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Fusobacterium necrophorum can cause liver abscess, foot rot in ruminants, and Lemire
syndrome in humans, Also, its virulence factors can induce the apoptosis of macrophages
and neutrophils. However, the detailed mechanism has not been fully clarified. This study
investigated the mechanisms of apoptosis and inflammatory factor production in F.
necrophorum–induced neutrophils and macrophages (RAW246.7). After infection of
macrophages with F. necrophorum, 5-ethynyl-2’-deoxyuridine labeling assays indicated
that F. necrophorum inhibited macrophage proliferation in a time- and dose-dependent
manner. Hoechst staining and DNA ladder assays showed significant condensation of the
nucleus and fragmentation of genomic DNA in F. necrophorum–infected macrophages,
Annexin V (FITC) and propidium iodide (PI) assay confirmed the emergence of apoptosis in
the macrophages and sheep neutrophils with F. necrophorum compared with the control.
The group with significant apoptosis was subjected to RNA sequencing (RNA-Seq), and
the sequencing results revealed 2581 up– and 2907 downregulated genes. Gene
Ontology and Kyoto Encyclopedia of Genes and Genomes analysis of the differentially
expressed genes showed that F. necrophorum drove apoptosis and production of
inflammatory factors by activating genes related to the Nuclear Factor-kB (NF-kB) and
death receptor pathways. Meanwhile, quantitative reverse transcription PCR andWestern
blot validation results were consistent with the results of transcriptome sequencing
analysis. In conclusion, F. necrophorum induced apoptosis and production of pro-
inflammatory factors through the NF-kB and death receptor signaling pathway,
providing a theoretical basis for further mechanistic studies on the prevention and
control of F. necrophorum disease treatment.
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INTRODUCTION

Fusobacterium necrophorum (F. necrophorum) belongs to the
family Fusobacteriaceae, is a Gram-negative, rod-shaped, non-
flagellated, strictly anaerobic bacterium that does not form
spores and pods. It is mainly found in the digestive and
genitourinary tracts of humans and animals and it is also
common in nature. Various livestock, poultry, and wild
animals are susceptible to F. necrophorum (Tan et al., 1996;
Nagaraja et al., 2005). The species is classified into two subspecies
based on the biological and biochemical characteristics, DNA
base composition, and DNA–DNA homology level of the two
biotypes of F. necrophorum: subsp. necrophorum and subsp.
funduliforme (Shinjo et al., 1991). The subsp. funduliforme
mainly infects humans and causes Lemierre′s syndrome. The
initial symptoms of this disease are pharyngitis and secondary
jugular vein septic thrombophlebitis (Lazar et al., 2021), but
occasionally liver abscess (Radovanovic et al., 2020) and calf
fasciitis. The subsp. necrophorum is related to necrotizing and
suppurative infections in animals, such as liver abscess, foot rot,
and endometritis (Langworth, 1977).

Several virulence factors have been reported contributing to
the pathogenesis of F. necrophorum infection, including
leukotoxin (Lkt), lipopolysaccharide (LPS), hemolysin,
hemagglutinin, capsule, adhesins, platelet aggregation factor,
dermonecrotic toxin, and several extracellular enzymes such as
proteases and deoxyribonucleases (Tadepalli et al., 2008). In the
presence of hemolysin, F. necrophorum consumes oxygen at the
site of infection, creating an anaerobic environment for its
growth and reproduction, which can exacerbate its condition,
and enhance its colonization and invasion in different infected
areas through an outer membrane protein (Amoako et al., 1997;
Kumar et al., 2013). In contrast, endotoxin infection causes an
increase in the numbers of neutrophils and macrophages (Garcia
et al., 2000). However, cytotoxins could induce neutrophil
apoptosis at a low concentration, but necrosis at a high
concentration, and 90% of rabbit peritoneal macrophages were
damaged to varying degrees within 6 h (Fales et al., 1977;
Narayanan et al., 2002). F. necrophorum infection has been
shown to promote high expression of the inflammatory
cytokines TNF-a (tumor necrosis factor-a) and IL-1b
(interleukin-1b) in hoof tissue (Davenport et al., 2014).
However, apoptosis and inflammatory factor production
mechanisms in F. necrophorum−induced neutrophils and
macrophages have not been elucidated.

Inflammation and apoptosis are the first steps of defense by
neutrophils and macrophages against the invasion of pathogenic
microorganisms into an organism. Necrotizing and septic
diseases caused by necrotizing bacilli are inseparably linked to
the damage of neutrophils and macrophages in the organism.
Although some studies have shown that F. necrophorum can
induce the apoptosis of neutrophils and macrophages, the
molecular mechanism of their regulation is not yet clear.
Therefore, in this study, the effect of F. necrophorum on cell
proliferation was first detected by the 5-ethynyl-2’-deoxyuridine
(EdU) method. Then, the influence of F. necrophorum on
macrophage and neutrophil apoptosis was further detected by
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Hoechst staining, DNA ladder assays, and flow cytometry. The
effect of F. necrophorum on neutrophil gene expression was
analyzed using transcriptomics. Finally, the mechanism of F.
necrophorum−induced apoptosis and inflammatory factor
production was verified at the gene and protein levels,
respectively. So, it is inevitable to investigate the molecular
mechanism of F. necrophorum induced cell damage. This study
also provided the basis for the pathogenic mechanism between F.
necrophorum and hosts.
MATERIALS AND METHODS

Cells and Culture Conditions
Sheep neutrophils were extracted from healthy sheep blood using
a sheep peripheral blood neutrophil extraction kit (P4150,
Solarbio, Beijing, China); macrophages (RAW264.7) stored in
Laboratory of Pathology, Heilongjiang Bayi Agricultural
University were cultured in Dulbecco’s modified Eagle′s
medium (DMEM) (Sigma, Shanghai, China) supplemented
with 10% fetal bovine serum (FBS) (Clark Bioscience,
Shanghai, China), 100 U penicillin mL-1, and 100 mg
streptomycin mL-1 at 37°C with 5% CO2. This study was
approved by the Animal Health, Animal Care, and Use
Committee of the Heilongjiang Bayi Agricultural University.

Bacterial Strain and Culture Conditions
Fusobacterium necrophorum subsp . necrophorum (F.
necrophorum) strain was purchased from the American Type
Culture Collection (ATCC 25286, VA, USA) and cultured in
brain heart infusion (BHI) (Hopebiol, Qingdao, China) liquid or
solid media at 37°C in the anaerobic incubator with 85% CO2,
10% H2, and 5% N2. The bacterial growth was monitored by
measuring optical density at 600 nm (OD = 600), and the
logarithmic growth phase was selected in experiments.

Effects of F. necrophorum on
Macrophage Proliferation
The macrophages were seeded in six-well (2 × 105 cells/well)
plates in a DMEM growth medium with 10% FBS. They were co-
cultured with F. necrophorum under multiple infections (MOI)
(F. necrophorum: 50:1, 100:1, 200:1, 500:1 and 1000:1 cells) for 2,
4 and 6 hours at 37°C, 5% CO2 incubator in the closed-culture,
and the remaining untreated cells were used as control. The 5-
ethynyl- 2′-deoxyuridine labeling assay was used to evaluate the
cell proliferation rate according to the instructions of the
BeyoClick EdU Cell Proliferation Kit with Alexa Fluor 488
(C0071L, Beyotime, Nanjing, China). The experiment was
divided into six groups, and each group was repeated three times.

Apoptotic Effect of F. necrophorum on
Neutrophils and Macrophages
Hoechst 33258 staining: A Hoechst 33258 cell apoptosis staining
kit (C1018, Beyotime, Nanjing, China) was used to confirm the
morphological changes in the nuclei. The macrophages were
seeded onto sterile glass coverslips placed in six-well plates and
June 2022 | Volume 12 | Article 827750
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treated with or without F. necrophorum for 2, 4 and 6 h. The cells
were fixed, washed three times with phosphate-buffered saline
(PBS), and stained with Hoechst 33258 staining solution for
5 min at room temperature. The slides were evaluated, and the
images were captured using an EVOS M5000 imaging system
(Thermo Fisher Scientific, WA, USA). Apoptotic cells were
defined by the condensation of nuclear chromatin or
fragmentation to the nuclear membrane.

DNA fragmentation: The macrophages were seeded in
six-well plates (2 × 105 cells/well) and stimulated with
different densities of F. necrophorum for 2, 4 and 6 h.
Afterward, the collected cells were washed with PBS. The
fragmented DNA was isolated with a DNA extraction kit
(C0008 , Beyot ime , Nanj ing , China) fo l lowing the
manufacturer’s protocols. The eluants containing DNA
pellets were electrophoresed on a 1.5% agarose gel at 80 V
for 1.5 h. The gel was examined and photographed using an
ultraviolet gel documentation system.

Flow cytometry analysis of apoptosis: The cell apoptosis was
analyzed using an Annexin V-FITC/PI kit (CA1020, Solarbio,
Beijing, China). Sheep neutrophils and macrophages were seeded
in six-well plates (2 × 105 cells/well) and stimulated with different
concentrations of F. necrophorum for 2 h, 4 h, and 6 h.
Afterward, the collected cells were washed with PBS, and
stained with Annexin V-FITC and PI for 15 min in the dark at
room temperature. The cell apoptosis was analyzed using a
FACSCalibur flow cytometer (BD Biosciences, NJ, USA). The
results were expressed as the percentage of apoptotic cells among
all the cells. The experiment was performed in triplicate.

Transcriptomic Analysis of F.
necrophorum Acting on Neutrophils
Sheep neutrophils were seeded on 6 well plates (2 × 105 cells/
well), stimulated with F. necrophorum with MOI of 100 for 4
hours, and the remaining untreated cells were used as the
control. The experiment was divided into 2 groups, repeated 3
times in each group, with a total of 6 samples. A total of six
samples were sequenced to analyze the gene expression at the
whole genome level at Shanghai Biotree Tech (Shanghai, China)
by RNA-seq. Total RNA was extracted, evaluated for quality,
reverse transcribed into cDNA, and sequenced on the Illumina
platform. After the quality control (QC) step (Agilent 2100
Bioanalyzer, CA, USA), the clean reading was mapped to the
reference genome (oar_v3.1) through the hierarchical index of
transcript splicing alignment (hisat2 v2.0.5), and the clean
reading was mapped to the reference transcript using stringtie
(1.3.3b). Fragments per Kilobase Million (FPKM) was used to
calculate the gene expression level of each sample, and the
correlation between all samples was detected by Pearson
correlation between samples. Based on the gene expression
level, the differentially expressed genes (DEGs) between the
control group and the F. necrophorum–infected group were
detected by DESeq2 (1.16.1) algorithms. The changes in the
absolute logarithm base of DEG ≥1 and adjusted P value (%) <5%
were detected. Gene Ontology (GO) was used to screen and
annotate DEGs. ClusterProfile (3.4.4) software was used to
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 3
generate GO function classification files. The pathway
enrichment analysis of DEGs was carried out based on the
Kyoto Encyclopedia of Genes and Genomes (KEGG) database.
The Pathview website was used to analyze the signal pathway
activation after stimulation by F. necrophorum. RNA sequence
data have been stored in the NCBI Sequence Read Archive
database (SRA, https://www.ncbi.nlm.nih.gov/sra/)Accessible
via sra series accession number (PRJNA783192).

RNA Isolation and Real-Time PCR
Sheep neutrophils and macrophages were seeded in six-well
plates and cultured with F. necrophorum. The cells were
collected at three different time points (2, 4 and 6 h), and
total RNA was extracted using TRIzol (Ambion, TX, USA).
The mRNA concentration was determined using a Titertek
Berthold Colibri ultramicro spectrophotometer (Titertek-
Berthold, Pforzheim, Germany). One microgram of mRNA
was reverse transcribed into cDNA using a PrimeScript RT
reagent Kit with a gDNA Eraser (TaKaRa, Beijing, China).
RT-qPCR was performed with a TaKaRa TB Green Premix
Ex Taq (Tli RNaseH Plus; TaKaRa, Beijing, China) on a light
Cycler 96 Real-Time PCR System (Bio-Rad, Shanghai,
China), b-Actin and GAPDH were used as housekeeping
genes in neutrophils and macrophages, respectively. The
reaction conditions were as follows: first, pre-denaturation
at 95°C for 30 s, then denaturation at 95°C for 5 s, and
annealing at 60°C for 30 s. The aforementioned steps
involved 40 cycles at 95°C for 10 s. The dissolution curve
was set as 65°C for 5 s, and 95°C for 5 s. The data were
analyzed using the 2-DDCT method. The sequence of
amplification primers is shown in Tables 1, 2. Each test
was repeated three times.

Western Blot Assay
Macrophages with or without F. necrophorum stimulation were
harvested with NP-40 lysis buffer (P0013F, Beyotime, Nanjing,
China). The protein concentration was determined by
bicinchoninic acid assay analysis, and proteins (30 mg/lane)
were separated into 12% sodium dodecy l sul fa te-
polyacrylamide gel electrophoresis gels and transferred to
polyvinylidene fluoride membranes (Eppendorf, Shanghai,
China). The membrane was sealed with 5% skimmed milk at
room temperature for 1 h and incubated with primary antibody
at 4°C overnight. They were then incubated with horseradish
peroxidase–conjugated secondary antibodies (SA00001-1 or
SA00001-2, Proteintech, IL, USA; 1:10,000) for 1 h at room
temperature. The protein bands on the film were covered with
enhanced chemiluminescence reagent (Millipore, MA, USA) and
scanned with an ultra-sensitive imager (Amersham Imager 600;
Gen Healthcare Life Sciences, PA, USA). ImageJ 1.52a software
(NIH, MD, USA) was used to quantify protein expression levels.
The main antibodies and dilution rates were as follows: B-cell
lymphoma-2 (BCL2) rabbit polyclonal antibody (12789-1-AP,
Proteintech, IL, USA; 1:4000), caspase 3/p17/p19 rabbit
polyclonal antibody (19677-1-AP, Proteintech, IL, USA;
1:1000), BCL2-Associated X (BAX)rabbit polyclonal antibody
June 2022 | Volume 12 | Article 827750
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(50599-2-Ig, Proteintech, IL, USA; 1:1000), cytochrome c
polyclonal antibody (ab133504, Abcam, Cambrdge, MA;
1:1000), rabbit anti-NF-kB p65 (10745-1-AP, Proteintech, IL,
USA; 1:1000), and rabbit anti-phospho-NF-kB p65 (10159-2-
AP, Proteintech, IL, USA; 1:1000), Toll-like receptor 4 (TLR4)
mouse monoclonal antibody (66350-1-Ig, Proteintech, IL, USA;
1:2000), phospho- c-Jun N-terminal kinase (JNK, Tyr185) rabbit
recombinant antibody (80024-1-RR, Proteintech, IL, USA;
1:2000), c-Jun N-terminal kinase (JNK) mouse monoclonal
antibody (66210-1-Ig, Proteintech, IL, USA; 1:5000), rabbit
anti-AIF antibody (ab32516, Abcam, Cambrdge, MA; 1:1000),
caspase-8 mouse monoclonal antibody (sc-81656, SANTA, CA,
USA; 1:200), caspase-9 mouse monoclonal antibody (sc-56076,
SANTA, CA, USA; 1:200), TLR2 rabbit polyclonal antibody
(17236-1-AP, Proteintech, IL, USA; 1:2000), TNF alpha
polyclonal antibody (17590-1-AP, Proteintech, IL, USA;
1:1000), alpha tubulin monoclonal antibody (66031-1-Ig,
Proteintech, IL, USA; 1:20,000), IL-6 monoclonal antibody
(66146-1-Ig, Proteintech, IL, USA; 1:1000), TNF receptor-
associated factors 2 (TRAF2) polyclonal antibody (26846-1-AP,
Proteintech, IL, USA; 1:1000), IL-1 beta polyclonal antibody
(16806-1-AP, Proteintech, IL, USA; 1:500), and Anti-IkB alpha
antibody (ab32518, Abcam, Cambrdge, MA; 1:1000). The
experiment was performed in triplicate.
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 4
NF-kB Activation and Nuclear
Translocation Assay
To detect F. necrophorum-induced nuclear translocation of NF-
kB p65, RAW246.7 cells were seeded in coverslip containing 24-
well plates at a density of 2 × l04 cells/well and treated with or
without F. necrophorum for 2 h to 6 h. Using the reagents
provided in the kit, the cells were washed and fixed, and then
incubated with blocking solution for 1 h at room temperature.
Cells were incubated with rabbit anti-NF-kB p65 antibodies
(SN371, Beyotime, Nanjing, China) overnight at 4°C.
Following washing, the cells were further incubated with Cy3-
conjugated secondary antibodies (SN371, Beyotime, Nanjing,
China) for 1 h and 4’,6-diamidino-2-phenylindole (DAPI) for
5 min at room temperature. Images were captured by
fluorescence microscopy (Leica, Wetzlar, Germany). The
experiment was performed in triplicate and repeated three times.

Enzyme-Linked Immunosorbent Assay
RAW246.7 cells were seeded in 6-well plates and treated with F.
necrophorum at an MOI of 100: 1. Cell culture supernatants were
collected and centrifuged at 1,000*g for 20 min at 4°C. The levels
of secreted IL-6, IL-8, IL-1b, and TNF-a protein were measured
by ELISA (USCN, Wuhan, China) according to the
manufacturer’s instructions. The optical density values were
TABLE 1 | Sheep neutrophils primer sequences.

Name Forward Primer Reverse Primer

IL-1b GAAGAGCTGCACCCAACACCTG CGACACTGCCTGCCTGAAGC
TNF-a AACAGGCCTCTGGTTCAGACA CCATGAGGGCATTGGCATAC
IL-6 TCAGTCCACTCGCTGTCTCC TCTGCTTGGGGTGGTGTCAT
Bcl-2 ☐GCCGAGTGAGCAGGAAGAC GTTAGCCAGTGCTTGCTGAGA
Bax CAGAGGCGGGGTTTCATCC TCGGAAAACATTTCAGCCGC
Cytc CAGAAGTGTGCCCAGTGCCATAC GCCTGACCTGTCTTTCGTCCAAAC
Caspase-3 AGCCTTCATTCTTCGTGCCACAG CGACTGAGCGACTGAACTGAACTG
JNK GCTGTGTACATGTCGGCTTC TGAGTGACCCTGTTTAGCCA
TRAF2 CCTTCGGAGAAGATGATGGGG TTCCTTACGCACACCCCAAG
b-actin CCACAGCCGAGCGGGAAATTG AGGAGGACGACGCAGCAGTAG
Jun
TABLE 2 | Macrophage primer sequences.

Name Forward Primer Reverse Primer

IL-6 CGGAGAGGAGACTTCACAGAG ATTTCCACGATTTCCCAGAG
IL-1b GCACTACAGGCTCCGAGATGAAC TTGTCGTTGCTTGGTTCTCCTTGT
TNF-a TACTGAACTTCGGGGTGATTGGTCC CAGCCTTGTCCCTTGAAGAGAAC
Bax CAGGATGCGTCCACCAAGAA CAAAGTAGAAGAGGGCAACCAC
Bcl-2 CTACGAGTGGGATGCTGGAGA CAGGCTGGAAGGAGAAGATGC
Caspase-3 GGCTGACTTCCTGTATGCTTACTCTAC ACTCGAATTCCGTTGCCACCTTC
Caspase-8 ACCAAATGAAGAACAAACCTCG CTTCATTTTTCGGAGTTGGGTT
Caspase-9 CGCCAAAATTGAAATTCAGACG CGACAGGCCTGGATGATAAATA
Caspase-12 TGGCCCATGAATCACATCTAAT TGGACAAAGCTTCAGTGTATCT
AIF CATCATGATCATGCTGTTGTGA TATCCACCAGACCAATAGCTTC
Cyto-c GCAGGGTGCTAACTCAGTCC CACTTAGGATCACCCCCAGC
Ikka GGTGGAGGCATGTTCGGTAG CACTCTTGGCACAATCTTTAGGG
TRAF2 AACCTTTGAGAACATTGTCTGC CCTCAATCTTGTCCTGGTCTAG
P65 CACCAAGGATCCACCTCACC CTCTATAGGAACTATGGATACTGCG
PP65 ACATCAAGGACTCCAAAGCTTA GTCCTGACATGTCAATCACAAC
JNK GCTGTGTACATGTCGGCTTC TGAGTGACCCTGTTTAGCCA
GAPDH CGTGCCTGGAGAAACCTG AGAGTGGGAGTTGCTGTTGAAGTCG
e 2022 | Volume 12 | Article 827750
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measured by a microplate reader at 450 nm, The experiment was
performed in triplicate and repeated three times.

Statistical Analysis
Data were reported as the mean ± standard deviation (n = 3). The
values were analyzed using the software GraphPad Prism 8. The
two-way ANOVA command with Sidak’s multiple comparisons
test were used to analyze the data differences among more than
two groups. Compared with the control, P values less than 0.05
indicated a statistically significant difference (∗P < 0.05, ∗∗P <
0.01, and ∗∗∗P < 0.001).
RESULTS

F. necrophorum Promoted Macrophages
to Undergo Apoptosis and Inflammation
The EdU-labeling assay was applied to quantify the cell
proliferation rate after 2, 4, and 6 h after F. necrophorum
stimulation at MOIs of 50, 100, 200, 500, and 1000. The results
showed that the number of proliferating cells (yellow-green)
decreased (Figure 1A). The statistical analysis indicated that F.
necrophorum inhibited cell proliferation after macrophage
infection with significant differences compared with the control
group (Figure 1B). The EdU-labeling assay demonstrated that F.
necrophorum inhibited macrophage proliferation in a time-and
dose-dependent manner.
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 5
Based on the inhibition of macrophage proliferation by F.
necrophorum, F. necrophorum–infected macrophages with MOI
of 100 were selected for apoptosis assay, as follows. Hoechst
33258 staining was used to analyze the apoptosis of macrophages
infected with F. necrophorum (MOI = 100) for 2, 4, and 6 h under
the fluorescence microscope. The morphology of living cells was
round or oval standard blue, while the nucleus of apoptotic cells
showed dense staining and was bright blue because of chromatin
pyknosis. The fluorescence intensity of cells infected with F.
necrophorum was detected at 2 h, 4 h and 6 h respectively in
Hoechst staining experiment, and the results showed that the
fluorescence intensity increased at 4h after infection, and was
most obvious at 6 h (Figure 2A). DNA fragmentation showed an
evident DNA gradient band in the infection group compared
with the control group, which was time-dependent and the most
apparent after 4 h (Figure 2B). The Annexin V-FITC/PI method
was used to detect the F. necrophorum−infected apoptotic rate of
macrophages. Flow cytometry showed that the apoptotic rate of
macrophages in the control group was 12.27%, 12.25%, and
16.36%, respectively. The apoptotic rate of macrophages in the
experimental group was 27.2%, 34.5%, and 28.4%, respectively
(Figure 2C). The F. necrophorum−infected apoptotic rate of
macrophages was significantly different at different time points
(P < 0.01) (Figure 2D).

The apoptosis-related genes Bcl-2, caspase-3, Bax, AIF, cyto-
c, caspase-8, caspase-12, and caspase-9 and pro-inflammatory
factors TNF-a, IL-1b, and IL-6 in F. necrophorum–infected
A

B

FIGURE 1 | Effects of F. necrophorum on macrophages proliferation. (A) EdU assay of macrophages after F. necrophorum stimulation (MOIs of 0, 50, 100, 200,
500, and 1000) at 2, 4, and 6 h. Scale bar: 40 mm. (B) Cell proliferation rate of macrophages detected by EdU assay (n = 3), (No significance with the same letter,
significant difference with different letters, P < 0.05).
June 2022 | Volume 12 | Article 827750
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macrophages were detected by RT-qPCR to further study the
mechanism of F. necrophorum inhibiting macrophage
proliferation and inducing apoptosis and the release of
inflammatory cytokines. The results showed that the pro-
apoptotic genes Bax (Figure 3A), cyto-c (Figure 3C), AIF
(Figure 3D), caspase-3 (Figure 3E), caspase-8 (Figure 3F),
caspase-12 (Figure 3G) and caspase-9 (Figure 3H) were
upregulated and the anti-apoptotic gene Bcl-2 (Figure 3B) was
downregulated. Pro-inflammatory factors TNF-a (Figure 3I),
IL-1b (Figure 3J), and IL-6 (Figure 3K) showed an up-
regulation trend (P < 0.01). The results showed that the
infection of macrophages by F. necrophorum promoted the
gene expression of apoptotic factors and inflammatory
cytokines. Therefore, the inhibition of cell proliferation by F.
necrophorum is closely related to the induction of apoptosis
and inflammation.

The apoptosis-related proteins Bcl-2, caspase-3, Bax, AIF, and
cyto-c in F. necrophorum–infected cells were detected using
Western blot analysis to investigate the effects of F.
necrophorum infection on apoptosis, inflammatory response,
and other change. The results are shown in Figure 4A. The
protein expression ratio of the pro-apoptotic protein Bax to the
inhibitory protein Bcl-2 significantly increased 6 h after F.
necrophorum infection (Figure 4B) (P < 0.05). Two hours after
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 6
F. necrophorum infection, the protein expressions of pro-
apoptotic AIF (Figure 4C) and cyto-c (Figure 4D), the protein
expression ratio of the cleaved-caspase-3/caspase-3 (Figure 4E),
the protein expression ratio of the cleaved-caspase-9/caspase-9
(Figure 4F), and the protein expression ratio of the cleaved-
caspase-8/caspase-8 (Figure 4G) were significantly increased (P
< 0.05). At the same time, the protein expression levels of IL-6,
TNF-a, and IL-1b protein were detected by Western blot and
ELISA, the results showed that the expression of IL-6
(Figures 4H, K, P), TNF-a (Figures 4I, L, O), and IL-1b
(Figures 4J, M, N) significantly increased after F. necrophorum
infection (P < 0.01). The results showed that F. necrophorum
promoted apoptosis and the expression of inflammatory factors.
These results suggested that F. necrophorum promoted
macrophage apoptosis.

F. necrophorum Promoted Sheep
Neutrophils to undergo Apoptosis
and Inflammation
The Annexin V-FITC/PI method was used to detect the F.
necrophorum−infected apoptotic rate of neutrophils with the
MOI of 0 and 100:1 for 2, 4, and 6 h for investigating the F.
necrophorum−induced apoptosis of neutrophils. Flow cytometry
showed that the apoptotic rate of neutrophils in the control
A B

D

C

FIGURE 2 | Apoptosis of macrophages cells induced by F. necrophorum (MOI=100). (A) Hoechst 33258 staining fluorescent display. (B) Effect of the F.
necrophorum on chromosomal DNA fragmentation (Lane M: DNA marker 2000; Lane 1, 3, and 5: macrophages were cultured for 2, 4, and 6 h without F.
necrophorum; Lane 2, 4, and 6: macrophages cultured for 2, 4 and 6 h incubated with F. necrophorum). (C). Flow cytometry analysis of macrophages apoptosis
with F. necrophorum stimulation (MOIs of 0 and 100) at 2, 4, and 6 h. (D). Statistical analysis of macrophages apoptosis with F. necrophorum stimulation (MOIs of 0
and 100) at 2, 4, and 6 h. The histogram represents the mean ± SD (n = 3). **P<0.01, ***P<0.001.
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group was 0.69%, 0.62%, and 1.15%. The apoptotic rate of the
experimental group was 58.7%, 92.3%, and 87.8%, respectively
(Figure 5A), indicating that neutrophils were induced to
undergo apoptosis by F. necrophorum. The statistical analysis
of data revealed that the F. necrophorum−infected apoptotic rate
of neutrophils differed significantly at different times compared
with that in the control group (P < 0.01) (Figure 5B).

We selected cells infected for 4 h to better understand the
overall response of sheep neutrophils to F. necrophorum
infection. We performed genome-wide transcriptional analysis
using RNA-seq to determine the changes in gene expression.
Further, 41-GB sequencing data were generated from six
samples, with an average of 45.18 million reads per sample
(Table 3). After QC, clean reads were mapped to reference
genomes and transcripts, with mapping percentages of 63.46%
and 87.42%, respectively (Table 4). A total of 28013 genes were
detected, and the expression levels were calculated with FPKM.
The gene expression profiles of normal sheep neutrophils were
compared with those of infected cells after 4 h to characterize the
DEGs influenced by F. necrophorum. Approximately 2581 genes
were found to be upregulated, and 2907 genes were
downregulated (Figure 6A). The correlation between samples
is shown by Pearson correlation between samples (Figure 6B).
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Sixteen significant differences in GO function enrichment
analysis were detected, including seven biological processes,
two cell components, and seven molecular functions. After
infection with F. necrophorum, the functions of sheep
neutrophils mainly focused on the activities of cytokines,
transcription, and ribosomes (Figure 6C; Table S1). The
KEGG annotation showed that the top five enriched pathways
were NOD (nucleotide binding oligomerization domain
containing)-like receptor signaling pathway, osteoclast
differentiation, cytokine-cytokine receptor interaction, viral
protein interaction, and NF-kB signaling pathway (Figure 6D;
Table S2).

The apoptosis-related genes Bcl-2, caspase-3, Bax, AIF, cyto-c,
and inflammatory genes TNF-a, IL-1b, and IL-6 were detected
by RT-qPCR to comprehend the changes in the F. necrophorum−
induced apoptosis of sheep neutrophils. The results showed that
the expression of pro-apoptotic genes Bax (Figure 7B), cyto-c
(Figure 7C), and caspase-3 (Figure 7D) was upregulated, and the
expression of anti-apoptotic gene Bcl-2 (Figure 7A) was
downregulated (P < 0.01). Also, F. necrophorum promoted the
apoptosis of sheep neutrophils at the gene level. The expression
of pro-inflammatory factors IL-1b (Figure 7E), TNF-a
(Figure 7F), and IL-6 (Figure 7G) was upregulated to varying
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FIGURE 3 | The effect of F. necrophorum on apoptosis and inflammatory factors of macrophages was detected by RT-qPCR. Bax (A), Bcl-2 (B), cyto-c (C), AIF
(D), caspase-3 (E), caspase-8 (F), caspase-12 (G), caspase-9 (H), TNF- a (I), IL-1 b (J) and IL-6 (K) gene expression with F. necrophorum stimulation (MOIs of 0
and 100) from 0 to 6 h (n = 3). ***P<0.001, ns, not significant.
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FIGURE 4 | The effect of F. necrophorum on apoptosis and inflammatory factors of macrophages was detected by Western blot and ELISA. (A) The protein levels
of Bcl-2, Bax, AIF, cyto-c, pro-caspase-3, cleaved-caspase-3, pro-caspase-9, cleaved-caspase-9, IL-6, TNF-a and IL-1b were detected by western blotting. The
relative level of Bax/Bcl-2 (B), AIF (C), cyto-c (D), cleaved-caspase-3/caspase-3 (E), cleaved-caspase-9/caspase-9 (F), cleaved-caspase-8/caspase-8 (G), IL-6
(H), TNF-a (I) and IL-1b (J) was detected. ELISA detection of the levels of IL-6 (K), TNF-a (L) and IL-1b (M) in cells (n = 3). The ratio of IL-1b (N), TNF-a (O) and
IL-6 (P) between the Fnn MOI=100 group and the control group was detected by ELISA (n = 3). *P<0.05, **P<0.01, ***P<0.001, ns, not significant.
A B

FIGURE 5 | Apoptosis of sheep neutrophils cells induced by F. necrophorum (MOI=100). (A) Flow cytometry analysis of sheep neutrophil cells apoptosis with F.
necrophorum stimulation (MOIs of 0 and 100) at 2, 4, and 6 h. (B) Statistical analysis of sheep neutrophils apoptosis with F. necrophorum stimulation (MOIs of 0 and
100) at 2, 4, and 6 h. (n = 3). ***P<0.001.
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degrees (P < 0.01). The results showed that the gene-level change
was consistent with the transcriptomic results. Therefore, the F.
necrophorum−induced apoptosis of sheep neutrophils was
closely related to the occurrence of inflammation.

F. necrophorum Induced Apoptosis and
Inflammation through NF-kB and Death
Receptor Signaling Pathways
The transcriptome results of F. necrophorum−infected sheep
neutrophils integrated and analyzed through the pathway view.
As shown in Supplementary Figures 1, 2, DEGs were clustered
in the NF-kB signaling pathway and the death receptor signaling
pathway. RT-qPCR was used to detect the regulation of NF-kB
and death receptor signaling pathways in F. necrophorum
−infected neutrophils and macrophages. The expression levels
of TRAF2, JNK, Ikka, p65, and pp65 in macrophages and those
of TRAF2, and JNK in sheep neutrophils were detected. The
results showed that the relative mRNA expression levels of Ikka
(Figure 8A), JNK (Figure 8B), NF-kB p65 (p65) (Figure 8C),
phosphorylated NF-kB p65 (pp65) (Figure 8D), and TRAF2
(Figure 8E) were upregulated in macrophages (P < 0.01), and the
relative mRNAs expression levels of TRAF2 (Figure 8F) and
JNK (Figure 8G) were upregulated in sheep neutrophils after F.
necrophorum infection (P < 0.01).

Western blot results shown in Figure 9A. After infection with
F. necrophorum, the protein expression of TLR2 (Figure 9B),
TLR4 (Figure 9C), TRAF2 (Figure 9D), MyD88 (Figure 9E), the
protein expression ratio of the pp65/p65 (Figure 9F), and the
protein expression ratio of the p-JNK/JNK (Figure 9G)
significantly upregulated (P < 0.05), the protein expression
ratio of the IkB-a (Figure 9H) significantly downregulated
(P < 0.05). Immunofluorescence cell analysis showed that
the infection of F. necrophorum promoted the translocation of
p65 from cytoplasm to nucleus (Figure 9I). The RT-qPCR and
Western blot assay results were consistent with the
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 9
transcriptomic results after immunization of F. necrophorum
−infected cells. To summaries, when host cells are infected by F.
necrophorum, the TRAF2 is activated by TLR receptors and
transmits signals downstream, which activates Ikka and
promotes IkB-a degradation. NF-kB p65 protein is transferred
from cytoplasm into the nucleus, resulting in the release of TNF-
a, IL-6 and IL-1b. Meanwhile, during cell apoptosis, the death
domain is activated first, TRAF2 is activated, and then caspase-8
is activated, cascade downstream caspase-3 to induce cell
apoptosis. In addition, JNK phosphorylation is promoted,
apoptosis-related proteins on mitochondria are regulated,
and downstream caspase-3 is further regulated to induce
apoptosis (Figure 10).
DISCUSSION

F. necrophorum is a critical pathogen isolated from oral cavities,
gastrointestinal tracts, and genitourinary tracts of animals and
humans (Tadepalli et al., 2009; Sato et al., 2021). It is frequently
associated with necrotic infections in animals, such as calf
diphtheria, foot rot, and liver abscesses (Langworth, 1977). The
economic loss associated with foot rot and lameness in dairy and
beef cattle and hepatic abscesses in feedlot cattle are of significant
concern to the cattle industry. In feedlots, the incidence of liver
abscesses averages 12%–32% depending on various management
and dietary factors (Nagaraja and Chengappa, 1998; Nagaraja
and Lechtenberg, 2007). In addition, F. necrophorum is also the
causative agent of the invasive disease Lemierre′s syndrome and
is associated with peritonsillar abscess formation and otitis
media in children (Holm et al., 2016). These diseases tend to
be necrotizing and abscessing in nature involving a large number
of macrophages and neutrophils. Most research focused on
adhesion effects (He et al., 2020), virulence factors (Pillai et al.,
2019), and vaccine development (Xiao et al., 2021). Although it is
TABLE 3 | Transcriptome data QC results.

Sample Raw-reads Clean-reads Error-rate

c1 45032186 43882714 0.02
c2 47293778 45768740 0.02
c3 47712492 45913948 0.02
t1 44488008 43349748 0.03
t2 48095788 46248220 0.03
t3 47470882 46207042 0.03
June 2022 | Volume 12 | Art
c1, c2, c3 representations the control group;t1, t2, and t3 represent the F. necrophorum-infected group.
TABLE 4 | Transcriptome samples and reference genome comparison results.

Sample Total-reads Total-map

c1 43882714 38613441(87.99%)
c2 45768740 39367097(86.01%)
c3 45913948 40520129(88.25%)
t1 43349748 26794666(61.81%)
t2 46248220 29643382(64.1%)
t3 46207042 29788272(64.47%)
c1, c2, c3 representations the control group;t1, t2, and t3 represent the F. necrophorum-infected group.
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FIGURE 6 | RNA-sequencing analysis of sheep neutrophils cells stimulated with F. necrophorum (MOI of 100). (A) The number of DEGs in six samples after F. necrophorum
stimulation at 4 h. (B) Pearson correlation between samples. (C) GO enrichment analysis of the DEGs. (D) KEGG enrichment analysis of the DEGs. (n = 3).
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FIGURE 7 | The effect of F. necrophorum on apoptosis and inflammatory factors of sheep neutrophils cells was detected by RT-qPCR. Bcl-2 (A), Bax (B), cyto-c
(C), caspase-3 (D), IL-1b (E), TNF-a (F) and IL-6 (G) gene expression with F. necrophorum stimulation (MOIs of 0 and 100) from 0 to 6 h (n = 3). ***P<0.001, ns,
not significant.
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known that F. necrophorum can induce apoptosis of
macrophages and neutrophils (Narayanan et al., 2002), the
underlying molecular mechanisms remain unclear. In this
study, we found that F. necrophorum could induce the
apoptosis of macrophages and neutrophils and product
inflammatory factors via NF-kB and death receptor signaling
pathways (Figure 10).

Apoptosis, a programmed cell death, triggered by an
internally regulated suicidal program. A large number of
pathogens can induce apoptosis in host cell and regulate the
cellular pathway of inducing or inhibiting apoptosis (Wanford
et al., 2022). These pathogens are significantly recognized by host
proteins and stimulate a variety of signal pathways to change the
stimulation, including phagocytosis, release of apoptotic and
inflammatory cytokines, and the triggering of apoptosis
(Selvaraj et al., 2021). F. necrophorum can not only inhibit
macrophage proliferation, but also induced apoptosis of
macrophages and sheep neutrophils, which is consistent with
previous studies (Fales et al., 1977; Narayanan et al., 2002).
Traditionally, the apoptosis of host cells can be divided into two
pathways-extrinsic and intrinsic pathways (Galluzzi et al., 2018).
Extrinsic pathway can be triggered by death receptors including
Fas and tumor necrosis factor receptor (TNF-R), which can
activate caspase-8, thus activating Caspase-3 and leading to
apoptosis when adaptor proteins suffering from external
stimulation (Yuan et al., 2018). Combined with the results of
transcriptome, RT-qPCR and Western blot, the host cells
infected with F. necrophorum will firstly active TRAF2, then
promoted the expression of caspase-8 and caspse3, and finally
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 11
caused apoptosis. Besides, the expression of pro-apoptotic genes
(Bax, cyto-c, AIF, caspase-9, caspase-12) were significantly
upregulated when cells infected with F. necrophorum.

In the present study, the transcriptome analysis of sheep
neutrophils infected with F. necrophorum showed that these
bacteria not only promoted apoptosis but also promoted the
expression of pro-inflammatory genes. The production of
inflammatory factors can provide a basis for the recreation of
inflammatory cells during infection in vivo (Garcia et al., 2000).
Previous transcriptome analysis has shown that rumen epithelial
cells with and without a liver abscess has 221 DEGs mainly
enriched in NF-kB and interferon signaling pathways (Abbas
et al., 2020). F. necrophorum could also activate NF-kB signal
path, which were obtained via transcriptome analysis in this
research. The expression of TLRs could affect NF-kB pathway,
and within the family of TLRs, TLR2 is considered as the main
pattern recognizer of outer membrane protein in Gram-negative
bacteria (Punturieri et al., 2006; Alva-Murillo et al., 2017). While
TLR4 is considered as the main pattern recognition receptor of
bacterial endotoxin. The activation of these two receptors lead to
the release of inflammatory cytokines (Yang, 2022). It has been
reported that the expression of these mediators is also regulated
by NF-kB pathway (Alva-Murillo et al., 2017). NF-kB protein
usually forms homologous/heterodimer from p65 and p50, and
stay inactivated in the cytoplasm due to the combination with
inhibitory protein IkBa, normally (Jiang et al., 2017). Once
activated, NF-kB subunit p65 will isolated from the inhibitory
protein IkBa, and moved to nucleus where it may trigger the
transcription of specific target genes including TNF-a, IL-1b and
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FIGURE 8 | Effects of F. necrophorum the activation of the NF-kB and mitochondrial signaling pathways in cells. Ikka (A), JNK (B), NF-kB p65 (p65) (C), phosphorylated
NF-kB p65(pp65) (D) and TRAF2 (E) gene expression with F. necrophorum stimulation macrophages (MOIs of 0 and 100) from 0 to 6 h (n = 3). TRAF2 (F) and JNK (G)
gene expression with F. necrophorum stimulation sheep neutrophils cells (MOIs of 0 and 100) from 0 to 6 h (n = 3). **P<0.01, ***P<0.001.
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IL-6. To further understanding the molecular mechanism of host
cells in F. necrophorum infection, we examined the inflammatory
cytokines (TNF-A, IL-1b, and IL-6), the key proteins in the NF-
kB signaling pathway (Ikka, IkBa), and the position
transformation of NF-kB subunit P65. The results showed that
F. necrophorum promoted the expression of inflammatory
factors and TLRs (TLR2, TLR4), these findings are similar to
those of previous studies whose transcriptome data were
analyzed in sheep foot rot samples (Davenport et al., 2014).
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 12
Besides, these bacteria significantly promoted phosphorylation of
JNK and NF-kB, and also promoted the transformation of NF-
kB subunit p65 from cytoplasm to nucleus. Therefore, it was
concluded that the NF-kB and death receptor signaling pathways
regulated F. necrophorum−induced cell apoptosis and
inflammatory response.

In conclusion, our study showed that F. necrophorum
inhibited the proliferation of immune cells, and promoted
apoptosis and inflammatory cytokine production through the
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FIGURE 9 | The effect of F. necrophorum on NF-kB and death receptor signaling pathways of macrophages was detected by Western blot and Immunofluorescence.
(A) The protein levels of TLR2, TLR4, TRAF2, MyD88, NF-kB p65, phosphorylated NF-kB p65, JNK, phosphorylated JNK, and IkBa were detected by Western blot.
TLR2 (B), TLR4 (C), TRAF2 (D), MyD88 (E), phosphorylated NF-kB p65/NF-kB p65 (F), phosphorylated JNK/JNK (G), and IkBa (H) was detected. Immunofluorescence
images of NF-kB p65 in cells (I) (n = 3). *P<0.05, **P<0.01, ***P<0.001, ns, not significant.
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activation of NF-kB and death receptor signaling pathways. This
is the first report in exploring the changes in F. necrophorum−
infected apoptosis and expression of inflammatory factors in
immune cells, which laid a foundation for investigating the
infection mechanism of F. necrophorum.
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