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Abstract

Introduction: Alzheimer’s disease (AD) is a progressive neurodegenerative disease

that currently affects 6.2 million people in the United States and is projected to

impact 12.7 million worldwide in 2050 with no effective disease-modifying therapeu-

tic or cure. In 2011 as part of the National Alzheimer’s Project Act, the National Plan

to Address Alzheimer’s Disease was signed into law which proposed to effectively

prevent AD by 2025, which is rapidly approaching. The preclinical phase of AD can

begin 20 years prior to diagnosis, which provides an extended window for preven-

tive measures that would exert a transformative impact on incidence and prevalence

of AD.

Methods: A novel combination of text-mining and natural language processing strate-

gies to identify (1) AD risk factors, (2) therapeutics that can target risk factor path-

ways, and (3) studies supporting therapeutics in the PubMed database was conducted.

To classify the literature relevant to AD preventive strategies, a relevance score (RS)

based on STRING (search tool for the retrieval of interacting genes/proteins) score

for protein–protein interactions and a confidence score (CS) on Bayesian inference

were developed. To address mechanism of action, network analysis of protein targets

for effective drugs was conducted. Collectively, the analytic approach, referred to as a

targeted-risk-AD-prevention (TRAP) strategy, led to a ranked list of candidate thera-

peutics to reduce AD risk.

Results: Based on TRAP mining of 9625 publications, 364 AD risk factors were

identified. Based on risk factor indications, 629 Food and Drug Administration-

approved drugs were identified. Computation of ranking scores enabled identification

of 46 relevant high confidence (RS & CS > 0.7) drugs associated with reduced AD

risk. Within these candidate therapeutics, 16 had more than one clinical study sup-

porting AD risk reduction. Top-ranked therapeutics with high confidence emerged

within lipid-lowering, anti-inflammatory, hormone, and metabolic-related drug

classes.

Discussion:Outcomes of our novel bioinformatic strategy support therapeutic target-

ing of biological mechanisms and pathways underlying relevant AD risk factors with
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high confidence. Early interventions that target pathways associated with increased

risk of AD have the potential to support the goal of effectively preventing AD by

2025.
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1 INTRODUCTION

Alzheimer’s disease (AD) is a progressive neurodegenerative disease

leading to cognitive and neurological disabilities that ultimately result

in loss of autonomy and independent living.1–3 AD has a preclini-

cal phase that can begin 20 years prior to diagnosis.1,2 The under-

lying pathophysiology of AD is complex, with multiple schools of

thought ranging from the amyloid cascade hypothesis,4,5 tau-based

mechanisms,5,6 metabolism/ bioenergetic–based theories including

lipid dysregulation,7,8 among others.9–13 It is estimated that 11% of

people over the age of 65 will develop AD.2 Currently an estimated

6.2 million persons are living with AD in the United States, a num-

ber projected to increase to 13.8 million by 20502 and 152 million

worldwide.14 Of note, women are at two-fold greater life-time risk for

AD relative tomen and comprise more than 60% of persons living with

the disease.11,12,15,16 In 2021, the annual cost for AD patient health

care will be $355 billion.2

In 2011, the National Plan to Address Alzheimer’s Disease, as part

of the National Alzheimer’s Project Act (NAPA), was signed into law

with the goal to prevent and effectively treat AD by 2025.17 Because

underlying mechanisms leading to AD can occur up to 20 years before

diagnosis, the window of opportunity to prevent and delay the disease

is substantial. While double-blind placebo-controlled prevention trials

for AD are not executable by 2025, it is possible to determine, based

on clinical standard-of-care, the effect of therapies that target AD risk

factors for their impact on AD risk. Projections estimated that a 1-year

delay inADonset by 2020would result in roughly 9million fewer cases

in 2050.18

Based on this rationale, we developed a computational approach

to evaluate therapeutics that target known AD risk factors for their

impact on risk of developing AD. Specifically, we conducted a com-

bination of text-mining and natural language processing strategies

to mine all currently available literature and combined this search

with two ranking systems: (1) a relevance score based on STRING

(search tool for the retrieval of interacting genes/proteins) scores

formula used in scoring protein–protein interaction and (2) a con-

fidence score using a Bayesian inference approach to classify the

body of literature relevant to preventive strategies for AD. Using our

targeted-risk-AD-prevention (TRAP) strategy, a ranked list was gen-

erated for therapeutics associated with reduced risk of AD. Finally, a

system biology analysis was conducted to evaluate drug-target inter-

action networks underlying identified therapeutics to identify mecha-

nisms of actions along with potential for synergistic and combinatorial

effects.

Outcomes of our novel bioinformatic TRAP strategy supports ther-

apeutic targeting of biological mechanisms and pathways underlying

AD risk factors. Based on our analyses, we propose that early inter-

ventions that target pathways associated with increased risk of AD

have the potential to support the goal of effectively preventing AD by

2025.

2 METHODS

The computationally driven TRAP strategy, described in detail below,

aims at identifying: (1) risk factors associated with AD (Figure 1A),

(2) therapeutics prescribed to treat AD risk factors (Figure 1B), and

(3) the most promising preventative strategies for AD based on the

clinical and pre-clinical studies available that demonstrate their poten-

tial benefit on AD (Figures 2, 3). The TRAP strategy utilized PubMed19

and theMedical Subject Headings (MeSH) thesaurus.20 MeSH is a con-

trolled and hierarchically organized medical vocabulary produced by

the National Library of Medicine and is used for indexing articles for

PubMed.DifferentMeSHtermsare assigned toPubMedarticles allow-

ing for the classification of medical publication content. MeSH terms

are also classified by subject categories (e.g., diagnosis, complications)

withmore specific terms arranged beneath broader terms.20

2.1 AD risk factor identification and therapeutic
selection

Risk factors associated with AD were identified by first querying

abstracts, titles, and MeSH terms of publications in PubMed con-

taining both “Alzheimer” and “risk factor” words (Query 1, Figure 1A).

Next, MeSH terms related to the selected publications were extracted

and mined to identify the final list of risk factors for AD (Query 2,

Figure 1A). MeSH terms belonging to the MeSH categories Diagnosis,

Complications, Prevention & control, and Drug Therapy were retained,

whereas all MeSH terms that did not correspond to diseases, com-

plications, or potential risk factors were eliminated. From this, a set

of risk factors was obtained for AD (e.g., hypertension, type 2 diabetes,

hypercholesterolemia, etc.). A further step of filtering was manually

performed to exclude the MeSH terms corresponding to a diagnosis

of AD as a risk factor (e.g., Alzheimer’s disease, dementia, memory

disorders, etc.).

Step 2 of the initial analysis (Figure 1B) involved identification of

Food and Drug Administration (FDA) therapeutics currently approved
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for AD-associated risk factors to identify the pool of potential preven-

tive therapeutics.

To identify MeSH terms of FDA-approved drugs, DrugBank21 and

Therapeutic Target Database (TTD)3 repositories (Query 3, Figure 1B)

were queried for drug-disease associations. FDA-approved drugs for

AD treatment were not included (e.g., donepezil, galantamine, rivastig-

mine, memantine, and idebenone22).

2.2 Drug study relevance score

For each drug approved for an AD risk factor identified in the

previous steps, PubMed was used to retrieve publications relative

to AD and the drug of interest (Figure 2) as “(Alzheimer*[MeSH

Terms] AND “Drug”[MeSH Terms]) OR (Alzheimer*[Title/Abstract] AND

“Drug”[Title/Abstract])” (Figure 2, Query 4). To avoid overrepresentation

of therapeutic candidates, review articles were not included.

Subsequently, a point scoring systemwith amaximum of 100 points

for each publication was developed based on abstract content to

weight the relevance of a drug with associated AD risk (Table 1). To

assess potential of a drug to prevent AD, the highest score (100 points)

wasassignedwhenboth the “drug of interest” (50points) and “Alzheimer”

(25 points) words appeared in the title and theword “risk” or “diagnosis”

of AD (25 points) appeared within five words to the word “Alzheimer”

in the abstract or in the title. The range of words considered do not

include stop words, that is, a set of commonly used words in English,

such as “the,” “of,” and “a.” We developed a tiered point system based

on the location of the scored words contained within the title or first

and last sentence of the abstract (Table 1). The schema for score gener-

ation appears in Table 1.

Because each drug could be associated with multiple publications,

an overall relevance score (RS) for each drug dwas developed:

RS (d) = 1 −
npub∏
i

(
1 −

Si
100

)

where npub was the total number of publications related to the drug

d and Si was the score in points apportioned to the publication i.

This RS function was derived from a STRING protein–protein inter-

action (PPI) scoring system used to assign a PPI strength of the sup-

porting evidence as per Vitali et al.23–25 Based on the STRING score,

a RS threshold of 0.7 was selected to consider a drug relevant to

study objective to identify therapeutics with potential to prevent AD.

Impact of a publication was reflected in a greater RS relative to sum-

mation of individual subscores (points associated to a single publica-

tion). Multiple publications supporting a single drug was reflected in a

higher RS.

To specifically identify clinical study publications, titles and

abstracts of clinical- and population-level studies (retrospec-

tive/prospective studies, clinical trials) were mined for common

key words used to report clinical findings (i.e., “Odds ratio,” “Relative

risk,” “Hazard ratio”) (Figure 2, Query 5).

HIGHLIGHTS

∙ Alzheimer’s disease (AD) prevention therapeutics target

initiating mechanisms of AD not the full range of systems

present in AD.

∙ Thus, therapeutics strategies for preventing AD are not

the same as treating AD.

∙ Therapeutics targeting AD-specific initiating risk factors

can prevent or delay the cascade ofmechanisms leading to

AD.

∙ We used a novel bioinformatic strategy of targeted-risk-

AD-prevention (TRAP) to analyze publications and rank

therapeutics.

∙ We identified promising candidates to prevent AD by

2025 in the current clinical and preclinical pipeline.

RESEARCH INCONTEXT

1. Systematic review: To evaluate potential therapeu-

tics that address the goal of preventing Alzheimer’s

disease (AD) by 2025, we developed a targeted-risk-AD-

prevention (TRAP) strategy. TRAP is based on a compu-

tational pipeline to mine PubMed and rank preventive

therapeutics that target AD risk factors.

2. Interpretation: TRAP analysis identified and ranked spe-

cific drugs associated with AD reduced risk. The 16 drugs

that reduced AD risk were supported by clinical stud-

ies and includedmetabolic, statin, anti-inflammatory, hor-

mone, cardiac, and psychiatric drug classes.

3. Future direction: To achieve maximal success in prevent-

ing AD, two criteria will have to met. First, to prevent AD,

a precision therapeutic approach for controlling risk fac-

tors while also sustaining brain health. Second, to delay

AD, a combination of therapies that target multiple risk

factors to sustain brain function.

2.3 Drug risk confidence score

A final screening of therapeutic candidates was performed to clas-

sify the publications based on their consensus of impact on AD risk.

Abstracts were again mined for “reduced risk” or “elevated risk” words

(Figure 3). Reduced risk searchwords included “lower,” “decrease,” “pro-

tective,” “reduce,” “improve,” “prevent,” whereas elevated risk search

words included “elevate,” “increase,” “deficit,” “worsen.” Because these

words are commonly found in medical papers, only publications for a

drug and its effect on AD riskwere included if thewords “reduced risk”

or “elevated risk” were found in the range of five words before or after

the word “Alzheimer.” The range of words considered do not include
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F IGURE 1 Targeted-risk-Alzheimer’s disease-prevention (TRAP)
pipeline part 1. A, Alzheimer’s disease risk factor identification. B,
Selection of drugs approved to treat risk factors. MeSH,Medical
Subject Headings

stop words, e.g.commonly used word in English, such as “the,” “of,” and

“a.” Finally, to include only publications in which the impact of AD risk

was associated with the drug effect as described in the results or con-

clusions, risk-associatedwordswere required to occur in the last three

sentences of the abstract. For example, studies reporting a list of risk

factors for AD in the background of a paper (e.g., diabetes can increase

the risk of AD26) unrelated to the drug effect were not included in the

analysis. This procedure resulted in the definition of a vector for each

drug containing “reduced risk” or “elevated risk” for each publication

based on the risk words found in the abstract. An overall risk direction

for a drug d was defined using a Bayesian inference approach. Con-

fidence of the risk direction (confidence score [CS]) was assigned to

eachdrugbasedon thenumberof publicationswith consensuswith the

risk. Specifically, the risk direction and confidence score were assigned

F IGURE 2 Targeted-risk-Alzheimer’s disease-prevention (TRAP)
pipeline part 2. Analysis of drug therapies impact on Alzheimer’s
disease, computation of relevance score (RS), and identification of
clinical studies. MeSH,Medical Subject Headings

by assuming the risk direction value x associated to each publication

related to a drugwere distributed as Binomial distributionwith n and π
parameters as:

f (x|𝜋) = Binom (x|𝜋; n)
where the prior distribution π is distributed as a Beta with a and b

parameters

g (𝜋) = Beta (𝜋|a; b)
with= b = 2. Therefore, π is posterior distributed as a Beta as well:

g (𝜋|x) = Beta
(
𝜋|a′; b′)
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F IGURE 3 Targeted-risk-Alzheimer’s disease-prevention (TRAP)
pipeline part 3. Computation of confidence score (CS) to evaluate and
rank therapeutic effect on Alzheimer’s disease (AD) risk

where a′ = a + x and b′ = b + n − x, where n is the total number of

publications associated to a drug and x is the number of publications

reporting reduced or elevated AD risk. The confidence scoreCS(d) for a

drugd to reduce AD risk was defined as themode of this distribution:

CS (d) = Mode (g (𝜋|x)) = a′ − 1
a′ + b′ − 2

The resulting CS values ranged from 0 to 1, with a score of 1 indi-

cating that 100% of the publications confirmed that drug d impacted

AD risk in a single direction. In contrast, a CS of 0.5 corresponded to

inconclusive risk direction for d because the number of publications

reducing or elevating AD risk were equivalent. For example, if a drug

has n = 100 publications of which 70 reported reduced risk (x = 70),

the CS+(d) =0.702 because a′ = 2 + 70and b′ = 2 + 100 − 70 indicat-

ing high confidence for the drug to reduce AD risk. In contrast, if a

drug is associated with a single publication, then n = 1and the study

reporting reduced AD risk x = 1, CS(d) results in a CS of 0.666 where

a′ = 2 + 1and b′ = 2 + 1 − 1 indicating the drug may reduce AD risk

but is associatedwith lower confidence for efficacy to prevent AD. The

same process was used to determine whether a drug elevates risk of

AD. Drugs surpassing a CS threshold of 0.7 were included.

2.4 Drug-target networks

Drug-target interactions (DTIs) were extracted from DrugBank21 to

construct DTI networks as previously described in Torrandell-Harlow

et al.27 Networkswere visualized by using Cytoscape software 3.8.2.28

3 RESULTS

Based on the TRAP strategy to detect AD risk factors, 9625 pub-

lications were identified that linked a medical condition to AD

(Figure 1A). Based on this analysis, 364 individual risk factors were

identified from the relative MeSH terms (Figure 1A, Figure S1 in

supporting information). Within the risk factors, there were well-

documented medical conditions previously associated with risk of AD

including diabetes,29 hypertension,30 cardiovascular diseases,31 and

stroke/vascular diseases32 (Table S1 in supporting information). Repli-

cation ofwell-documentedAD risk factors validates the first aspects of

the TRAP strategy.

Basedon theADrisk factor list, 629FDA-approveddrugswere iden-

tified based onmedical use indications annotated in the DrugBank and

TTD databases (Figure 1B, Table S2 in supporting information). These

resultswere used to generate a pipeline to identify publications report-

ing a risk factor therapeutic with risk of AD, which resulted in 11,139

publications (Figure 2) for 445 drugs (Table S2).

Computation of a RS enabled filtering of publications that did not

meet the threshold (RS < 0.7) resulting in a total of 164 ranked drugs

(Table S3 in supporting information).Within this drug set, 53 therapeu-

tics had at least one clinical study associated with AD risk (Table S3).

Computation of a CS enabled categorization and further ranking of

therapeutics based on direction of AD risk modification (Table S4 in

supporting information). CS ranking and thresholding (CS>=0.7) iden-

tified a total of 46 drugs associated with reduced risk of AD (Table 2,

Table S4). Of the 46 identified drugs, 16 were reported in at least one

clinical study of AD risk reduction (Table 2), while the remaining 30

were in the pre-clinical pipeline and were not supported by clinical

TABLE 1 Point values for study relevance ranking

IF “Alzheimer” in: Score IF “Drug” in: Score

Title 25 points Title 50 points

OR First abstract sentence 15 points OR First abstract sentence 30 points

OR Last abstract sentence 15 points OR Last abstract sentence 30 points

+ IF ‘Risk/Diagnosis’ within -5[AD]+5words 25 points
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TABLE 2 Drugs supported by clinical studies resulting from TRAP pipeline

Drug name

# Total

reports*

# Reports

included

in stats†
# Positive

reports

#Negative

reports CS RS Drug category

Pioglitazone 115 11 11 0 0.923 1 Metabolic

Ibuprofen 180 18 17 1 0.900 1 Anti-inflammatory

Indomethacin 118 8 8 0 0.900 1 Anti-inflammatory

Atorvastatin 101 15 14 1 0.882 1 Statin

Pravastatin 41 6 6 0 0.875 1 Statin

Simvastatin 140 19 17 2 0.857 1 Statin

Estradiol 509 80 65 15 0.805 1 Hormone

Celecoxib 82 8 7 1 0.800 1 Anti-inflammatory

Rosuvastatin 18 3 3 0 0.800 0.995 Statin

Lisinopril 9 3 3 0 0.800 0.987 Cardiac

Vitamin A 73 17 14 3 0.789 1 Other

Valproic acid 83 12 10 2 0.786 1 Psychiatric

Naproxen 77 12 10 2 0.786 1 Anti-inflammatory

Diclofenac 27 6 5 1 0.750 1 Anti-inflammatory

Metformin 146 13 10 3 0.733 1 Metabolic

Testosterone 260 39 29 10 0.732 1 Hormone

*Total number of publications including the drug of interest and the word “Alzheimer.”
†Total number of publications including words associated with reduced risk of AD.

CS, confidence score; RS, relevance score.

studies (Table S5 in supporting information). PubMed IDs for all pub-

lications related to the ranked drugs appear in supplemental Tables S4.

Top therapeutics supported by clinical studies (Table 2) with

reduced AD risk included five anti-inflammatories (e.g., ibuprofen,

indomethacin), four lipid-lowering (e.g., pravastatin, simvastatin), two

metabolic-related (pioglitazone and metformin), two hormone (estra-

diol and testosterone), one psychiatric (valproic acid), one cardiac

(lisinopril) therapeutic, and vitamin A.

Additionally, TRAP analysis identified therapeutics in the pre-

clinical pipeline for which no clinical study was found to support their

potential to reduce AD risk (Table S5). These drugs included 11 cardiac

(e.g., telmisartan, nitroprusside, and verapamil), five metabolic-related

(e.g., liraglutide, rosiglitazone), four anxiety/psychiatric (e.g., fluoxetine,

citalopram), and three anti-inflammatory (e.g., flurbiprofen, capsaicin)

drugs.

Drug therapies in the reduced risk category that were supported

by clinical studies are plotted based the number of publications

on reduced AD risk and CS (Figure 4A) to visualize the impact and

magnitude of evidence for each therapy type. Therapeutics targeting

the metabolic, inflammatory, and cholesterol biosynthesis pathways

generated the strongest confidence preventing AD. Results of TRAP

analyses indicated that three out of five statin drugs were in the top

confidence scored drugs (CS > .850) with atorvastatin and pravastatin

gaining the highest confidence scores (CS = 0.882 and CS = 0.875)

to reduce AD risk, respectively. Ibuprofen and indomethacin resulted

in the highest confidence scored anti-inflammatory therapeutics

(CS = 0.900). The highest ranked metabolic therapeutic was pioglita-

zonewith aCSof 0.923. Although thehormone therapies, estrogen and

testosterone had the greatest number of supporting publications (509

and 260, respectively) with 65 and 29 associatedwith reducedAD risk,

the variability of results across publications impacted CS ranking and

resulted in a CSs of 0.805 for estradiol and 0.732 for testosterone.

Analysis of drug-target networks for preventive therapeutics

resulted in 96 nodes (16 drugs and 80 proteins) and 102 edges

(Figure 4B), where on average a drug was associated with six proteins

(i.e., average degree of drug nodes= 6).

As expected, therapeuticswithin the samecategory shared common

targets and pathways of action. For example, all the anti-inflammatory

drugs act on inhibition of the genes PTGS1 and PTGS2, components of

theCOX/inflammatorypathway. Similarly each statin shares a common

target, HMGCR, whereas specific statins target pathways unrelated to

cholesterol such as HDAC2 and ITGAL.33 Further, the estrogen recep-

tor ESR1 is targeted by both the estradiol and testosterone hormone

therapies. Of note, lisinopril, metformin, and vitamin A aremulti-target

drugs that do not overlap with other nodes in the network.

4 DISCUSSION

AD is a major focus of biomedical and clinical research with pharma-

ceutical and academic groups conducting clinical trials of candidate

treatments34,35 andpreventive interventions.36,37 With the recent fail-

ures of large, phase 3 clinical trials38–41 and the extended timeline

for effective treatment development, preventive strategies are of even
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F IGURE 4 Drug reducing Alzheimer’s disease (AD) risk supported by clinical studies. A: Bubble plot for confidence score and number of
publications with reduced AD risk. Bubble size corresponds to the total number of studies reporting drugs and AD. Bubble color corresponds to
the category of therapeutic action. B: Drug-target interaction network for selected drugs. Drugs nodes are colored according to drug category and
are shapedwith a diamond. Target nodes are shapedwith circles and yellow targets represent targets shared bymultiple therapeutics. Thicker
edges are associated to targets shared bymultiple drugs. Abbreviations: AD, Alzheimer’s disease; CS, confidence score; RS, relevance score; TRAP,
targeted-risk-Alzheimer’s disease-prevention
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greater importance to reduce the national and global burden of AD.

With this understanding, the aim of this study was to analyze the cur-

rent literature of both clinical and pre-clinical studies to identify thera-

peutics with high relevance and confidence for reducing risk of AD and

achieving the NAPA goal of preventing AD by 2025.

The innovative TRAP approach utilized herein synthesized both

clinical andpreclinical data to identify therapeutics associatedwith risk

factors and through the generation of relevance and confidence scores

determined effectiveness to reduce AD risk. TRAP identified specific

drugs associated with prevention of AD within classes of lipid and

metabolic regulators, anti-inflammatories, psychiatric, and hormone

therapies. Expanding upon a recent scoping review42 that provided

broad drug classes that were associated with AD prevention, TRAP

identified specific drugs that target AD risk factors coupled with rank-

ings based on relevance and confidence. The selectivity of the TRAP

approach for identifying preventive therapeutics is underscored by the

detection and subsequent elimination of currently prescribed FDA-

approved AD medications (e.g., donepezil, galantamine, rivastigmine,

memantine, and idebenone). Importantly, 16 (≈35%) of the 46 promis-

ing preventive therapeutics had at least one clinical study supporting

its efficacy in AD prevention.

The TRAP strategy relies on the premise that a risk factor is tar-

getable with a specific drug class, whereas AD has a multiplicity of

targets resulting from activation of multiple pathways during pro-

gression of the disease.30,43,44 Thus, single-target therapies effective

in reducing risk of AD will not necessarily be effective for treat-

ment for AD.45,46 However, combination therapies tailored to the

cascade of risk factors still hold potential. Because risk factor biol-

ogy is linked to the pathophysiology of AD, combination therapy that

targets the preclinical risk factor profile could provide a combinato-

rial strategy to treat AD. From this analysis, the most impactful risk

factors that target biological mechanisms and pathways underlying

AD risk include the metabolic, immune, cardiovascular, and endocrine

systems.9,33,47–50

The analysis of a drug-target interaction network revealed different

biological networks of drug action (Figure 4B). On average, identified

preventive therapeutics target six proteins, which indicates the effi-

cacy multi-target profile required for AD prevention likely due to the

multi-system biology contributing to AD.

The network analysis indicated that while drugs of the same class

share targets, drugs belonging to different categories can share the

samepathways of actions. For example, all the anti-inflammatory drugs

act on proliferator-activated receptor (PPAR) family genes as well

as pioglitazone (a drug used to control high blood sugar in patients

with type 2 diabetes) and valproic acid (a drug primarily used to

treat epilepsy and bipolar disorder). The gene PPARG, implicated in

the pathology of several diseases including obesity, diabetes, and

atherosclerosis, is targeted by anti-inflammatory, metabolic, and psy-

chiatric drugs. Interestingly, valproic acid acts on the gene HDAC2,

which is also a statin target. Valproic acid is the only therapeutic shar-

ing targets with three different drug categories (anti-inflammatory

drugs, statins, and metabolic drugs) and may explain the neuroprotec-

tive effect of valproic acid in combination with estrogen.51

In contrast, the drug-target network also specified drugs within

a class that targeted unique proteins. These findings indicate drugs

within a common class also have unique targets. For example,

indomethacin is the only anti-inflammatory drug that inhibits

PTGR2, a gene encoding an enzyme involved in the metabolism of

prostaglandins; GLO1, a gene associated with hyperglycemia; and

AKR1C3, a gene encoding enzymes catalyzing the conversion of

aldehydes and ketones to their corresponding alcohols by utilizing

NADH and/or NADPH as cofactors. Another example is ibuprofen,

which specifically acts on FABP, a gene known to play a role in the

intracellular transport of long-chain fatty acids; thrombomodulin

(THBG), a gene known to be the cause of thromboembolic disease;

and BCL2, which encodes an integral outer mitochondrial membrane

protein that blocks apoptotic cell death.

The common versus drug-specific pathways of actions warrant fur-

ther investigation for three main reasons. First, the efficacy of drugs

within the same category could vary in preventing AD.33,50 Second, to

achieve a precision and personalized preventive medicine some drugs

could bemore effective in specific phenotypic and genotypic subpopu-

lations. Third, given the superior efficacy that could be achieved with a

poly-pharmacological approach, system biology analyses are required

togain insights intobiological pathways and toachievepredictive valid-

ity of combinatorial therapeutics.

Limitations include the analysis of studies without accounting

for sample sizes, which limit the ability to draw conclusions about

largemixed populations. Additionally, reports highlighting drug classes

instead of individual drugs were not included in the analysis. TRAP

analysis did not identify any therapeutics passing the TRAP threshold-

ing system that indicated elevated AD risk. This underscores both (1)

the lack of drug studies conducted to assess increased AD risk, and (2)

the lack of a common and well-defined language to report studies with

a negative finding. As expected, most published studies were designed

to assess a therapeutic effect on reducing AD risk rather than increas-

ing risk. An important aspect that is not included in the TRAP calcula-

tion is the inclusion of demographic data (age, sex, ethnicity, genotype,

disease stage, socioeconomic status) to stratify efficacy of each thera-

peutic forADprevention in a givenpopulation.However, future studies

will investigate preventative therapeutic efficacy based on the above

factors that could advance precision therapeutic approaches for pre-

vention and delay of AD. To this end, our current pipeline can be mod-

ified and extended to incorporate precision medicine publications to

stratify the TRAP analytic approach based on demographic factors.

To our knowledge, this is the first analysis of currently available lit-

erature to explore and rank specific therapeutics for AD prevention

with a computational pipeline that provides a curated list of the most

promising candidate drugs. The TRAP pipeline is composed of two

novel scoring strategies, a Relevance and a Confidence Score. First,

to select drugs for study analysis, we developed a RS to assign points

to a single drug-associated publication that evaluates drug-AD rela-

tionships through text-mining. Second, we developed a CS to rank and

quantify the impact of drugs on AD risk prevention. This relies on a

Bayesian statistic to assign a score capturing themagnitude of reduced

or elevated AD risk across all publications for drugs passing relevance
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thresholding. The TRAP strategy identifies relevant risk factors for AD

and supports therapeutic targeting of biological mechanisms and path-

ways underlying AD risk factors. Incorporation of therapeutics that

reduce risk of AD into clinical care decision-making could impact the

course of disease. Outcomes of our analyses indicate early interven-

tions that target pathways associated with increased risk of AD sup-

port the goal of effectively preventing AD by 2025.
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