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We introduce a method for analyzing small interfering RNA (siRNA) genetic screens based entirely on
off-target effects. Using a screen for members of the Wnt pathway, we demonstrate that this method
identifies known pathway components, some of which are not present in the screening library. This
technique can be applied to siRNA screen results retroactively to confirm positives and identify genes missed
using conventional methods for on-target gene selection.

L
arge-scale siRNA screening is an increasingly popular method of interrogating signaling pathways both to
identify relevant genes and to discover novel drug targets. siRNA screens typically involve transfecting small
numbers of cells with a library designed to target the entire genome or some subset (such as a set of genes

coding for theoretically druggable domains)1. The systematic knockdown of each gene enables high-throughput
loss-of-function analysis by assessing pathway dependent phenotypes as measured through changes in the
appearance of specific markers or induction of reporter constructs (Fig. 1a).

Unfortunately, siRNA screens have demonstrated a high false positive rate2. Researchers typically perform
labor-intensive follow-up work on hundreds of hits to confirm a handful of relevant genes. Many false positives
are likely due to off-target effects3,4, wherein partial complementarity between an siRNA and multiple transcripts,
typically in the 39UTR, results in their down-regulation, adding unintended silencing to the screen (Fig. 1b).
Previous work on attenuating off-target effects has largely focused on identifying lower-risk sequences, intro-
duction of chemically modified siRNAs, or use of multiple siRNA sequences in additional screens5.

Results
In order to understand and exploit the off-target effects present in siRNA screening data, we implemented a
predictive model of down-regulation due to siRNA off-targeting. Existing predictors are microRNA-related and
often use conservation or other criteria not applicable to siRNA off-targeting6. We trained a simple linear model
specific for siRNAs using published gene expression profiles in which off-targeting mediated by the seed (posi-
tions 2–8 of the guide strand) has been detected7. Our model for off-target seed-based down-regulation is:

On,k~b1
:PMzb2

:M1zb3
:M8zb4

:M18zb5
:30UTRLength

The model includes four types of seed matches, or reverse complementarity between the guide strand seed
sequence and the 39UTR of the transcript: PM, perfect match to guide bases 2–7 followed by adenine opposite
base 1; M1, no adenine opposite base 1; M8, mismatch opposite base 1; and M18, with both terminal mismatches.
We calculate as predictive variables the number of times a particular match-type occurs between the seed
sequence of the siRNA n and the 39UTR of the transcript k. In addition, we use the length of the 39UTR as a
predictive variable, since in our analyses longer 39UTRs were correlated with up-regulation of transcripts in the
absence of siRNA seed matches. Up-regulation of genes with long 39UTRs and a lower density of siRNA matches
has been previously observed in the literature8. Model parameters (b) are derived from linear regression against
the mean log ratio of mRNA expression data (see Fig. 2, Supplementary Data Set 1, and Methods).

We hypothesize that siRNAs off-targeting to pathway members can in part explain the phenotypes observed in
genome-wide screens (Fig. 1c). To investigate this, we introduce Haystack, a new computational method for
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identifying the most statistically significant genes that explain screen
results, based entirely on off-target effects. First, we predict all On,k,
the off-target down-regulation of every transcript k by every siRNA
n. Second, for each transcript we calculate the significance of cor-
relation between the predicted down-regulation by every siRNA to
the siRNAs’ screen results z, using a t-test. Third, the most statist-
ically significant transcript is selected and a linear parameter ak is
estimated, approximating z as a function ak * Ok 1 c. Finally, the
residual between z and the predicted values of z in this linear model is
calculated and the next transcript is selected via the significance of
the correlation of each remaining Ok to the residual. In this stepwise
manner, the most statistically significant transcripts are selected and
added iteratively as features to a linear model, until no transcript has
a Bonferonni-corrected correlation p-value less than 0.01. The final
model can be viewed as predicting the phenotypic score associated
with an siRNA zn as a linear combination of the predicted off-target
effects of siRNA n on a set of transcripts K (with some constant
intercept term c):

zn~cz
XK

k~1

akOn,k

We assess the transcripts selected based on ak, the magnitude of
the off-target effects on transcript k in explaining the screening
results. The directionality of ak indicates the effect (either positive
or negative) that down-regulation of each transcript has on the assay
readout.

We applied Haystack to 19,815 siRNAs used in screening 6,605
theoretically druggable genes for activity in the Wnt/b-catenin sig-
naling pathway (Supplementary Data Set 2). The Wnt/b-catenin
pathway is constitutively active in many human cancers. To screen
for novel factors in the Wnt/b-catenin pathway, HT1080 sarcoma
cells were engineered to contain a firefly luciferase reporter cou-
pled to a b-catenin-driven promoter, activated in the screen by

conditioned media containing Wnt-3a. A control EF1a-driven
Renilla luciferase reporter was used for normalization. Three
siRNAs per gene were transfected individually into the reporter cell
line in three separate screens. We calculated z-scores for the siRNAs
from the log ratio of reporter intensities.

Table 1 lists, ordered by p-value, the top 10 genes included in the
model built via Haystack from the siRNA screens in combination.
Predicted activities per gene correlated well between screens when
analyzed separately (Fig. 3). Supplementary Table 1 contains all 61
hits identified. In the case of the Wnt pathway, a large number of
‘‘canonical’’ pathway members have been previously identified. To
measure pathway enrichment in screening results, we used 158 Wnt
related genes from the KEGG pathway database9. Of the top 10 most
statistically significant transcripts, 6 (LEF1, AXIN2, CCND1, RAC1,
CTNNB1, and LRP6) are in the KEGG list of Wnt pathway genes, a
remarkable level of enrichment (P , 3.7e-11; hypergeometric test for
enrichment).

We reviewed literature on the genes present in Table 1 but not
listed in KEGG to check for other associations to the Wnt pathway.
SUMO2, the third most statistically significant hit, has been iden-
tified as sumoylating and repressing LEF110. Consistent with that
role, its parameter estimate in the regression indicates that down-
regulation of SUMO2 increases reporter activity. Another hit
(Supplementary Data Set 3), SENP7, has been shown to reverse
the sumoylation of SUMO2/311, and accordingly the regression ana-
lysis shows that its down-regulation decreases Wnt reporter activity.
Finally, the transcription factor POU4F2 (BRN3B) is involved in
both cell development12 and cancer13, as is the Wnt pathway, making
a role for POU4F2 in Wnt signaling seem plausible.

It is worth noting that three transcripts identified in the top 10 hits
(RAC1, CLEC18B, and POU4F2) did not have siRNAs designed
against them in the druggable library screened here. Although
RAC1 is not included in the library, it is found by Haystack analysis
and is a canonical member of the Wnt pathway. Since off-target

Figure 1 | siRNA on-targeting and off-targeting to genes in a hypothetical pathway. (a) On-target model correctly infers gene B as a pathway member

due to on-target effects, depicted by the solid arrow from the siRNA (blue) to gene B. Extensive base-pairing between the siRNA and target gene B results

in silencing. (b) A false-positive result incorrectly infers non-pathway gene C as a pathway member by neglecting off-targeting effects, depicted by dashed

gray arrows from the siRNA (red) to pathway genes B and F. (c) Haystack explains screen results as a linear combination of the predicted off-targeting

effects, depicted by dashed gray arrows from the siRNA (red) to pathway genes B and F. Imperfect base-pairing between siRNA (red) and 39UTR region of

off-target genes results in down-regulation.
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Figure 2 | Training an siRNA off-target model. The seed sequence for an siRNA is defined here as the reverse complement of the heptamer at the 59 end

of the guide strand of the siRNA (bases 2–8), appended with an ‘‘A’’. Four orthogonal match types are defined between the seed sequence of the guide

(antisense) strand and a given 39UTR: PM (octamer; perfect match), M1 (heptamer, mismatch on base 1 of the guide seed), M8 (heptamer, mismatch of

base 8 of the guide seed), M18 (mismatch of bases 1 and 8 of the guide seed). The sequence of these match types are defined for two example siRNAs,

PIK3CB-6338 and PIK3CB-6340. The length of a 39UTR is also used as a predictive feature, as it has been empirically observed to be correlated with up-

regulation when there are no matches of an siRNA to the 39UTR (Figure 1). These features were then used in a linear regression against the mean log ratio

of the transcript from gene expression profiles in which the siRNAs were transfected into cells (profiles GSM134511 and GSM134512 respectively,

downloaded from GEO). The linear models trained from these two data sets were then cross-validated on each other, to demonstrate models derived from

one siRNA can be successfully applied to another. Each model was used to predict significantly (p-value , .01) down-regulated transcripts in the data set/

siRNA that it was not derived from, and the results of this cross-validation were displayed as ROC curves. The dashed line in each graph corresponds to the

expected performance of a random model (AUC50.5). Finally, the data sets were merged to generate a final off- target model.
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effects span the transcriptome, Haystack can detect biologically rel-
evant genes for which no siRNA exists in our screening library.

Discussion
Haystack analysis can be applied to any previous siRNA screen of
sufficient scale, preferably with normally distributed scores, to con-
firm hits via an orthogonal metric or to identify genes originally
missed due to library composition. Unfortunately, it is not yet stand-
ard for raw data from siRNA screens to be published, as microarray
expression profiling data are. Consequently, Haystack is available as
a download (http://rnai.nih.gov/haystack/Software.zip) or web-based
service (http://rnai.nih.gov/haystack/) for researchers who have per-
formed screens to analyze their data and confirm hits or find new hits
potentially missed by ‘‘on-target’’ analysis.

Finally, although a genome-specific siRNA library would be ex-
pected to have relatively poor on-target performance against cells
from another organism, a large-scale library would likely have the
seed sequence diversity required to perform Haystack analysis on
any organism having a RNA interference pathway. Thus Haystack
also presents a novel solution for siRNA screens in cells from organ-
isms for which no library is yet available.

Methods
Software used. Statistical analysis and graphs were generated using R14. ROC curves
were generated using the ROCR package15. The kernel density plot of 39UTR length
distributions was generated using the sm package16.

39UTR sequences. Human 39UTR sequences (a total of 34268 sequences) from the
Refseq17 collection were downloaded using the UCSC table browser18. These
sequences were matched against the IDs for the gene expression data sets for purposes
of training the off-target model. To create the matrix of predicted off-target effects,
170 sequences that were shorter than 20 nucleotides and 2554 sequences that were
non-coding (NR prefix in accession) were removed. In addition, 10852 sequences
were removed because they were identical to a 39UTR already included. The
remaining 20692 39UTR sequences were used to create the off-target matrix.

Gene expression data. Expression data previously shown to be enriched with
transcripts that were down-regulated and contained seed matches to transfected
siRNAs in their 39 UTRs7 were downloaded from the GEO website19 and used in
training and testing the siRNA off-target model.

Training and testing the off-target model. Features for predicting siRNA off-target
down regulation were selected based on the previously observed importance of the
seed sequence7,20 (bases 2–7 of the guide strand) and the observed preference for
adenine opposite from base 1 of the guide strand21. Although all possible match types
to the seed including one or two base-mismatch were considered, only four match
types (PM, M1, M8, M18) were statistically significant predictors of down-regulation.
The reverse complement of the guide strand seed sequence followed by an adenine
forms a perfect match (PM) and mismatches to base 1 (M1), base 8 (M8), or both
(M18) form the four different seed match types selected. In addition, we used the
length of the 39UTR as a predictive variable, since in our analyses longer 39UTRs were
correlated with up-regulation of transcripts in the absence of siRNA seed matches.
Linear models predicting the down-regulation of a transcript based on the number of
each match type observed in the 39UTR and the total length of the 39UTR were
trained separately on gene expression data from the transfection of two different
siRNAs. These models were then cross-validated on the data not used to train them,
and finally the data sets (Supplementary Data Set 1) were combined to train a final
model (Fig. 2).

Table 1 | Top 10 most statistically significant genes identified by Haystack Analysis. Genes that are part of the canonical Wnt pathway are in
bold (LEF1, AXIN2, CCND1, RAC1, CTNNB1, and LRP6). Z-scores and their respective ranks for three different siRNAs designed against
these genes are displayed. Scores and ranks in the top 10% are in bold, and would be considered hits. Some z-scores are not present (--)
because the library used in the screen does not contain any siRNAs designed against these genes

Gene Parameter Estimate from Haystack p-value

Single 1 Single 2 Single 3

Z-score Rank Z-Score Rank Z-Score Rank

LEF1 251.01 2.90E-62 212.38 749 214.39 387 27.47 3450
AXIN2 26.49 3.14E-20 12.85 633 3.15 10696 0.58 17900
SUMO2 34.61 9.77E-15 7.92 3033 9.68 1790 9.24 2075
CCND1 215.28 4.26E-14 24.22 8233 212.54 705 213.05 591
SLC25A23 214.72 3.76E-13 28.88 2300 29.94 1638 1.92 13800
RAC1 19.37 1.41E-11 -- -- -- -- -- --
CLEC18B 243.02 1.96E-11 -- -- -- -- -- --
CTNNB1 227.45 5.02E-11 245.4 1 20.15 19344 234.27 2
POU4F2 17.21 2.59E-10 -- -- -- -- -- --
LRP6 28.65 6.56E-09 219.75 68 225.61 11 211.65 973

Figure 3 | Reproducibility of t-statistics. T-statistics calculated in the first step of the method, used to evaluate the null-hypothesis that the predicted off-

target effects of the library on a given transcript are not correlated with the screening results. Large t-statistics in either the positive or negative direction

indicate that there is significant correlation or anti-correlation respectively between the off-target effects on the transcript and the screening results. These

correlations are reproducible across subsets of the data, in this case, across the data from each of the three single siRNAs designed against each gene.

www.nature.com/scientificreports
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siRNA libraries. The custom siRNA libraries used in screening were synthesized by
Sigma–Proligo. siRNAs were designed to have sequence asymmetry to increase
efficacy and had less than 17 bp of complementarity to other genes22. The library
contains 6605 sets of 3 siRNAs each designed to theoretically druggable genes.

siRNA screening data. Data used to evaluate these methods came from a genome-
scale siRNA screen23,24 in the HT1080 sarcoma cell line for genes involved in the
Wnt/b-catenin pathway. Cells were engineered to contain a luciferase reporter
coupled to a b-catenin-driven promoter, which was subsequently activated with
conditioned media containing Wnt-3a. In primary screening, both a whole genome
and a druggable library were screened in pools with at least three replicates. In
addition, all single siRNAs contained within the druggable pools were assayed
separately. All assay results were normalized to a plate-based non-targeted control to
yield a z-score.

Correlation and statistical significance calculations. Correlation between the
screen results z (or later the residual) and the predicted off-target effects of the library
on a given transcript were calculated using the formula:

rk~

PN
n~1

znOn,k{n�z �Ok

n{1ð ÞszsOk

where On,k is our prediction of the off-target down-regulation of each mRNA tran-
script k by each siRNA n. The t-statistic of the null hypothesis that the correlation is
actually zero is then calculated as:

tk~
rkffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1{r2
k

� ��
n{2ð Þ

q

with the associated p-value of the null hypothesis being derived from the Student’s t-
distribution with n-2 degrees of freedom, where n is the number of siRNA screening
results.

Since the off-target model makes the same predictions for every siRNA with the
same heptamer seed sequence (bases 2–8 of the guide strand) and there are only 16384
possible heptamers, we can pre-compute the predictions for each 39UTR. Using this
simplification, we do not need a separate set of predictions for each siRNA library. To
use this pre-computed matrix to calculate Haystack t-statistics for a set of single
siRNAs used in a screen, we first calculate the mean assay response for all siRNAs that
contain the same seed sequence. We then calculate the weighted correlation coef-
ficient and corresponding t-statistic between the predicted down-regulation caused
by each seed sequence and the mean observed response of that seed sequence in the
assay (or the residual in later steps), where the weights are the number of occurrences
of each seed sequence in the library. A weighted linear regression is performed at each
iteration between the selected Ok and the mean assay response for each seed. Likewise,
it is possible to use Haystack analysis on siRNA screens performed using pools by
calculating the mean response of the assay for all pools in which one of the component
siRNAs has a given seed sequence and then weighting the correlation coefficient and
linear regression by the number of pools in the screen containing that seed sequence.
PERL and R code for pre-computing off-target predictions from a FASTA formatted
file of 39UTRs and calculating these t-statistics from mean seed sequence responses
are supplied from the Haystack website (http://rnai.nih.gov/haystack/Software.zip).

Validation of statistical techniques. The validity of using Pearson’s correlation
coefficient, the t-statistic and corresponding p-value to estimate the statistical
significance of non-normally distributed vectors has been a subject of some debate25,
and seems to depend on the size of the vectors and the particular characteristics of the
distributions considered. Although the z-scores generated from this set of screening
data are fairly normal in their distribution, the predictions of off-target effects to
which we are comparing them are non-normal. Therefore, we tested how well the
Student’s T distribution was approximating the distribution expected at random.

Z-scores from the druggable singles collection were randomly permuted against
their original heptamers. Fig. 4a shows a q-q plot of the t-statistics resulting from the
random permutation (in red) and the distribution observed for the original non-
permuted data (in blue) compared to the Student’s T-distribution with 10029 degrees
of freedom (which is the length of the vectors for which the null hypothesis of zero
correlation is being tested, minus 2). As expected, the quantiles from our randomly
permuted data track well against the Student’s t-distribution, while the non-permuted
data does not.

We next performed 1000 random permutations of the same data set and noted
transcripts for which the Bonferroni corrected p-value (calculated from the t-statistic)
was less than 0.01. Fig. 4b shows the distribution of false positives observed in 1000
trials. Although the majority of permutations did not result in any false positives,
20.3% of the permutations resulted in one or more false positives, which is signifi-
cantly greater than the 1% of false positives that we would expect if Student’s t-
distribution perfectly modeled the null hypothesis we are testing. The mean number
of false positives per random permutation was 0.263. In comparison to the 1217
putative positives observed for the original, non-permuted data, we judge the risk of
false positives to be small and error in this approximation to be acceptable, given that
the alternative would be to use non-parametric statistics or random permutation to
estimate p-values, either of which would significantly reduce our sensitivity and
increase the already significant computation time required.

Figure 4 | Validation of Statistical Framework. (a) A q-q plot of t-

statistics generated by random permutation of the druggable singles data

(in red) and non- randomized data (in blue). (b) Incidences and number

of false positives in 1000 random permutations the druggable singles data.

(c) 39UTR length distribution for false positives (red) and positives (blue)

compared to the overall distribution of 39UTR lengths (black).

www.nature.com/scientificreports
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To further investigate the source of false positives, we plotted the distribution of
39UTR length for the false positives identified in the 1000 random permutations
versus all transcripts analyzed and those transcripts identified as positives in the non-
permuted data (Fig. 4c). There is a significant shift towards smaller 39UTRs in the set
of false positives compared to the general population. This may indicate that the
approximation of the Student’s T distribution is slightly less valid for shorter tran-
scripts. Similarly, transcripts identified as positives in the non-permuted set are
shifted towards longer 39UTRs than the set of all 39UTRs. We believe this may be the
case because true positives with short 39UTRs have a smaller ‘‘off-target signature’’,
being down-regulated by fewer siRNAs off-target and thus presenting less signal for
detection by the method. It is also possible that short 39UTRs represent incorrect or
incomplete sequences. Thus we conclude that transcripts with short 39UTRs may be
more likely to be both false positives and false negatives in Haystack analysis.
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