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Rare variants in the cardiac potassium channel KV7.1 (KCNQ1) and sodium channel NaV1.5 (SCN5A) are
implicated in genetic disorders of heart rhythm, including congenital long QT and Brugada syndromes
(LQTS, BrS), but also occur in reference populations. We previously reported two sets of NaV1.5 (n = 356) and
KV7.1 (n = 144) variants with in vitro characterized channel currents gathered from the literature. Here we
investigated the ability to predict commonly reported NaV1.5 and KV7.1 variant functional perturbations by
leveraging diverse features including variant classifiers PROVEAN, PolyPhen-2, and SIFT; evolutionary rate and
BLAST position specific scoring matrices (PSSM); and structure-based features including “functional densities”
which is a measure of the density of pathogenic variants near the residue of interest. Structure-based functional
densities were the most significant features for predicting NaV1.5 peak current (adj. R2 = 0.27) and KV7.1
+ KCNE1 half-maximal voltage of activation (adj. R2 = 0.29). Additionally, use of structure-based functional
density values improves loss-of-function classification of SCN5A variants with an ROC-AUC of 0.78 compared
with other predictive classifiers (AUC = 0.69; two-sided DeLong test p = .01). These results suggest structural
data can inform predictions of the effect of uncharacterized SCN5A and KCNQ1 variants to provide a deeper
understanding of their burden on carriers.

© 2019 The Authors. Published by Elsevier B.V. on behalf of Research Network of Computational and Structural
Biotechnology. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

Of an estimated 20,000 nonsynonymous single nucleotide
polymorphisms (nsSNPs) in each individual's protein-coding genome,
approximately 10 are presently predicted to be clinically actionable
[26]. nsSNPs in KCNQ1 (KV7.1 channel protein, which complexes with
the protein KCNE1 to generate the slow cardiac potassium repolariza-
tion current, IKs) and SCN5A (NaV1.5 channel protein, which generates
the cardiac depolarizing sodium current, INa), are associatedwith herita-
ble diseases of the heart [4,36,37,38,49] including dilated cardiomyopa-
thy [14,28], cardiac conduction disease [6,29], short QT syndrome [13],
sick sinus syndrome [15], types 1 and 3 congenital long QT syndromes
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(LQTS) [7,18,30,38], and Brugada syndrome (BrS) [5]. However, in
aggregate, rare nsSNPs in SCN5A and KCNQ1 also appear at ~2% in the
population, being more common than the rare arrhythmia disorders
associated with these genes, suggesting only limited roles in disease.
Determining the significance and effect size of these nsSNPs will be of
increasing importance as more people undergo genome or exome
sequencing [3,27].

Models used to predict the effect of these nsSNPs are most
commonly trained on the information-poor inputs of binary disease-
inducing/benign classification. Binary classification reduces informa-
tion. Moreover, the disease-inducing vs. benign distinction ignores
penetrance and the underlying molecular phenotype—or potentially
multiple overlapping molecular phenotypes—that may be most infor-
mative for therapy. A striking example involves patients presenting
with type 3 long QT syndrome due to a gain-of-function SCN5A variant
that also impairs trafficking of the encoded channel NaV1.5. Therapeutic
omputational and Structural Biotechnology. This is an open access article under the CC BY
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targeting of this gain-of-function with the antiarrhythmic drug
mexiletine can increase cell surface expression of the mutant channel,
leading to the unintended consequence of exaggerating the long QT
phenotype [34,35,46].

Using literature datasets we have recently curated for both IKs
[25,47] and INa, [22] we test the hypothesis that incorporating variant-
specific functional features from KCNQ1 and SCN5A nsSNPs and
structure-based features into predictionmodels will improve our ability
to predict if previously uncharacterized nsSNPs will result in altered
currents. Secondary structural elements are independent predictors of
deleterious variants in SCN5A and can improve current prediction
models [20], suggesting the potential utility of structure-based
approaches. In fact, the highest densities of disease-associated variants
across the entire spectrum of proteins fall largely in structured, func-
tional segments: the structure/function of these molecules are compro-
mised in the disease state [23,50]. Here, we generated a set of models
able to predict INa and IKs variant-specific current phenotypes. Identify-
ing the variant-specific functional perturbation will provide an addi-
tional tool to geneticists and physicians to determine if variants are
likely disease-causing and to more accurately stratify the degree of
risk that carriers who present without a phenotype will eventually
develop channelopathy-based heart disease.

2. Methods

2.1. Quantified functional parameters of KCNQ1 and SCN5A chosen for
analysis

For INa, we analyzed peak current, steady state V1/2 activation and in-
activation, late/persistent current, and recovery from inactivation [49].
For IKs, we analyzed peak current, V1/2 activation, and activation and de-
activation time constants [19].We selected these functional features be-
cause these parameters are most consistently reported in the literature.
We only included functional data from KV7.1 variants when functional
protocols involved homotetrameric mutated KV7.1 coexpressed with
KCNE1, since this protocol was most commonly reported in the litera-
ture. Details about how each dataset was collected is contained in the
original papers.([22,25]; C. G. [48]) Briefly, all variants were normalized
toWTmeasurements included in the same publication, i.e. peak current
mutant/peak current WT, or V1/2 activation (mutant) – V1/2 activation
(WT), etc.

Most functionally characterized variants in SCN5A were character-
ized by heterologous expression in human embryonic kidney cells
(291 of 356 total), so we used only patch-clamp data derived in
human embryonic kidney cells when available. For KCNQ1-KCNE1,
most variants were characterized in CHO cells (79 of 165 total). We
averaged the individual parameters in cases where multiple articles
reported functional characterization of the same variant in the same
cell system.

2.2. Generating structural models of KV7.1 (KCNQ1)

No experimental structure of transmembrane domains of human
KV7.1 exists, so we generated models using the recently released
Xenopus structure of a closed pore and open voltage sensor and the
human sequence NP_000209.2 with 91% identity [45]. We used com-
parative modeling within the Rosetta scripts utility in Rosetta 3.8 to
build KV7.1 [44]. We rebuilt loops on KV7.1 monomers, followed by re-
building the functional homotetramer with symmetry for 1000 models.
Most best-scoring structures had reasonable Cα RMSDs between 1 and
3. We selected the best scoring model for subsequent analysis. We
built models both with, and without, human calmodulin (CaM)
bound; however no significant differences were observed in structure-
based features, therefore, we selected KV7.1 with CaM bound for the
analysis presented here.
2.3. Generating structural models of NaV1.5

We generated two human NaV1.5 structural models using the
human sequence NP_000326.2 with the American cockroach sodium
channel NaVPaS structure [41] (45% identity), and electric eel NaV1.4
structure [52] (67% identity). Models of NaV1.5 were refined with
small, unstructured segments rebuilt using established protocols as for
KV7.1, generating 1000 models. Most best-scoring structures had rea-
sonable Cα RMSDs between 2 and 4. We selected the best scoring
model for subsequent analysis. We tested the performance of
structure-based features using both models, with very similar results.
Because models based on the NaVPaS structure allow the inclusion of
more variants in the analysis, we report here features calculated using
those structural models.
2.4. Summary of predictive features

Our objective was to predict variant-specific functional perturba-
tions for the cardiac ion channels KV7.1 + KCNE1 (IKs) and NaV1.5
(INa). We used the variant classifier models PROVEAN [9], PolyPhen-2
[1], and SIFT [24]; sequence alignment-based rate of evolution [32],
and mutation rates derived from BLAST position specific scoring matri-
ces (PSSM), and Point AcceptedMutation (PAM)matrix score [39]; and
several structure-based features including burial propensities (how
often certain residues are in the interior of the protein), neighbor counts
(number of neighboring residues), neighbor identities (propensity of
neighboring residues to be close in space) and what we term functional
density (k-nearest neighbors-inspired metric to estimate functional
perturbation). These predictive features are described below and sum-
marized in Table S1. As can be seen in the higher off-diagonal R2s, pre-
dictive classifiers were modestly degenerate; functional density
weight only, i.e. the local enrichment for variants that had been func-
tionally characterized, were more degenerate (described below,
Figs. S1 and S2).
2.5. Calculating structure-derived features

NeighborCount is derived from the number of nearest neighbors
weighted bydistance andwithin 11.4 Åof the residue of interest, a cutoff
found to be optimized to predict protein structure [12]. NeighborVector
is a variation of neighbor density, scaled by how evenly distributed
the nearest neighbor residues are to the residue of interest. Amino
acid neighbor count (aaneigh) and amino acid neighbor vector
(aaneighvector) are analogous to NeighborCount and NeighborVector,
respectively, modified to account for amino acid-specific propensities
for a given degree of burial [12,51]. NeighborCount, NeighborVector,
aaneigh, aaneighvector predictive features were generated using the
BioChemical Library (BCL) and the structures described above (for
more detail see [12,51]).
2.6. Generating a structure-based functional density predictor

In addition to the structure-based features described above, we lev-
eraged both the structural models and variant-specific functional
datasets for IKs and INa in estimating the “functional density”. Using an
approach akin to k-nearest neighbors, we calculated functional density
by averaging functional perturbations of variants near the variant of in-
terest weighted by the inverse of their distance from the variant of in-
terest. This calculated feature therefore depends on how many
functionally perturbed variants are near the variant of interest, with
regions in three-dimensional space dense with functionally perturbed
variants—“hotspots”—yielding a more perturbed prediction. However,
all functionally characterized variants contribute to this parameter.
We did not use a cutoff to determinewhether or not to include a variant
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in this analysis. Functional density is calculated as follows:
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where ρj is functional density of the jth residue and xth functional pa-
rameter, Δfunctionx,i is the change in functional parameter x for the ith

variant, and di,j is the distance between the center of mass of residues
i and j. i does include residue j, but only if the identity of the amino-
acid mutation is changed, i.e. mutation(i) ≠ mutation(j). A graphical
representation is shown in Fig. S3. The distribution of neighboring resi-
dues is similar between KV7.1 and NaV1.5, with a first shell of contacting
residues at ~6 Å and a second shell at ~11 Å (Fig. S4). Additionally, we
calculated the functional density weights alone (same equation as
above, but with Δfunction = 1) to test whether signal derived from
functional densities could be attributed to protein region bias in the var-
iants that have been functionally characterized.

2.7. Variant-specific INa and IKs functional perturbation predictive models

Because the number of features in our dataset was large relative to
the number of variants, regularizationwas used to fit predictivemodels.
We used a fully relaxed LASSO penalty, which has good predictive per-
formance overall [16]. Prediction models were 10-fold cross-validated.
After feature selection, the relaxed generalized linear model was
bootstrapped (1000 times) to obtain bootstrapped percentile intervals
for quantities of interest. We report the adjusted coefficient of determi-
nation, adj. R2, with 95% confidence intervals as a measure of overall
Fig. 1. Histogram distributions of all functional parameters for KV7.1 + KCNE1 (IKs) ana
prediction of the relaxed LASSO model. We focused on models where
LASSO shrinkage yielded at least one significant predictive feature and
the lower bound of the naïve 95% confidence interval for the adj. R2

was N0.10. Relatively few models were able to meet these minimum
criteria. Note that since the functional density features were calculated
from the data, we additionally subjected the fully relaxed LASSO to
higher-level 10-fold cross validation procedure which included a func-
tional density construction step. This accounts for any variability or
overfitting that might result from using data-determined functional
covariates.

2.8. Loss-of-function classification of INa and IKswith andwithout structure-
based features

We further classified loss-of-function variants by degree of func-
tional perturbation, for INa defined as b50% peak current [22] and for
IKs b 50% peak current or N 10 mV positive shift in V1/2 activation [25],
to estimate the impact of functional densities on this task. We used
commonly available variant sequence-based classifiers PolyPhen2,
PROVEAN, BLAST-PSSM, and rate of evolution individually, all com-
bined, and all combined with peak current functional density in a logis-
tic regression model. We generated 95% confidence intervals on AUCs
from the candidate models using bootstrap with 2000 replicates and
used a two-sided DeLong test to evaluate ROC difference significance.

3. Results

3.1. Ion channel missense variants have diverse effects on current

Histograms of all functional parameters analyzed are shown in
Figs. 1 and 2 and Table 1. For homotetrameric KV7.1 variants, the
lyzed in this paper. All values are referenced to WT which is either 100% or 0 mV.



Fig. 2. Histogram distributions of all functional parameters for NaV1.5 (INa) analyzed in this paper. All values are referenced to WT which is either 100% or 0 mV.

Table 1
Summary statistics of functional parameters.

NaV1.5 # of variants Median [1st Q, 3rd Q] WT

Peak Current 162 82 [36, 100] (%WT) 100%
Late Current 61 253 [122, 474] (%WT) 100%
V1/2 Activation 163 0.00 [−1.63, 3.09] (mV) 0 mV
V1/2 Inactivation 141 0.00 [−4.00, 3.44] (mV) 0 mV
Inactivation Recovery 85 98 [76, 138] (%WT) 100%

KV7.1 # of variants Median [1st Q, 3rd Q] WT

IKspeak 142 17 [0, 59] (%WT) 100%
V1/2 Act 93 6.40 [0.00, 23.80] (mV) 0 mV
tau_act 58 106 [94, 150] (%WT) 100%
tau_deact 57 87 [70, 115] (%WT) 100%

209B.M. Kroncke et al. / Computational and Structural Biotechnology Journal 17 (2019) 206–214
distribution of IKs current maxima is skewed towards 0% current com-
pared to WT function, likely a reflection of literature bias. The distribu-
tion of INa variant current maxima is bimodal with centers at 0%
(complete LOF) and 100% (WT). IKs V1/2 activation is also skewed to-
wards more positive values, whereas INa V1/2 activation is more evenly
distributed about 0 mV. INa late current is skewed towards higher
values. Time constants for IKs activation and inactivation and INa recov-
ery from inactivation are clustered around WT with very wide ranges,
populated with few points at extremely long characteristic times.

3.2. Models can significantly predict INa and IKs peak current but rely on dif-
ferent predictive features

Using a linearmodel,we could predict peak current, a proxy for over-
all channel function, for both IKs and INa (lower bound 95% CI adj. R2 of



Fig. 3. Experimental vs. predicted functional parameters for the subset of functional
features with significant predictive models (Table 2). Plot of experimental Iks peak
current, Iks V1/2 activation, and INa NaV1.5 peak current vs. predictions from a linear
regression. The resulting models explain 0.24, 0.29, and 0.27 of the variance in Iks peak
current, Iks V1/2 activation, and INa peak current, respectively.
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0.14 and 0.18 respectively; Table 2 and Fig. 3). Interestingly, sequence-
based predictors, especially BLAST-PSSM, had the most significant asso-
ciationwith IKs peak current (Table S2, Fig. S5) butwere not as integral to
predicting INa peak current (Table S3, Fig. S6). Conversely, functional
density for peak current provided most of the signal for INa but did not
contribute meaningfully to IKs peak current prediction. This suggests a
spatial dependence of peak current for INa not recapitulated by other
published predictive models, contrary to IKs. This difference may be
due inpart to the comparatively large fractionof reported SCN5Avariants
that do not perturb peak current yet are still associatedwith cardiac dis-
eases compared toKCNQ1, such as LQT3 variantswith increased late cur-
rent but no change in peak current; BLAST-PSSM is sensitive to
evolutionary fitness of residue changes which may be more homoge-
neously dependent on peak current for KCNQ1 andmore heterogeneous
for SCN5A. Alternatively, the spatial distribution of IKs peak current may
be more heterogeneous than for INa. The functional density weight, a
measure of the number of functionally characterized variants proximal
to a residue of interest, was selected out of the IKs peak current model,
but not for INa suggesting a modest sampling bias in regions of NaV1.5
sensitive to peak current perturbation.

3.3. Models can predict steady-state IKs V1/2 activation but not INa V1/2 acti-
vation or inactivation

Wewere able to significantly model IKs V1/2 activation. However, no
models could reliably predict INa V1/2 activation or inactivation. The IKs
V1/2 activation variance explained is relatively high, 0.29with a 95% con-
fidence interval lower bound of 0.12 (Table 2). The functional density
feature had a significant p-value, suggesting a three-dimensional local-
ization of regions that influence V1/2 activation (Table S2, Fig. S7).

3.4. Most INa and IKs functional parameters cannot be reliably predicted

Most IKs and INa functionalparameters assessedcouldnotbepredicted
with stable fully relaxed LASSO-regularized linear models and a lower
bound of the 95% confidence interval in adj. R2 N0.10. In many cases for
these functionalparameters, at leastoneof the10 folds in thecrossvalida-
tionresulted inonlyan intercept, i.e.βcoefficients forall inputted features
shrunk to0. For some functionalparameters, suchas timeconstants for IKs
activation and inactivation and INa late current and recovery from inacti-
vation times, lower numbers of characterized variants and relatively low
dispersion of values (Table 1, Figs. 1 and 2) mean the data themselves
are limiting prediction. Alternatively, or in addition, our chosen feature
set may contain little information relevant to the prediction of these
values, likely the case for INa V1/2 activation and inactivation, whichmay
be under sampled for the functional density analysis.

3.5. Structural features improve INa but not IKs loss-of-function classification

For comparison with published variant classifiers predicting binary
functional perturbation of these two channels [22,25], we calculated re-
ceiver operating characteristic curves for models trained using only
published models as features and models trained additionally with
structure-based features. We generated binary classifications of loss-
of-function SCN5A and KCNQ1 variants using criteria described above
Table 2
Summary statistics of predictive model.

Functional parameter Adj. R2† [95% CI†; CV‡]

IKs Peak Current 0.24 [0.14–0.46; 0.24]
IKs V1/2 Activation 0.29 [0.12–0.48; 0.23]
NaV1.5 Peak Current 0.27 [0.18–0.45; 0.23]
NaV1.5 V1/2 Inact. 0.16 [0.08–0.34; 0.05]

† CI (confidence interval)
‡ CV (10 fold cross-validation)
in themethods section.We calculated the ability of several variant clas-
sifiers to correctly classify LOF variants. The resulting areas under the
curve (AUCs) from logistic models trained to predict KCNQ1 LOF were
as follows (AUC; [95% CI]): PolyPhen-2 (0.81; [0.74–0.92]), rate of evo-
lution (0.77; [0.67–0.87]), BLAST-PSSM (0.84; [0.76–0.92]), PROVEAN
(0.83; [0.75–91]), all published predictive models (0.86; [0.78–0.94]),
all published predictivemodelswith functional density for peak current
(0.87; [0.79–0.94]). Most variant classifiers performed reasonably well
and the addition of structural information did notmeaningfully improve
classification for this task. However, the resulting AUCs from logistic
models trained to predict SCN5A LOF were as follows: PolyPhen-2
(0.60; [0.51–0.68]), rate of evolution (0.51; [0.42–0.60]), BLAST-PSSM
(0.61; [0.52–0.69]), PROVEAN (0.66; [0.57–0.75]), SIFT (0.53;
[0.48–0.58]), all published variant classifiers (0.69; [0.60–0.77]), all
published variant classifiers with functional density for peak current
(0.78; [0.70–0.85]). This improvement in classification ability for LOF
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variants in SCN5Awhen adding functional density for peak current (0.69
without vs. 0.78 with, p = .01) suggests structure-based features con-
tribute information not contained in other predictive features (Fig. S8)
an observation gaining appreciation elsewhere [42,43].

4. Discussion

4.1. A limited number of IKs and INa functional parameters can be predicted
reliably

Most IKs and INa functional parameters analyzed could not be pre-
dicted reliably: IKs time constants of activation and inactivation; and
INa V1/2 activation/inactivation, recovery from inactivation, and late cur-
rent. However, three important functional parameters could be pre-
dicted: IKs peak current and V1/2 activation and INa peak current. In
two of these models, IKs V1/2 activation and INa peak current, the func-
tional density features have the greatest predictive value, indicating
three-dimensional enrichment of regions of the proteins that influence
these functional parameters (Table S2 and S3, Figs. S6 and S7).

4.2. Functional density suggests regions in three-dimensional space are
enriched for influence on IKs V1/2 activation and INa peak current

“Functional densities” aremeasure of how dense pathogenic variants
are near the residue of interest, i.e. are they near “hotspots” that influence
a particular function. Given the influence of the functional density calcu-
lation inpredicting IKs V1/2 activation and INa peak current, there is likely a
spatial influence over both of these parameters. As can be seen in Figs. 4
and5, there are regions (blackcircles)wherevariants thathavea large in-
fluence on IKs V1/2 activation and INa peak current are localized. Not sur-
prisingly, the greatest perturbations in IKs V1/2 activation are in the
regions of the channel known tobe functionally critical: the selectivityfil-
ter, voltage-sensing helix in the voltage sensing domain, and in the con-
striction point in the middle of the pore, as we have seen previously.
[25] TheS6helix inKV7.1 influences activation inpart through its intrinsic
flexibility, a necessary property for activation. [40] S0 helix has been
found to provide stabilization to the voltage sensing domain. [17] S4
helix is canonically responsible for voltage-dependent activation
Fig. 4. Structural model of KV7.1with colored spheres at Cα positionswhere variants have V1/2 a
darker color displaying variants with more positive shifts in V1/2 activation. Selection criteria ar
The tetrameric structure gives the appearance of a greater number of functionally characterize
[8,11,31]. Interestingly, the variants most disruptive to INa peak current
are located in the extracellular region of the channel, mostly near the se-
lectivity filter. The pore region of voltage-gated sodium channels is ca-
nonically responsible for Na+ conduction [2] and is also enriched BrS1
variants, an NaV1.5 loss-of-function disorder [21,22]. These data suggest
the utility in leveraging combined structural and previously determined
functional perturbation datasets to predict functional disruption of previ-
ously uncharacterized channel variants.

4.3. Challenging regions to predict

To identify potential commonalities among themost challenging var-
iants to predict, we identified the five least congruent predictions, at ex-
tremesboth greater and less thanexperiment, for IKs peak current, IKs V1/2

activation, and INapeak current (Fig. S8–10). All variants,with one excep-
tion, occur in the transmembrane region andon structured segments, not
flexible loops or linkers. Some commonalities for challenges in predicting
IKs peak current andV1/2 activation prediction are the extracellular half of
thevoltage sensingdomain, especially S3andS4helices, and the interface
between the pore loop helix and helices S5 and S6. The S3 and S4 helices
of the voltage sensing domain undergo large conformational changes in
response to voltage [8,11,31] which are not captured by the static struc-
ture we used in this analysis. However, the distribution of predictions
both greater than and less than experiment within these two segments
suggests changes in function in these regions are heterogeneous possibly
due to individual residues in these regionshaving special roles in voltage-
gated activation. Interestingly, several of the challenging IKs peak current
variants are located on the S0 helix in KV7.1. We previously observed an
anomalous sensitivity to expression level in the S0 helix and suggest
the protein is stabilized by intramolecular interactions between the S0
helix and the rest of the voltage sensing domain. [17] Challenging vari-
ants for INa peak current are more evenly distributed though the protein
molecule (Fig. S10).

4.4. Classification of loss-of-function KCNQ1 and SCN5A variants

Classification of variants inherently reduces the richness of available
data, in our case the continuous functional perturbation induced by
ctivation data available. Colors indicate the degree of perturbation fromWTKV7.1,with the
e displayed in the inset. Several regions of apparent enrichment are highlighted by circles.
d variants.



Fig. 5. Structural model of NaV1.5 with colored spheres at Cα positions where variants have peak current available. Colors indicate the degree of perturbation from WT NaV1.5, with the
darker color displaying variants with less peak current. Selection criteria are displayed in the inset. A single extracellular region shows apparent enrichment and is circled. Even though
there are a greater number of variants functionally characterized for NaV1.5, KV7.1 appears to have a greater number due to its homotetrameric structure.
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variants in SCN5A and KCNQ1. However, to assess how well structure-
based features contribute to predicting variant loss-of-function classifi-
cation, we built logistic models trained on variants classified as loss-of-
function or not loss-of-function. For INa, structure-based features im-
prove the AUC (Fig. S11); for IKs there is no significant improvement.
This is consistent with our previous KCNQ1 work suggesting sequence
and evolutionary-based features, BLAST-PSSM and residue rate of evo-
lution, yield a competent classification model and suggests alternative
featureswill be needed to further improve prediction of KCNQ1 variants
[25]. For SCN5A, structure-based features improve the classification of
loss-of-function variants from an AUC of 0.69 to 0.78 (p = .01).

4.5. Recent interest in predicting functional perturbation

Recently. Clerx et al. attempted to predict classification of function-
ally compromised INa for many of the functional parameters we report
here [10]. The authors report modest classification ability for INa late
current and V1/2 activation/inactivation with better performance
predicting complete loss of function. We too find limited ability to pre-
dict most functional perturbations; however, we found significant and
quantitative correlations between predicted and experimental INa peak
current and challenge the use of functional classification in favor of
quantitative perturbation prediction. Interestingly, the authors also
noted difficulty in predicting late current which we recapitulate here
suggesting this feature is a more challenging target to predict. Further-
more, here we put forward a feature based on knowledge of the
three-dimensional structure, functional density, and demonstrate its
utility in predicting variant phenotype.

4.6. Application to variant annotation

The field is still evolving on how to include in silico predictions
and experimental functional data quantitatively [33]. We suggest
the model presented here could be useful in a pipeline whose first-
pass filter aims to detect pathogenic variants. Our previous
publication suggested the degree to which a loss-of-function variant
produces non-negligible penetrance was an INa peak current 50% or
less than that of WT. We suggest this implies the need to have a var-
iance explained of experimental data from our predictions N50% such
that the probability a variant predicted to be WT actually has b50%
peak current is very low. Predicting around 0.2 of the variance in rel-
evant IKs and INa functional parameters we show here is significant;
however, further improvement is needed before the predictive
models will be useful in classifying variants for clinical use.

4.7. Limitations

The dataset used was limited by those variants available in the liter-
ature, which are biased towards functionally perturbed variants. We
chose to analyze IKs generated with homozygous KV7.1 variants (co-
expressed with KCNE1) because this configuration is reported most
consistently in the literature. In a majority of cases, KV7.1 variants are
heterozygous in individuals. Furthermore, we have begun to investigate
the influence of variant-specific functional perturbation on clinical pre-
sentation [22], but the exact relationship is complicated (notably
including β-adrenergic regulation for IKs) and warrants further investi-
gation. Another limitation is that the structuralmodels are imperfect es-
timates of the functional state they represent and are also only
representative of a single functional state in channels known to have
at least two functional states. Models reflecting greater conformational
diversity may be another source for improved features.

4.8. Conclusions

We have derived predictive features from three-dimensional struc-
tures of NaV1.5 andKV7.1 andhave demonstrated these features improve
our ability to predict variant-induced functional perturbations in each
channel. These predictive features are based on recognizing that residue
positions for pathogenic variants are likely to be clustered in three-
dimensional space in proximity to other pathogenic residues. Based on
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this recognition, we can account for approximately 0.2 of the variance in
IKs peak current, IKs V1/2 activation, and INa peak current. For IKs V1/2

activation and INa peak current, structure-based features contribute
meaningfully to the predictive model and in a way not recapitulated by
commonly used sequence, evolutionary features, or genetic variant
classifiers methods. For predicting variant-induced loss-of-function,
structure-based features contribute meaningfully to INa but not IKs.
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