN2, RIN3, TIAM1, ARAP1, 
DGKQ, RASSF2, RASSF3, RASSF6, RASSF8, RAPGEF2, 

RAPGEF4, RAPGEF6, APBB1IP, RAPH1, MYO9B, 
RGS12, RAPGEF5, RGL1). Protein IDs were matched to 
a unique gene name based on the SysGO database [27]. 
Proteins identified in at least one of the effector AP-MS 
experiments were merged (463 proteins) and used for 
comparison with proteins in the Ras network (Venn dia-
gram in Fig. 7).

CellDesigner software
CellDesigner 4.4.2 (http://​www.​celld​esign​er.​org/) [35] 
was used to visualize the subnetwork of the 274 class-spe-
cific proteins and their interactors. The biochemical reac-
tions have been distinguished between directed (single 
arrow) and undirected (double arrow), the proteins have 
been colored according to their effector class of belong-
ing, and the various compartments permit to organize 
the proteins by their main subcellular localization.

Results
Reconstruction of a large‑scale binary and layered 
Ras‑effector signaling network
Ras proteins are pivotal to a large number of cellular 
processes, although the extent of Ras-mediated signal-
ing pathways is still poorly understood. The present Ras-
effector signaling network reconstruction challenges the 
widely known Ras-mediated MAPK and PI3K cascades, 
by integrating knowledge on direct interacting partners 
from various PPI databases. The output is an oriented 
graph of pairwise interactions defining a 3-layer signal-
ing network downstream 43 Ras effectors, which belong 
to 12 functional classes (Additional file 1: Table S1).

In order to comprehensively analyze the Ras signal-
ing network, we started from a set of 43 candidate Ras 
effectors (having a Ras binding domain) that are either 
well-established or predicted Ras binders [10] (see flow-
chart in the graphical abstract). From these, we built 
the downstream effector-mediated pathways, e.g., from 
RAF (Ras effector, i.e. layer 0 interactor) to MEK (layer 
1 interactor) to ERK (layer 2 interactor) to MYC (layer 3 
interactor), by searching for signaling molecules up to 3 
layers downstream. Evidence for such molecular inter-
actions was mainly retrieved from SignaLink [22] and 
KEGG Pathway/WikiPathways, and complemented with 
protein–protein interactions (PPIs) from STRING and 
HuRi (see Materials and methods). From SignaLink, we 
selected all the directed PPIs for H. sapiens, and then 
included any additional (directed) interaction from 
KEGG Pathway and WikiPathways (see Additional file 2: 
Figure S1). Yet, for 28 of the 43 effectors, this information 
is lacking. Therefore, we considered their first interact-
ing partners from STRING and HuRi, that are undirected 
binary interactions. Eventually, only 2 effectors remained 

https://bioplex.hms.harvard.edu/index.php
https://bioplex.hms.harvard.edu/index.php
http://www.celldesigner.org/
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(ARHGAP20 and ARAP2) whose direct interactors are 
unknown.

We collected a total of 19,080 binary PPIs, increas-
ingly distributed across the downstream layers: 441 PPIs 
in layer 1; 1660 in layer 2; and 16,979 in layer 3 (Fig.  1; 
flowchart in graphical abstract). In particular, this was 
obtained by first querying the Ras effectors for their 
direct interactors, defining the layer 1 (or L1) proteins of 
our signaling network. Those, in turn, have been used as a 
query to construct L2 proteins, selecting PPIs from Sign-
aLink as explained above and in the Materials and meth-
ods section. Similarly, we also obtained L3 proteins. The 
resulting 2290 network proteins are to a large fraction 
(90%) expressed in many or all human tissues according 
to the Human Protein Atlas [28]. Thus, our network is 
likely applicable to multiple cell types and tissues.

The importance of a protein in a PPI network is often 
related to the number of interactions it is involved in. 
These highly connected proteins are called ‘hubs’ [36], 
and they often play central roles in a network as altera-
tion in hub properties (e,g, mutations or abundance 
changes) have the potential to affect a large number 
of interacting partners. We calculated the number of 
interactions from the three layers of PPIs of the 2262 
Ras-related downstream proteins (Additional file  1: 
Table S1) and we counted the number of occurrences of 
each protein of the network (both as a source and as a 
target) to explore the concept of protein centrality (Addi-
tional file  2: Figure S2; Additional file  3: Table  S2). The 
Ras network centrality analysis allowed us to distinguish 
between hub and isolated proteins, based on the number 
of in-/outward interactions (in-/out-degree centrality; 
cf. Additional file 3: Table S2). Supplementary Figure S2 
delineates the distinctive feature of signaling hubs and 
non-hubs, by showing that the majority of the proteins 
are non-hubs (having just a few interacting partners), and 
inversely, that only a few are hub proteins (having lots of 
interactors). Using a cut-off of at least 10 interactions to 
define a hub protein, the majority of proteins (65%) are 
non-hubs (Additional file 3: Table S2). Thus, our network 
adopted a typical scale-free network topology (following 
a power law) [37].

With the aim of characterizing and validating the 
obtained pairwise interactions that compose our sign-
aling network, we also annotated each protein with its 
functional information and main subcellular localization, 

as per [27]. Furthermore, the 43 Ras effectors have been 
grouped into 12 classes to study the proteins downstream 
each class jointly. The resulting 2290 Ras-downstream 
proteins (including the effectors) were studied for their 
implication in the different classes (hence, for the sign-
aling crosstalk), their subcellular localization, and their 
function.

Crosstalk and feedback analysis
A total of 2290 signaling members have been identified 
(including the 43 Ras effectors), where most of them 
being shared among multiple signaling classes, and only 
274 being class specific (Additional file 2: Figure S3; Addi-
tional file 4: Table S3). In order to investigate the degree 
of interconnectivity of the various signaling pathways 
modulated by Ras, we looked at the shared members of 
our network as a measure of the molecular crosstalk. Fig-
ure  1 illustrates the amount of shared and non-shared 
(i.e. class-specific) proteins downstream each of the 12 
effector classes (L0) for every interaction layer (L1, L2, 
L3), as well as the number of interactions from one layer 
to the following (marked on the arrows). Remarkably, 
we observe a decrease in the amount of class-specific 
proteins with layer progression, indicative of crosstalk 
occurring especially downstream (layers 2 and 3). On 
the contrary, class specificity mostly takes action at the 
beginning (layer 1) of the signaling events. The number of 
downstream PPIs (normalized by the number of effectors 
by class) can vary widely across the classes, being high-
est in class 12 (RTK-Grb signaling), 1 (RAF-MEK-ERK 
signaling), and 11 (RGS-GPCR signaling), and lowest in 
class 3 (RalGEF-Ral-PLD-Sec5 signaling) and 5 (PLCε-
DAG-IP3 signaling) (Fig. 1).

To gain new insights on the extensive crosstalk of such 
a network (i.e. to identify pathways that are likely to 
interact and hence influence each other), we analyzed the 
whole set of downstream proteins and the role they play 
in multiple pathways. In particular, we calculated how 
many proteins are found downstream one or many effec-
tor classes, considering all the possible combinations for 
the 12 classes, i.e. by singletons, pairs, triplets, etc. (e.g. 
classes 1, 2, 3, …; (1,2), (1,3), (1,4), …; (1,2,3), (1,2,4), …; 
and so on). We obtained 96 distinct (non-null) subgroups 
of classes among which the whole protein set is distrib-
uted, hence representing the extent of the network’s 
crosstalk (Additional file  2: Figure S3a and Additional 

Fig. 1  Overview of proteins and interactions of the Ras signaling network. Illustration of the 12 classes of Ras effectors and their downstream 
targets, categorized according to their cross-class presence (class specific, shared within 6 classes at most, or 7 classes at least). The numbers on the 
arrows indicate the numbers of interactions from one layer to the following. The normalized sum of downstream PPIs expresses the total PPIs per 
class divided by the number of effectors

(See figure on next page.)
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Fig. 1  (See legend on previous page.)
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file  4: Table  S3). Additional file  2: Figure S3a illustrates 
how proteins populate each class-related subgroup. We 
observe that class 1 (RAF-MEK-ERK signaling) and 12 
(RTK-Grb signaling) are often coupled, which is expected 
as they share 98.6% of the proteins downstream (cf. Addi-
tional file  2: Figure S4). Further, most of the proteins 
appear to be implicated in the following six signaling 
classes: RAF-MEK-ERK signaling (class 1), PI3K-AKT- 
signaling (class 2), RhoGEF-RAC-PAK signaling (class 
7), RASSF-MST- Hippo signaling (class 8), RGS-GPCR 
signaling (class 11), and RTK-Grb signaling (class 12). 
This clearly illustrates the high level of crosstalk occur-
ring within the network modulated by Ras, that intercon-
nects and inter-regulates different signaling modules. 
Another aspect that is strictly related to such an exten-
sive crosstalk is the regulation carried through feedback 
mechanisms. Indeed, our dataset revealed that 35% of the 
Ras effectors (i.e. AFDN, ARAF, BRAF, GRB10, GRB14, 
GRB7, PIK3C2B, PIK3CA, PIK3CB, PIK3CD, PIK3CG, 
RAF1, RASSF1, RASSF5, RIN1) appear at different lay-
ers downstream (e.g. RIN1 is a L0, L2, and L3 protein), 
suggesting that some feedback control might be in place 
(Additional file 4: Table S3). We further delved into this 
direction and explored the feedback loops downstream 
every (L0) effector and L1 protein (206 loops) (Additional 
file 2: Figure S3b; see also Materials and methods). By lit-
erature search, we confirmed that 27% of the proposed 
feedback cases are already known (Additional file  5: 
Table  S4). Some well-documented examples include the 
RIN1-HRAS-loop (RIN1 is required for Rabex-5-depend-
ent Ras ubiquitination; [38]), RAF1-PAK1-loop (PAK 
phosphorylates and activates RAF1; [39]), GRB7-ERBB2-
loop (ERBB2 can phosphorylate and activate Grb7; [40]) 
and RASSF1-TP53-loop (TP53 binding to the RASSF1A 
promoter down-regulated RASSF1A expression; [41]).

Subcellular localization
Every protein of our signaling network has been anno-
tated with its main subcellular localization—e.g. cell 
membrane, nucleus, endoplasmic reticulum, etc. (Addi-
tional file 1: Table S1; Additional file 4: Table S3) follow-
ing the Systemic Gene Ontology (SysGO) compilation in 
[27]. This enabled us to review the quality of our recon-
structed network. On one hand, subcellular localization 
allowed us to assess whether a PPI occurs in “compatible” 
cell sections, according to our definition of PPI “locali-
zation compatibility” between pairs of compartments/
organelles, e.g. cytosol and Golgi apparatus, or cell–cell 
junctions and (micro)filaments of actin and keratin, etc. 
(Additional file  2: Figure S5a). By applying this defini-
tion, we find that ~ 76% of our PPIs result compatible 
(Additional file 4: Table S3). As proteins often have mul-
tiple subcellular localizations (e.g. ERK kinase can be in 

the cytosol but is also translocated to the nucleus when 
activated [42]), we expect that the compatibility of 76% 
represents a lower limit and is potentially higher. Never-
theless, having the (main) subcellular localization acces-
sible (Additional file 4: Table S3) is an additional benefit 
of our Ras network.

In a similar way, we used prior knowledge included by 
SignaLink under the column “Layer”. This latter com-
prises of six categories: “Interaction between pathway 
members” (e.g. scaffolds), “Directed protein–protein 
interaction” (e.g. binding of an adaptor protein to an 
active receptor), “Post-translational modification” (e.g. 
a kinase phosphorylating a substrate), “Transcriptional 
regulation” (e.g. a kinase phosphorylating a transcrip-
tion factor), “Pathway regulation”, “Interaction from 
external databases”), the first four thereof we assumed 
to describe the case of two proteins directly interacting 
with each other (Additional file  2: Figure S5b). Notably, 
according to this second definition, based on the kind of 
interaction, as specified by SignaLink, we obtained ~ 80% 
of PPI compatibility, which is comparable to the portion 
attained with our “localization compatibility”. To note 
that the two compatibility definitions do not fully over-
lap, although they hold true for a comparable number of 
PPIs (20,767 localization-compatible interactions versus 
21,838 layer-compatible interactions) and are in agree-
ment in (2 + 57 =) 59% of the cases (Additional file 2: Fig-
ure S5c). Therefore, they represent two independent tools 
for the validation of our Ras signaling network, whose 
similar conclusions foster reliability in our approach.

Furthermore, we investigated the subcellular locali-
zation of all the proteins by layer (L1-2–3) in order to 
evaluate how ‘directional’ the downstream signal propa-
gation is. In particular, we analyzed the relation between 
the effector interactors’ layer and localization. The 
results displayed in Fig. 2a confirm that, in the extracel-
lular environment, there is a majority of L1 proteins, 
while in the cytosol, we observe mostly L2 proteins, and 
in the nucleus, primarily L3 proteins. However, at the 
cell membrane, the number of L1 proteins is especially 
exceeded by L2 proteins. This reinforces our assertion 
that feedback mechanisms are seemingly not rare at the 
first stages of the signaling events (involving Ras effectors 
themselves), and additionally we can reasonably assume 
that such feedbacks largely loop back to the membrane, 
hence explaining the L1-L2 numbers. Further, we exam-
ined the subcellular localization of our network proteins 
broken down by protein function based on 15 biologi-
cal processes of SysGO [27] (Fig.  2b). We observe that 
the network proteins are mainly localized in the nucleus 
(with signaling and transcription functions), the cyto-
sol (mainly signaling functions) and the cell membrane 
(mainly signaling functions). Other notable subcellular 
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localizations are: extracellular environment (mainly sign-
aling functions), microtubules (mainly cytoskeleton func-
tions), and cell–cell junctions (mainly cell junction & 
adhesion functions).

Functional analysis of network proteins
The SysGO database [27] was used to characterize func-
tional enrichments among the proteins downstream 
of the 43 effectors and 12 effector classes. To account 

Fig. 2  Analysis of the subcellular localization of proteins in the Ras signaling network. a Spatial subcellular localization of the downstream proteins 
by layer for the whole set of downstream proteins. b Analysis of the subcellular localization by protein function (SysGO Process (3))
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for protein share across the different classes and avoid 
over-representation due to cross-signaling, we normal-
ized each protein by the number of classes it is involved 
into (e.g. AAAS participates to class 1 and 12, hence is 
assumed to be equally distributed between the two for 
an amount of 0.5; Additional file 6: Table S5). The func-
tional analysis of such normalized proteins has been per-
formed according to 15 SysGO (level 3) processes such 
as transcription, metabolism, signaling, etc.. Notably, we 
observe that the Ras-related network is highly specialized 
in signaling processes, as those constitute the 30–60% of 
the whole functional classification. We thus performed 
an enrichment analysis against a reference set of 19,300 
proteins that have been previously characterized, espe-
cially by their function and subcellular localization, in 
[27]. Figure  3 depicts the functional enrichment bro-
ken down by class, in comparison with the reference set 
(rounding was applied to deal with integer values; Addi-
tional file 6: Table S5). In particular, we show evidence for 
nearly all effector classes to be significantly enriched in 

signaling-associated functions and depleted in metabolic 
processes (Fig.  3). Moreover, class 3 (RalGEF-Ral-PLD-
Sec5 signaling) function turned out to be highly special-
ized towards organelles and extracellular matrix (ECM) 
organization, while class 5 (PLCε-DAG-IP3 signaling) is 
rather involved in ECM organization and protein transla-
tion, folding, modification and degradation (Fig. 3).

Furthermore, we performed an enrichment analysis 
of the Ras-downstream pathways (by class), using PAN-
THER [43] (Additional file  7: Table  S6). Figure  4 com-
pares the fold enrichment for the different pathways 
and classes (with classes ordered by PCA similarity; see 
Additional file  2: Figure S6). Interestingly, RAF-MEK-
ERK signaling (class 1), RTK-Grb signaling (class 12), 
RASSF-MST-Hippo signaling (class 8), PI3K-AKT sign-
aling (class 2), RhoGEF-RAC-PAK signaling (class 7), 
and RGS-GPCR signaling (class 11) cover many different 
pathways; while the remaining classes are associated to 
more specific pathways, especially PLCe-DAG-IP3  sign-
aling (class 5) and RalGEF-Ral-PLD-Sec5 signaling (class 

Fig. 3  Functional analysis of the Ras signaling network according to 15 cellular processes. Functional enrichment with respect to a reference set of 
19,300 proteins. The ‘*’ symbols indicate statistical significance at 0.05 of the respective Fisher’s exact test. The protein percentages were obtained 
for each class by summing up the proteins after dividing by the number of effector classes each protein is involved in and normalizing by the 
class-specific sum, as explained in the main text
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3). As expected, class 1 (RAF-MEK-ERK signaling) and 
12 (RTK-Grb signaling), that share 98.6% of the proteins 
downstream (Additional file  2: Figure S4)—as already 
highlighted by the amount of proteins shared across 
classes (Additional file  2: Figure S3)—have a very close 
profile.

Class‑specific subnetwork and insights into class‑specific 
functions
With the aim of investigating class specificity, we 
undertook two approaches to characterize each par-
ticular effector class. The first approach delves into the 
processes related to the non-shared (class-specific) pro-
teins of our Ras network, and the second one into the 
processes enriched in exclusively one effector class. We 
considered the subnetwork of the 274 class-specific pro-
teins and examined them according to their functional 

annotation (Fig. 5). In particular, we observe that overall 
signaling-related activities dominate. This is also true for 
each effector class considered independently, except for 
RAF-MEK-ERK signaling (class 1) being more implied 
in metabolic activities, the RhoGEF-RAC-PAK signal-
ing (class 7) involved in cytoskeleton reorganization, and 
Myosin-Actin signaling (class 10) having a major role 
in protein lifecycle, transcription, and cell junction and 
adhesion. Interestingly to note, none of our class-specific 
proteins is specifically involved in DNA replication. A 
visual representation of such a subnetwork (created with 
CellDesigner) is available as both xml file and pdf file 
(Additional file 8: Network S1; Additional file 9: Network 
S2). It displays the class-specific proteins (color coded 
by effector class) and their interactors within a compart-
mentalized virtual cell environment.

Fig. 4  Pathway analysis by class. The threshold for enrichment is set at twofold. The 12 effector classes are ordered according to the clustering 
outcome of a principal component analysis (Additional file 2: Figure S6)
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Following our second approach, we performed a com-
plete GO biological process analysis, based on PANTHER 
overrepresentation test, to examine the enriched pro-
cesses that characterize uniquely one class. By matching 
PANTHER GO terms with SysGO Process classification 
(set 1 and 3 [27]), we could assign those to the following 
macro-categories: cell junction and adhesion, chromatin 
organization, cytoskeleton, development, extracellular 
matrix organization, immune system and inflammation, 
metabolism, neuronal system, organelles, protein lifecy-
cle, signaling, transcription, and other processes (Addi-
tional file  10: Table  S7). To note that the PANTHER to 
SysGO Process (1) mapping gives some duplicate entries, 
in which cases the fold enrichments were averaged.

Figure  6 represents the class-specific enriched pro-
cesses (fold change > 2) and provides a key to under-
standing how e.g., the diverse signaling functions, can 
be differentially dispatched throughout the 12 effector 
classes, each one being specialized in a different set of 
processes. Furthermore, for such a class-specific sub-
network, we observed a differential process enrichment 
that is especially remarkable for the SysGO Processes 
(1) relating to signaling and metabolic activities (Addi-
tional file 10: Table S7 and Additional file 2: Figure S7), 
which is in agreement with the enrichment analysis on 
the whole dataset (Fig.  3) indicating signaling and met-
abolic functions as the most significantly different from 
the reference dataset. Importantly, 58% of the class-
process relations that we show here, have been previ-
ously reported in the literature (cf. dots in Fig. 6 and see 

Additional file  2: Figure S8). Such literature reports are 
detailed in Additional file 10: Table S7 and refer to ante-
cedent studies having described the association between 
various Ras effectors and the biological processes that we 
found enriched. In this regard, it is worth mentioning 
that the process enrichment analysis does not depend on 
the Ras effector directly, but rather on the quality of the 
reconstructed signaling network downstream the effec-
tors, which grants further confidence in our approach. 
In particular, we observe a remarkably high agreement 
between published data and our findings concerning 
the following signaling classes (Additional file  2: Figure 
S8): RAF-MEK-ERK signaling (class 1; 90% of processes 
confirmed), RhoGEF-RAC-PAK signaling (class 7; 90%), 
PI3K-AKT signaling (class 2; 85.7%), and RapGEF-RAP 
signaling (class 9; 79.2%). Therefore, we anticipate that 
some of the predicted (enriched) processes that are new 
to this study will find confirmation in future experimen-
tal research.

Comparison of the Ras‑effector signaling network 
with larger Ras‑ and effector‑mediated complexes
Our Ras-effector signaling network has been issued from 
the integration of several sources and represents a data-
set comprehensive of different experimental settings, cell 
types and conditions, which result in an interaction net-
work that may be considerably broader (and less specific) 
than the one that can be empirically observed. Indeed, a 
comparison with experimental measurements is helpful 
to assess the capability of our reconstructed network to 

Fig. 5  Functional analysis of the 274 class-specific (non-shared) proteins by process and class
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interpret data from larger protein complexes, e.g. pro-
teins detected by affinity purification-mass spectrometry 
(AP-MS) [44] or proximity-dependent biotin identifica-
tion (BioID) [45].

We thus calculated the overlap between the 2290 Ras 
network proteins and AP-MS/BioID datasets of Ras and 
effectors (Fig.  7a). The first dataset contains in-house 
AP-MS measurements performed on Caco2 cell lines 
transfected with Flag-tag KRAS wildtype or oncogenic 
mutants (G12D, G12V and G12C). In total, 1732 pro-
teins were identified in the union of proteins identified 
in at least one of these AP-MS experiments, of which 
6 were effector proteins. The second dataset concerns 
KRAS (WT or G12D) BioID proteomics experiments, 
also in Caco2 cells [18]. The union of all proteins iden-
tified in at least one experiment was 649 proteins, 

including 9 effectors. The third dataset regards effector-
specific AP-MS data obtained from the BioPlex data-
base [34]. AP-MS experiments for 34 effectors were 
available in the BioPlex database and the union of all 
proteins identified in at least one Effector AP-MS was 
463. The portion of proteins experimentally detected 
in KRAS AP-MS, BioID and effector AP-MS, that are 
also found in our assembled Ras network, is respec-
tively 16%, 25%, and 69% (Fig.  7b; Additional file  10: 
Table S8). In particular, these first two percentages pri-
marily comprise of proteins from layer 3 (86% and 90%, 
respectively), which are further downstream; whereas, 
the last percentage is mainly composed by layer 1 pro-
teins (84%), which are the most proximal to the effec-
tor layer. Intriguingly, in the BioPlex experiments, we 
also observe the highest presence of L1 proteins, which 

Fig. 6  Biological process analysis. The threshold for enrichment is set at twofold. The 12 effector classes are ordered according to the clustering 
outcome of a principal component analysis (cf. Additional file 2: Figure S6). The dots indicate whenever a given effector-related process has been 
previously reported in the literature (Additional file 10: Table S7)
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we think may be due to the nature of the experimental 
technique itself, or perhaps to data post-treatment aim-
ing at clearing away “contaminants” and interactions 
with a low certainty score, which might have resulted in 
the removal of many of the interactions occurring fur-
ther downstream in L2 and L3.

Once again, we like to stress that the constructed Ras-
effector network is a generic network, which has been con-
structed from interaction information from a large variety 
of experiments in different cells and contexts. Thus, it is not 
expected that one AP-MS or BioID experiment in a specific 
cell line will capture all interactions of our Ras network. 
Likewise, it is not expected that the constructed Ras-effec-
tor network is exhaustive, as information in interaction 
databases is also not complete and, in particular, many 
cell-type specific interactions are likely lacking. Overall, the 
experimental overlap with our collected PPIs—especially 
for the effector AP-MS data,—is encouraging and corrobo-
rates our Ras network’s utility and applicability.

Discussion
Ras proteins are key signaling hubs that are activated by 
a number of cellular receptors and control cellular phe-
notypes via signaling networks downstream of effec-
tor proteins. Understanding these networks in different 

physiological conditions and how they are rewired in the 
context of diseases such as cancer [2] is critical in order 
to apply mechanism- and network-centric approaches 
in precision oncology [46, 47]. Indeed, pathway circuitry 
and rewiring is a keystone concept in network-based 
approaches to disease.

Here, we challenged the ‘old’ framework and looked 
outside the canonical Ras effector pathways. Our Ras-
effector network comprises 43 effector proteins that con-
verge onto 12 effector classes. Some of these effectors 
have only weak binding affinities between their RBDs and 
the active Ras (i.e. RasGTP), but these may be binding 
to RasGTP in significant amount if additional domains 
present in these effectors are recruited to the plasma 
membrane [10]. With 2290 proteins connected in 19,080 
interactions, this represents, to the best of our knowl-
edge, the largest representation of a network downstream 
of Ras proteins to date. Importantly, the network is rep-
resented as an oriented graph of direct pairwise inter-
actions that form 3 layers downstream of each effector, 
integrating data from signaling pathways and protein–
protein interaction databases. The main purpose of our 
Ras-effector network was to generate an up-to-date lit-
erature network that includes all effectors that have the 
potential to be in complex with Ras in specific cell types, 

Fig. 7  Coverage comparison between the Ras signaling network reconstructed in this work and 3 experimental network sources. a Venn diagram 
of the protein overlap with the following data: our in-house AP-MS measurements of KRAS-Flag-Tag in Caco2 cells performed by Camille Ternet, 
proximity ligation assay (BioID) on KRAS in Caco2 cells (Kovalski et al., 2019), and effector-specific AP-MS data from BioPlex database. The total 
number of proteins is indicated in the parentheses, for each dataset. b Portion of proteins, from each experimental dataset, in common with our 
reconstructed network (percentages within the sets), and their distribution by layer (stacked bar plots). The proteins belonging to multiple layers are 
counted the number of times they appear, explaining why the sum of the stacked bar plots exceeds 100%
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tissues or contexts (microenvironmental stimuli). It 
should set the framework for the analysis and expansion 
with additional (more cell type- and condition-specific) 
experimental network data in the future.

The quality of our Ras-effector network was assessed in 
three ways. Firstly, we used subcellular localization infor-
mation to show that ~ 76% of the PPIs occur in compatible 
compartments. This might even be the lower bound of 
compatibility since SysGO only takes the most prevalent, 
and not secondary, localizations into account. Secondly, 
we evaluated the biological processes enriched in our 
Ras-effector network and determined that, on average, 
58% found confirmation in the literature (the agreement 
is higher for well-studied classes such as RAF-MEK-ERK 
signaling, RhoGEF-RAC-PAK signaling, and PI3K-AKT 
signaling). Lastly, we showed a good overlap between Ras-
effector network proteins and proteins belonging to larger 
complexes as identified by AP-MS and BioID experiments 
on Ras and effector proteins (despite only few effectors 
present in those AP-MS experiments). In particular there 
is a high overlap (61%) between BioPlex effector com-
plexes and our network proteins, suggesting that in the 
future our network can be used to further break down 
larger complexes obtained by AP-MS experiments into 
smaller sub-complexes. However, there are still 1618 
proteins in our Ras-effector network that have not been 
detected in any of the AP-MS or BioID experiments ana-
lyzed here. As those experiments were performed in spe-
cific cell lines (Caco2 cells for the in-house AP-MS and 
BioID data, and HEK293 cells for the effector AP-MS), 
it is expected that a different subset of our general Ras-
effector network will be confirmed in different contexts 
or disease-/drug-related conditions (e.g. [17]). While a 
high proportion of our Ras-effector network proteins are 
likely to be expressed in most cells and tissues according 
to the Protein Atlas database [28], the use of different cell 
lines and, in particular, performing Ras AP-MS experi-
ments in different patho-/physiological conditions (e.g. 
various ligands and growth factors, hypoxia, inflamma-
tion, etc.) could nevertheless result in a yet higher over-
lap of network proteins. For example, we have recently 
predicted, using mathematical modeling, that a high frac-
tion of effector proteins only efficiently binds to Ras only 
in specific conditions, e.g. when effectors are additionally 
recruited to the plasma membrane via other than their 
RBD to Ras-GTP [10]. Indeed, Ras AP-MS experiments 
obtained in Caco2 cells for different stimuli/growth con-
ditions show that the total number of effectors and other 
proteins in the Ras-mediated complex increases with the 
number of conditions (C. Ternet, unpublished data).

A functional analysis of the 12 effector pathways and 
associated proteins downstream of Ras shows enrich-
ment in signaling-related functions and depletion in 

metabolism. Other functions associated to proteins spe-
cific to some effector classes of our network are organelles, 
cytoskeleton, extracellular matrix, and protein folding, 
modification and degradation. We also generated a sub-
network that includes only class-specific proteins, which 
was represented as a CellDesigner diagram. Interestingly, 
while in our complete Ras-effector network, metabolic 
proteins were underrepresented, the class-specific sub-
network shows a particularly high number of metabolic 
enzymes in class 1 effectors (RAF-MEK-ERK signaling).

A high number of crosstalk was identified in the Ras-
effector network, which is indeed a key property of sign-
aling pathways [48–50]. As a proof of evidence of this 
feature, the database XTalkDB [51] (http://​www.​xtalk​
db.​org) was recently developed to document crosstalk 
between various signaling pathways. Here, we chose 
to focus on 206 crosstalk network structures involving 
the effector proteins, that are likely to be implicated in 
regulatory feedback loops. Indeed, 27% of these struc-
tures have been already described as feedbacks in pre-
vious independent studies, and we confirmed some 
well-known examples such as the retroaction from active 
PAK, or ERK kinases, to RAF1 [39, 52]. Further investiga-
tion of our predicted crosstalk and feedback mechanisms 
is needed. This will be valuable to shed some light on 
complex systems behaviors that are dependent on both 
cellular context and molecular competition, which can 
drive different outcomes and phenotypes, and achieve 
signal specificity [15, 48, 53]. These features, together 
with multi-omics data integration (e.g. proteome differ-
ential expression), can have an impact on drug activity 
and implications in targeted therapies [54, 55].

Conclusions
Our large-scale reconstruction efforts for the Ras-effec-
tor signaling network will call for context-/tissue-/cell 
type-/condition-specific refinements from experimen-
tal recognition and validation. This will be a crucial 
steppingstone to redefine the network boundary con-
ditions in view of formal topological pathway analyses 
(e.g. [15]) that will elucidate systems properties (e.g. 
input–output relationships, crosstalk, pathway redun-
dancy, etc.), guide mathematical modeling, and allow 
mechanistic investigation. Considerable research has 
been undertaken in favor of disrupting activated Ras-
effector protein complexes as a therapeutic strategy 
acting at the level of signaling interactions, and prom-
ising evidence has been increasingly reported [7, 56]. 
Such advancements go hand in hand with the objective 
to narrow down the Ras network to make it (patho-)
physiologically useful, unraveling the mechanisms that 
make signal transduction selective and specific in dif-
ferent cells.

http://www.xtalkdb.org
http://www.xtalkdb.org
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