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Abstract

Background: A generally accepted approach to the analysis of RNA-Seq read count data does not yet exist. We
sequenced the mRNA of 726 individuals from the Drosophila Genetic Reference Panel in order to quantify
differences in gene expression among single flies. One of our experimental goals was to identify the optimal
analysis approach for the detection of differential gene expression among the factors we varied in the experiment:
genotype, environment, sex, and their interactions. Here we evaluate three different filtering strategies, eight
normalization methods, and two statistical approaches using our data set. We assessed differential gene expression
among factors and performed a statistical power analysis using the eight biological replicates per genotype,
environment, and sex in our data set.

Results: We found that the most critical considerations for the analysis of RNA-Seq read count data were the
normalization method, underlying data distribution assumption, and numbers of biological replicates, an observation
consistent with previous RNA-Seq and microarray analysis comparisons. Some common normalization methods, such
as Total Count, Quantile, and RPKM normalization, did not align the data across samples. Furthermore, analyses
using the Median, Quantile, and Trimmed Mean of M-values normalization methods were sensitive to the
removal of low-expressed genes from the data set. Although it is robust in many types of analysis, the normal
data distribution assumption produced results vastly different than the negative binomial distribution. In addition,
at least three biological replicates per condition were required in order to have sufficient statistical power to
detect expression differences among the three-way interaction of genotype, environment, and sex.

Conclusions: The best analysis approach to our data was to normalize the read counts using the DESeq method
and apply a generalized linear model assuming a negative binomial distribution using either edgeR or DESeq
software. Genes having very low read counts were removed after normalizing the data and fitting it to the
negative binomial distribution. We describe the results of this evaluation and include recommended analysis
strategies for RNA-Seq read count data.

Keywords: RNA-Seq, Differential expression analysis, Drosophila melanogaster

* Correspondence: susan.harbison@nih.gov
1Laboratory of Systems Genetics, Center for Systems Biology, National Heart
Lung and Blood Institute, 10 Center Drive, MSC 1640, Bethesda, MD 20892,
USA
Full list of author information is available at the end of the article

© 2016 Lin et al. Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to
the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Lin et al. BMC Genomics  (2016) 17:28 
DOI 10.1186/s12864-015-2353-z

http://crossmark.crossref.org/dialog/?doi=10.1186/s12864-015-2353-z&domain=pdf
mailto:susan.harbison@nih.gov
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/


Background
Next-generation transcriptome sequencing promises to
reveal the underlying complexities of gene expression.
Lagging behind the technology is a generally accepted
approach to the analysis of RNA-Seq data, including the
experimental design, normalization, and statistical ana-
lysis approach [1]. One issue is whether low levels of
read counts qualify as a rare transcript, or whether they
should be discarded due to the uncertainty in their
quantification [2]. Both RNA-Seq and microarrays are
problematic for the detection of rare transcripts, al-
though for different reasons [3, 4]. In RNA-Seq technical
replicates of the same biological sample may not contain
a given transcript if it is rare [2, 5]. Low-expressed
transcripts can skew the results when certain types of
statistical analyses, such as t-statistics, are used [6]. Fur-
thermore, differences in library preparation across sam-
ples [2, 6–8], sequencing errors [9, 10], and mapping
and annotation errors [9] can all contribute to inaccur-
acies in read count data. Complicating matters further
are well-known biases in RNA-Seq data, such as se-
quence composition and similarity [5, 7, 10], gene length
[6, 7, 9], and sequencing depth [4, 6]. In addition, the
best choice of statistical model for differential gene ex-
pression is not straightforward. Differences due to tech-
nical variation in read count data have been modeled
with a Poisson distribution, which assumes that the vari-
ance is equal to the mean [6]. However, differences
among biological replicates of RNA-Seq read count data
are far more variable than would be expected under a
Poisson distribution, a phenomenon known as over-
dispersion [6, 11, 12]. To account for over-dispersion, a
generalized linear model (GLM) using a negative bino-
mial distribution has been proposed [13, 14]. These is-
sues leave the experimenter with several choices to
make regarding data analysis: 1) which read counts to
include in the analysis and which to discard; 2) which
normalization methods will mitigate bias across samples;
and 3) the best choice of statistical model to identify dif-
ferentially expressed genes. Systematic comparisons of
these choices as well as other experimental parameters
have been made previously with microarray data. Large-
scale comparisons using microarrays found that some ex-
perimental parameters were more critical than others in
the analysis and interpretation of gene expression data.
These studies use spike-in RNA standards, similar sample
preparation and handling procedures, and/or known mu-
tations as benchmarks to examine potential technical dif-
ferences in sample preparation and analysis [15–18]. The
MAQC Consortium identified and quantified the degree
of variability and reproducibility both within and across
different microarray platforms [15]. Comparisons of
analytical models, normalization methods, and team per-
formance have also been made [16, 19]. The results of

differential gene expression analyses were often
strongly influenced by the choice of normalization
method [17–19]. Differential gene expression was also
dependent on the analysis model used [19]; interest-
ingly, differences in model performance could also be
traced to the practices and experience of the team
doing the analysis [19]. Furthermore, studies of gene
expression-phenotype associations revealed that the
phenotypic trait itself often had a large effect on the
performance of the analysis model [19]. Finally, the dis-
tribution of false discovery rates used to control the
Type I error rate in multiple testing can be altered by
the analysis methods [18]. Comparison studies such as
these have provided biologists with the most critical pa-
rameters to consider when designing microarray gene
expression studies and analyzing the results.
Recently, we generated RNA-Seq data sets for 726 in-

dividual Drosophila melanogaster. We froze 8 individual
flies of each sex from 16 Drosophila Genetic Reference
Panel (DGRP) genotypes. We replicated this experiment
at three different calendar times, maintaining the same
environmental conditions for each replicate. Environ-
mental controls included parental culture density; rear-
ing environment including food, temperature, and light:
dark cycle; mating status; social exposure; and the circa-
dian time of RNA extraction. Furthermore, we checked
for technical sources of variation in our sequence data
by adding ERCC spike-in control RNA during library
preparation, and prepared duplicate libraries for 118
flies. These procedures enabled us to determine that the
differential gene expression we observed was due to
largely biological rather than technical sources. In
addition, we used the sequence data itself to verify the
sex and genotype of each fly. These sex and genotype
analyses in combination with other considerations (such
as RNA and library preparation failure or low numbers
of uniquely mapped reads) led us to exclude the RNA-
Seq data for 42 flies, yielding 726 data sets (See Methods
for additional detail). We were interested in studying the
effects of genotype, environment, and sex on gene ex-
pression in individual flies; we were also interested in
characterizing the first- and second-order interactions
(e.g., Genotype × Environment, Genotype × Sex, Environ-
ment × Sex, and Genotype × Environment × Sex). This
large dataset is also valuable for understanding the im-
pact and sensitivity of different analysis strategies on the
ability to detect differential gene expression, in the spirit
of previous comparison studies performed using micro-
array and RNA-Seq data. We wanted to optimize our
strategy in order to detect differential gene expression
using the number of read counts per gene as a proxy.
Several decisions must be made with regard to the filter-
ing, normalization, and statistical analysis of read count
data; any of these decisions may change the number and
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identity of differentially expressed genes. We therefore
systematically examined the impact of three different
filtering strategies, eight normalization methods, and
two statistical approaches.
First, we wanted to remove genes having read counts

below a reliable threshold of detection [2]. We derived
an empirical threshold from the read count data [20]
and examined the impact of removing read counts
below this threshold both before and after normalizing
the data.
Second, we wanted to choose the best normalization

method for our read count data. We applied eight differ-
ent normalization strategies to our read count data as in
[21]: total counts (TC); upper quartile (UQ) [6], median
(Med) [21], trimmed mean of M-values (TMM) [22],
normalization using the DESeq package (DESeq) [13],
quantile normalization (Q) [23, 24] RPKM [7], and re-
move unwanted variation (RUVg) [8]. We evaluated their
effectiveness at reducing sources of bias as well as their
impact on differential gene expression.
Third, we wanted to evaluate the ability of different stat-

istical models to accurately detect differential gene expres-
sion. We applied a generalized linear model (GLM) to
read counts fitted with a negative binomial distribution
and compared this model to an analysis of variance
(ANOVA) of read counts fitted with a log-normal distri-
bution. We employed three software packages–edgeR,
DESeq, and SAS–[13, 14, 25] to estimate differential gene
expression.
These evaluations revealed important considerations

to be made regarding the analysis of RNA-Seq read
count data. Failing to consider these issues has a pro-
found effect on the number and identity of genes desig-
nated as differentially expressed. The best analysis
scheme for our data was to first normalize using the
DESeq method and apply a generalized linear model as-
suming a negative binomial distribution using either
edgeR or DESeq software. We found that the removal of
low-expressed genes after the normalization and data
distribution fitting procedures was the most flexible fil-
tering strategy. Two normalization methods, DESeq and
TMM, properly aligned the distribution of our data
across samples and accounted for the dynamic range of
our data [21]; however, TMM was sensitive to filtering
strategy. In addition, we found that at least 3 biological
replicates per genotype/environment/sex condition were
required to have sufficient statistical power to detect
gene expression differences, particularly among the
three-way interaction of these factors.

Results
Application of low gene expression threshold
It is well known that RNA-Seq read counts, which are
presumed to be the signal of gene expression, contain a

certain degree of uncertainty. This uncertainty is due to
differences in library preparation among samples, se-
quencing error, sequence composition, and mapping/an-
notation errors. Very low read counts cannot be reliably
distinguished from background noise [2]. Genes with
very low expression might not be adequately represented
across all fly samples; if this is the case, they are more
likely to be incorrectly identified as differentially
expressed. We therefore wanted to define an appropriate
read count threshold from our data. We determined the
low read count threshold for each normalization method
separately (Methods and Additional file 1: Figure S1).
We compared the distribution of intergenic read counts
to those within the gene coding region [20]. We set the
95th percentile of the intergenic read counts as the
threshold of detection [20]. Low threshold values were
comparable for all of the normalization methods, and
were 3.40 log2 (normalized counts + 1) for TC, 3.59 for
UQ, 4.52 for Med, 3.68 for TMM, 3.42 for DESeq, 3.77
for Q, 1.33 for RPKM, and 3.32 for the un-normalized
read count data. Genes having read counts below these
threshold values in all samples were removed from fur-
ther analysis. Note that genes having read counts above
the threshold level in one fly would be retained in the
analysis using this criterion, even if all of the counts for
the remaining 725 flies were below the threshold level.
Normalization strategies often require the use of the entire
data set to calculate the parameters for normalization.
Whether the removal of genes from the analysis takes
place before or after normalization could therefore poten-
tially impact the number and identity of differentially
expressed genes. We examined these effects using three
workflows (Fig. 1). We normalized read count data and es-
timated distribution parameters first, then removed genes
with read counts below the threshold value; we called this
filtering strategy Workflow 1. We removed genes having
read counts below the threshold value from the analysis
first, then normalized the read count data and estimated
distribution parameters; we called this filtering strategy
Workflow 2. In addition, we analyzed the data without re-
moving any low-expressed genes from the analysis; we
called this filtering strategy Workflow 3. Figure 2 shows
the impact of filtering out low-expressed genes before or
after normalization and distribution parameter estimation
for each statistical analysis approach. As Fig. 2 shows, the
generalized linear model analysis using DESeq was the
most sensitive to filtering strategy, while the ANOVA
model was the least sensitive. Fewer genes overlapped be-
tween Workflow 1 and Workflow 2 for the generalized
linear model than for the ANOVA model. Most of the
normalization methods were robust to filtering strategy,
particularly when the main effects of genotype, environ-
ment, and sex were considered. However, the Med, TMM,
and Q normalization methods were sensitive to whether
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Fig. 1 Flow chart showing analysis approach
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Fig. 2 Effect of removing low-expressed genes before or after read count normalization on differential gene expression. The cell plot shows the
percentage of agreement between Workflow 1 and Workflow 2. a Generalized linear model using DESeq. b Generalized linear model using edgeR.
c ANOVA using SAS. Abbreviations for normalization methods are the same as defined in Fig. 1
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the removal of low-expressed genes occurred before or
after the normalization/distribution parameter estimation
step. First-order interaction terms normalized using these
three methods were the most sensitive to filtering ap-
proach. In the case of Med-normalized read counts, the
agreement of differentially expressed genes between
Workflows 1 and 2 was as low as 59 % (Fig. 2a). Thus,
some model terms and normalization methods were sensi-
tive to low-expression filtering strategy. In contrast, the
TC, UQ, DESeq, and RPKM normalization methods were
robust to filtering strategy.

Comparison of normalization strategies
We compared the performance of seven popular
normalization methods for RNA-Seq read count data as
in [21]: TC, UQ, Med, TMM, DESeq, Q, and RPKM.
The TC method consists of dividing the read counts by
a ratio of the library size for a given sample to that of
the average library size across samples [9, 21]. Similar
strategies are employed for the UQ and Med methods,
where the ratios are the upper quartile and median read
counts, respectively; these values are computed after
removing genes having zero read counts for all samples
[6, 21]. The TMM method scales read counts by the
weighted log-fold-change values of a reference sample
with genes that have extreme log-fold-changes (M
values) and extreme absolute expression levels (A values)
removed from the data. Usually, the sample whose upper
quartile is closest to the mean upper quartile is chosen
as the reference sample [22]. Likewise, DESeq scales the
read counts by a reference sample based on the geomet-
ric mean of read counts across all samples [13]. Q
normalization aligns the distribution of read counts
across samples by ranking the read counts and then re-
assigning the read counts for each gene to the average
read count across ranked values [23, 24]. Finally, RPKM
normalization multiplies read counts by a factor con-
structed from the gene length and read depth [24]. We
compared these normalization strategies to the un-
normalized read count data (RC). We used boxplots to
display the data before and after normalization for each
fly within genotype, environment, and sex (Fig. 3;
Additional files 2 and 3). One of the purposes of
normalization is to align the distribution of read counts
across samples [6, 21, 22]; however, not all of the
normalization methods successfully met this goal. Not-
ably, the TC and RPKM methods did not improve the
distribution of the data in many instances. For example,
RAL-320 males of Environment 2 do not show a change
in distribution of read counts after normalization with
either the TC or RPKM methods, consistent with previ-
ous observations [6, 21] (Fig. 3a). A second purpose of
normalization is to reduce the within-condition variability
due to background noise. The Q normalization method

behaved differently from the other normalization methods
in this respect. In some cases, Q normalization decreased
within-condition variability for some samples (Fig. 3b),
but added new variation to the data in other samples
(Fig. 3c). In general, the UQ, Med, TMM, and DESeq
methods improved some of the systematic biases in
RNA sequence data. However, the number and identity
of differentially expressed genes varied greatly across
normalization procedures, as discussed below.
We noted that some of the highest read counts in our

data set came from those aligned to non-protein coding
genes. High read counts from rRNAs, pseudo-rRNAs
and other RNA species were present in the data set;
these species are present in the total RNA of each sam-
ple and may persist after library preparation if they have
poly-A tails and/or poly-A selection is incomplete. We
examined the impact of these species on differential
gene expression. First, we removed all non-protein-
coding genes from the data set of Workflow 1 DESeq-
and TMM-normalized data, and compared the differen-
tial expression analysis results to that of the original
data, which contained all of these species. The results
were quite similar for DESeq-normalized data; 85 % or
more of the differentially expressed genes overlapped.
The results were somewhat less similar for TMM-
normalized data; 73 % or more of the differentially
expressed genes overlapped. Most of the differences in
analysis were due to the removal of non-protein-coding
genes that had significant differential expression in the
original analysis (see Additional file 1: Table S1 for more
detail). The number and identity of differentially
expressed protein-coding genes was robust to the re-
moval of non-protein-coding genes from the analysis.
Thus, the DESeq and TMM normalization methods can
compensate effectively for RNA-Seq data with a large
dynamic range.
In addition, we explored the possibility of using the re-

move unwanted variation (RUVg) normalization method
[8] for our data. This method uses spike-in (or negative)
control genes to remove sources of technical variation
such as differences in library preparation or variation
among flow cells. The method considers these sources
of technical variation as a covariate in the differential ex-
pression model. With this technique, a principal compo-
nents analysis performed after normalization should
reveal differences among experimental factors rather
than the sources of technical variation [8]. A principal
components analysis using the un-normalized data re-
vealed that the first principal component, which explained
59.13 % of the biological variation among flies, was able to
distinguish between the two sexes (Additional file 1:
Figure S2A). The second principal component, which
explained 25.53 % of the biological variation, was able to
distinguish among the three environmental conditions to
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a very limited extent (Additional file 1: Figure S2A). We
therefore used only the first principal component in the
models for differential expression analysis. We found,
however, that the sex and environmental conditions over-
lapped in the PCA plot using RUVg normalized read
counts (Additional file 1: Figure S2D). This suggests that
the technical variation is not the same between the spike-
ins and the experimental sample. These differences may
be a result of differences in our experimental approach
and library preparation to that of [8] (see Discussion). As
the technical variation between spike-ins and sample must

be equivalent to use the RUVg method, we did not pursue
this method further.

Comparison of dispersion estimation methods
Unlike microarray data, RNA-Seq read count data do
not have a continuous distribution. One common pro-
cedure is to use a Poisson distribution to model the data.
However, a Poisson distribution assumes that the mean
and the variance are equal, which is not an ideal fit to
RNA-Seq data as they exhibit over-dispersion [5, 6, 13].
To apply the generalized linear model, we therefore

A

B

C

Fig. 3 Examples of differences observed in normalization methods. a Boxplots of individual RAL-320 males of Environment 2. b Boxplots of the
coefficient of variation for RAL-900 females of Environment 3. c Boxplots of the coefficient of variation for RAL-900 males of Environment 3. A complete
set of box plots can be found in Additional files 2 and 3. Abbreviations for normalization methods are the same as defined in Fig. 1. It has come to our
attention that the line number designation for the Drosophila Genetic Reference Panel has been officially changed in Flybase. Specifically, the lines
used to have a “RAL-” prefix; they now have “DGRP-” as the prefix (for example, “RAL-320” is now “DGRP-320”). We have used the “RAL-” prefix several
times in our manuscript, in Fig. 3, and in Additional files 2 and 3. Future usage would be with the “DGRP –“prefix
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modeled our read count data with a negative binomial
distribution [13, 14, 26]. This distribution relies on an
estimated dispersion parameter, which controls the rela-
tionship between the mean and the variance of the
count data. The estimation of the dispersion parameter
will affect the detection of differential genes reported by
the generalized linear model. We used both DESeq and
edgeR software to estimate the dispersion parameter for
each gene. DESeq first calculates a dispersion value for
each gene, and then fits a curve through the estimates
[13]. Dispersion values are then assigned to each gene
based on a choice between the greater of the per-gene
estimate or the fitted value. edgeR estimates a common
dispersion based on the Cox-Reid adjusted profile likeli-
hood and then applies an empirical Bayes method to es-
timate the per-gene dispersion [12, 26]. The dispersion
estimations for each normalization method using DESeq
have a similar shape, with the exception of RPKM-
normalized read counts (Additional file 1: Figure S3).
RPKM-normalized counts also have a different pattern
of dispersion when calculated by edgeR (Additional
file 1: Figure S4). We also noted that dispersion estima-
tions using Q normalization were different from the other
normalization methods. We examined the effect of filter-
ing strategy on dispersion estimates by plotting dispersion
estimates of Workflow 1 versus Workflow 2. In most
cases, the dispersion estimates for each workflow were
well correlated, as expected. However, the correlations
were different for RPKM- and Q-normalized data
(Additional file 1: Figures S5 and S6). Workflow 1
dispersion estimations were higher than those of Work-
flow 2 for Q-normalized data regardless of the algorithm
employed. However, Workflow 2 dispersion estimates
were higher for RPKM-normalized data using DESeq,
while Workflow 1 dispersion estimates were higher for
RPKM-normalized data using edgeR. This suggests that
dispersion estimates using Q and RPKM normalized data
are sensitive to the filtering strategy. However, it should be
noted that RPKM values cannot be directly input into ei-
ther DESeq or edgeR; both programs expect read count data
as input. We therefore input RPKM data as the normalized
read counts rounded to be integers. This common practice
impacts the dispersion estimates, which use the read counts
for all samples to get each per-gene estimate. Because Q
and RPKM normalization procedures use the entire data
set, filtering and rounding effects are more apparent. The
remaining normalization methods (TC, UQ, Med, TMM,
and DESeq) had good agreement in dispersion parameters
across workflows, and the resulting statistical analyses using
edgeR and DESeq were also comparable (see below).

Comparison of differential gene expression models
We used two different models to determine differences
in gene expression among flies: a generalized linear

model using a negative binomial distribution and an
analysis of variance (ANOVA) using a log-normal distri-
bution. We used the DESeq and edgeR packages to esti-
mate gene expression differences using a generalized
linear model, and SAS to calculate the ANOVA parame-
ters. Our models consider the main effects of Genotype,
Environment, Sex, and their interactions. Table 1 shows
the numbers of differentially expressed genes calculated
for each factor in the generalized linear model using
DESeq with the Workflow 1 strategy; these are com-
pared across all normalization methods. The overlap of
differentially expressed genes across all normalization
methods was surprisingly low. Even when the un-
normalized data were removed from the comparison,
the agreement among normalization methods was as
low as 10 % (i.e., compare the number of overlapping
genes in Table 1 with the Med-normalized number for
Enviroment × Sex). The lack of overlap stresses that the
choice of a proper normalization method is crucial. We
compared the DESeq-derived results from Table 1 to the
numbers of differentially expressed genes calculated for
the generalized linear model using the edgeR package.
We compared the differences among software packages
for Workflow 1 (Fig. 4a), Workflow 2 (Fig. 4b), or if the
low-expression genes were left in the data set (Work-
flow 3; Fig. 4c). There were few, if any, differences in
differentially expressed genes identified using these
two programs across model factors, workflows, or
normalization methods. Virtually every comparison was
96 % or greater in agreement. Only Q normalization
showed any discrepancy in the genes identified by the two
programs, and the differences were predominantly in the
first- and second-order model terms. Thus, while DESeq
and edgeR employ somewhat different algorithms, the
number and identity of differentially expressed genes were
in good agreement.
Striking differences were observed in the comparison

of the generalized linear model with the ANOVA model.
We compared the second-order term (Genotype × Envir-
onment × Sex) among these methods as the significance
test has the same structure. Figure 5 shows the differ-
ences in differentially expressed genes identified by these
methods for Workflows 1–3 and for each of the
normalization methods. As Fig. 5 shows, the agreement
across model types is quite low; as expected, the un-
normalized read count data was the least consistent
across models, averaging only 4.3 % agreement in differ-
entially expressed genes. For every normalization
method, there was better agreement between the edgeR
GLM and the ANOVA than the DESeq GLM and the
ANOVA. The greatest agreement was 60.4 % between
the edgeR GLM and the ANOVA for Med-normalized
data. Thus, the differences observed in the number and
identity of differentially expressed genes hinge on the
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assumption of the underlying data distribution, and the
assumption of a normal distribution, while robust in
many types of data analysis, does not capture the dy-
namic range of RNA-Seq read count data.
The application of the generalized linear model necessi-

tated decisions about the order in which the first-order inter-
action terms (Genotype × Environment, Genotype × Sex,
and Environment × Sex) were evaluated in the model. How-
ever, the number and identity of differentially expressed
genes can change depending on the order in which these
terms are fitted to the model. We evaluated three different
approaches to model these terms. In the first approach, we
tested each first-order interaction term by sequentially
adding it to the main-effect model (Methods). We added
Genotype × Environment first, Genotype × Sex second,
and Environment × Sex third. In the second approach, we
fitted each first-order interaction term separately, using a
model of main effect terms as the reduced model
(Methods). In the third approach, we used a model with
the main effects and all first order interaction terms, with
the reduced model having each first order interaction
term removed in turn (Methods). We compared the num-
ber and identity of differentially expressed genes for each
of these approaches for both Workflows, the DESeq and
edgeR analysis programs, and all normalization methods.
The results of these comparisons are of Additional file 1:
Table S2. It can be readily seen that the second approach
yields the same answers for the Genotype × Environment
interaction term as the first model; the third approach
yields the same answers for the Sex × Environment inter-
action term as the first model. The number of differen-
tially expressed genes for the Genotype × Environment
interaction term was substantially reduced when all of the
first-order interaction terms were fitted to the model (ap-
proach 3); thus, it explained less variation in the data.
Also, after quality control, some of our samples were re-
moved from the data set, giving us an unbalanced data
set; a balanced data set would give us the same overlap

using the first and third approach . Each of these ap-
proaches has merit, depending on the overall goal of the
experiment; for example, if one is particularly interested
in Genotype × Environment interactions, it would make
sense to use the first approach in order to identify the
largest potential subset of genes having significant
Genotype × Environment effects.

Statistical power calculations
We based our differential expression analysis on eight indi-
vidual flies per genotype/environment/sex. This is a higher
number of samples per condition than would normally be
anticipated in an RNA-Seq experiment. This approach en-
sured that we could detect subtle differences in gene ex-
pression. However, we wished to determine whether similar
results could be obtained using a smaller sample of flies.
Figure 6a shows how the statistical power to detect second-
order differential gene expression varies with sample sizes
of 2, 3, 4, 5, 6, 7, and 8 flies per genotype/environment/sex.
For a statistical power of 80 %, it can be seen that a sample
size of 2 flies per condition would reliably detect gene ex-
pression differences only if those differences were 2.5-fold
or greater. Three flies would detect 1.8-fold or greater
changes. Estimated variance is reduced for 2 flies per condi-
tion versus 8 flies per condition when fold-change was held
constant (Fig. 6b). The required number of flies for detec-
tion of differential gene expression is somewhat lessened for
first-order terms (Additional file 1: Figure S7). Two flies per
condition would detect 1.75-fold or greater changes; three
would detect 1.4-fold changes. These results indicate that
using three flies per condition would be adequate for detect-
ing large (1.8-fold or greater) changes among experimental
factors. Our data were far more sensitive, however; we
could detect 0.9-fold differences in expression for the three-
way interaction term.
Our power calculation was based upon the ln&A-

NOVA approach so that we could calculate the statis-
tical power for the first and second-order terms we were

Table 1 Numbers of differentially expressed genes called by DESeq using the Workflow 1 generalized linear model. Numbers of
genes are listed by analysis factor and normalization method

Factor\Method TC UQ Med TMM DESeqC Q RPKM RC Overlap

Genotype (G) 10,765 10,110 11,133 11,425 10,464 11,226 8076 5471 4302A/6372B

Environment (E) 12,328 8821 10,146 9847 9469 9906 11,737 13,277 5779A/5819B

Sex (S) 14,303 14,840 13,042 14,850 14,866 14,515 13,553 14,018 9799A/10346B

G x E 3000 3265 1160 3158 3463 3147 896 1318 329A/483B

G x S 5942 6926 8441 8084 7163 7703 3414 2659 1771A/2700B

E x S 5539 2393 6533 3234 2725 4738 3032 82 62A/650B

G x E x S 2492 3410 1889 3501 3611 3767 1018 1202 652A/900B

TC total counts, UQ upper quartile, Med median, TMM trimmed mean of M-values, DESeq DESeq normalization method, Q quantile, RPKM reads per kilobase per
million mapped, RC un-normalized count data
A Numbers of overlapping genes among all methods
B Numbers of overlapping genes among all methods except RC, the un-normalized count data
CBold indicates preferred normalization method
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Fig. 4 Comparison between the number and identity of differential genes estimated by DESeq and edgeR. The cell plot shows the percentage
overlap between the two programs for each normalization method. a Workflow 1. b Workflow 2. c No filtering. Abbreviations for normalization
methods are the same as defined in Fig. 1
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interested in (See Methods). Current methods to calcu-
late the statistical power for RNA-Seq read counts as-
suming a negative binomial distribution are limited to a
single factor [27, 28]. However, it is possible to examine
the impact fewer flies would have on the on the number
and identity of differentially expressed genes using an
empirical approach, as has been applied previously to
microarray data [16, 18]. We randomly sampled our data
for 2, 3, and 5 flies per genotype/environment/sex condi-
tion and ran the generalized linear model for Workflow
1 using DESeq-normalized read counts. We compared
the percentages of differentially expressed genes that
overlap with the full data set for different false discovery
rate thresholds [16] (Fig. 7). This analysis shows a
greater level of agreement with the complete data set
when greater numbers of flies are analyzed per condi-
tion, as expected. The percentage agreement tended to
drop slightly as the false discovery rate was reduced.
Note also that the percentage of overlap depended upon
the factor being studied. For example, using even 2 flies
per condition would be sufficient to produce the same
estimate of differentially expressed genes between males
and females as the full data set, but at least 5 flies per
condition would be required to estimate differential ex-
pression for the first-order Environment × Sex inter-
action term. Thus, while we were not able to calculate
the statistical power directly for a negative binomial

distribution, the empirical approach indicates that at
least 3 flies per condition would be required to suffi-
ciently estimate differential expression for most of the
factors we considered.

Discussion
Here we applied three different filtering strategies, eight
normalization methods, and two statistical models to
RNA-Seq read count data. We derived an empirical low
gene expression threshold using both genic and inter-
genic read count data, and we estimated the numbers of
biological replicates necessary to detect differential gene
expression. In most instances, the number and identity
of differentially expressed genes were robust to the
method employed. However, certain manipulations of
the data can profoundly alter the results. Our comparisons
reveal the key decisions to be made in the analysis of
RNA-Seq data and the consequences of ignoring those de-
cisions. We address filtering strategy, normalization
methods, model comparison, and statistical power consid-
erations below.

Filtering strategy
Whether the statistical analysis results were robust to fil-
tering strategy (Workflows 1 and 2) depended upon the
factor of interest in the statistical model. The main ef-
fects of Genotype, Environment, and Sex were not sensi-
tive whether low-expressed genes were removed before
or after normalization. However, the first- and second-
order interaction terms were sensitive to filtering; in par-
ticular, the Med, TMM, and Q normalization methods
showed less agreement in the number and identity of
differentially expressed genes between Workflows 1 and 2.
The sensitivity of these normalization methods in particu-
lar results from the fact that all of the read count data in
the data set is used to calculate normalization parameters.
Clearly, the median of the data set will change if the low-
expressed genes are removed before normalization,
making the Med read count data different in Workflow 1
versus Workflow 2. Likewise, the TMM method uses sub-
sets of genes in the middle 40 % and 90 % of the read
count data to calculate the normalization parameter; the
removal of low-expressed genes changes how the middle
40 % and 90 % are defined. Finally, the Q normalization
assigns new read count values based on the rank order of
the read counts. Removal of the smallest read counts will
change this data set as well. In contrast, use of the
remaining normalization methods lead to very similar re-
sults whether using Workflow 1 or Workflow 2. We prefer
the Workflow 1 strategy of removing low-expressed genes
after the normalization step, because it gives us the option
to apply different low-expression thresholds without the
necessity of repeating the statistical analysis; only the false
discovery rates need be re-calculated. The removal of low-

Fig. 5 Comparison of the number and identity of differentially
expressed genes obtained using the generalized linear model (GLM)
with those obtained using the ANOVA model. The graph shows the
percentage of differentially expressed genes for the Genotype ×
Environment × Sex term that agree between the GLM and ANOVA
methods. Dark blue bars, overlap of DESeq GLM and ANOVA for
Workflow 1; Light blue bars, overlap of DESeq GLM and ANOVA for
Workflow 2; Medium blue bars, overlap of DESeq GLM and ANOVA
for Workflow 3; Dark red bars, overlap of edgeR GLM and ANOVA for
Workflow 1; Light pink bars, overlap of edgeR GLM and ANOVA for
Workflow 2; Medium pink bars, overlap of edgeR GLM and ANOVA
for Workflow 3. Abbreviations for normalization methods are the
same as defined in Fig. 1
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Fig. 6 Statistical power analysis. a Detectable fold-change versus statistical power for n = 2, 3, 4, 5, 6, 7, and 8 flies per genotype/environment/sex.
b Estimated variance
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expressed genes may constitute a de facto statistical test,
resulting in an increase in the true false-positive rate [29].
However, we found that the majority of differentially
expressed genes in our data set were the same whether
the data were filtered or not, which is likely due to 1)
the increased statistical power from the large sample
size in our data set, and 2) the fact that the filter did
not remove many genes. For example, only 5.7 % of
the genes were removed from the analysis in Work-
flow 1 DESeq-normalized data. (See Additional file 1:
Table S3 for a comparison of Workflow 1 with Work-
flow 3 for DESeq-normalized data). It is not necessary
to devise a filtering strategy for all RNA-Seq experi-
ments. For example, some RNA-Seq experiments pro-
file small numbers of genes, or focus on rare
transcripts. In these cases, a filtering strategy would not
be warranted. However, there is a risk of an increased
number of false positives if small numbers of read counts
for a gene are detected in only one sample.

Normalization methods
We noted that the TC and RPKM normalization
methods were not effective at aligning the distribution of
read counts across samples, an issue reported previously
[21]. One reason for this lack of improvement can be
observed in the distribution of our read count data. Fifty
percent of the read counts for males align to only 45
genes, while fifty percent of the read counts in females
align to only 186 genes. Similar distributions of read

counts have been observed in other RNA-Seq data sets,
including data from other species [5, 21]. Using simu-
lated data, [21] noted that TC, UQ, Med, Q, and RPKM
normalization methods were not able to control false
positives in data having a small number of genes with
very high read counts. In contrast, the DESeq and TMM
normalization methods are designed to account for these
extreme differences in read count number [13, 22].
TMM in particular has adjustable parameters that could
be used to account for data with a large dynamic range
[22]. Note that here we used only the default settings of
these parameters, but we could have adjusted the param-
eters to improve the alignment across samples. Many of
the genes having the highest read counts in our data set
are non-protein coding genes such as rRNAs, pseudo-
rRNAs, etc. The presence of these additional types of
RNA is due to non-specific binding of poly-A RNA spe-
cies to the oligo-dT beads used during library construc-
tion; we did not completely eliminate these species in
our RNA-Seq library preparations. This issue could po-
tentially be alleviated in the future with double polyA
isolation, which would require the use of more total
RNA, or by using protocols that would eliminate riboso-
mal RNA species. We found good agreement in the
number and identity of differentially expressed genes in
the DESeq- and TMM-normalized data sets whether
these non-protein coding genes were retained in the data
set or not. Thus, it is important to use a normalization
method that will account for extreme values in the data

Fig. 7 Empirical analysis approach using a reduced data set. The percentage of genes overlapping with the full data set is plotted against
different false discovery rate thresholds for n = 2, 3, and 5 flies per genotype/environment/sex
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if the specific RNA extraction and library preparation
processes used cannot eliminate other, potentially abun-
dant species that may be present in the library due to
non-specific binding. Alternatively, these species may be
of interest biologically, and it would be advantageous to
have methods that can account for them in the event
they are retained in the data set.
RUVg normalization has the advantage of producing

the same normalized read counts no matter what filter-
ing strategy is used because the normalization parame-
ters are constructed using only spike-in RNA. However,
the technical variation did not affect both spike-ins and
experimental sample equivalently in our data, which is a
key assumption of the method [8]. We note that there
are differences between our experiment and that of [8]
that might have contributed to the differences in technical
variation between the spike-ins and the experimental
sample in our data. They systematically varied both li-
brary preparation and flow cell designation in their
experiment, while our experiment did not. Further,
they added spike-ins during the RNA isolation step,
while we added the spike-ins after the polyA isolation
step. We were thus unable to fully evaluate this
normalization method.
In summary, we found that the TC and RPKM

methods were not effective at aligning the read count
distributions across samples [21]. Use of the UQ method
may produce false positives [21]. The Med, TMM, and
Q methods were sensitive to filtering strategy, although
TMM is able to account for the large dynamic range in
RNA-Seq read count data. For our data, the DESeq
normalization method had the best properties: it aligned
read count distributions across samples, reduced back-
ground noise, and accounted for the large dynamic
range present in our data.

Model comparison
We observed many differences in the number and identity
of differentially expressed genes across the seven
normalization methods. This is in contrast to [21], who
documented more consistent results across normalization
methods. We propose that there are two reasons for this
difference. First, the data they used for their comparisons
contained at most three replicates per condition. Our data
had 8 flies per genotype/environment/sex condition,
which greatly magnified the sensitivity of our data to the
normalization method chosen. Second, the data they used
examined differences in a single condition; our statistical
model tested differences in gene expression across three
main factors and their interactions. The additional com-
plexity in our model revealed interacting factors that were
more sensitive to normalization strategy. These observa-
tions suggest that comprehensive data sets used to address
multi-factor conditions will be more sensitive to the

choice of normalization. We observed very little difference
between differentially expressed genes identified by the
DESeq and edgeR programs using the same generalized
linear model, regardless of normalization method and fil-
tering strategy. Only the Q normalization method, which
is an appropriate method commonly used for normalizing
microarray data [23, 24], exhibited any substantive differ-
ences. Perhaps not surprisingly however, the differences
between the generalized linear model and the ANOVA
model were much higher. The underlying assumption for
the generalized linear model is a negative binomial distri-
bution [13], while the assumption for the ANOVA is a
normal distribution. RNA-Seq read count data have a very
wide dynamic range that is typically skewed towards low
read count end of the distribution; such data do not fit
a normal distribution very well [13]. In addition, our
read count data were not homoscedastic for the log-
normal distribution, which violates one of the basic as-
sumptions for the use of an analysis of variance [30].
Thus, modeling RNA-Seq read count data with a nega-
tive binomial distribution is the most appropriate
approximation.

Dispersion estimation
Dispersion estimates were different for RPKM and Q
normalized data, whether using either DESeq or edgeR
software. But these normalization methods cannot be
properly implemented using either DESeq or edgeR. Be-
cause both of these programs expect read count input,
an integer value, a common practice is to perform the
normalization step using another program and then
round the normalized read count data to the nearest in-
teger value. The dispersion estimates per gene are differ-
ent whether using Workflow 1 or Workflow 2, so the
rounding procedure in effect increases sensitivity. The
authors of the DESeq and edgeR programs [S. Anders,
personal communication, [14]] caution against using
RPKM or Q-normalized data as input, yet the practice
persists. The downstream effects of this practice can be
seen by comparing the TC and RPKM normalization
methods for unfiltered data. The only difference between
these two normalization methods is the gene length,
which is constant for a given gene across samples. Fur-
ther, our generalized linear models compare the effects
of Genotype, Environment, and Sex within a gene rather
than among genes. Thus, we would expect the TC and
RPKM normalization methods to give identical lists of
differentially expressed genes when the data are
unfiltered. However, this is not what we observed. The
newer DESeq2 program can be used to implement
RPKM [31]. Note, however, that we were unable to use
DESeq2 with our large data set due to limitations in the
program. Although edgeR and DESeq use different algo-
rithms to estimate dispersion, the number and identity of
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differentially expressed genes were the same for DESeq-
or TMM-normalized data (Fig. 4), indicating that either
software package could be used for these estimates.

Statistical power considerations
We calculated the sample sizes necessary to control the
risk of making both Type I and Type II errors post-hoc.
Here we used the ln&ANOVA model assuming a bal-
anced design as the calculations for a three-factor model
are relatively straightforward. Methods have been devel-
oped for the calculation of statistical power for RNA-seq
data using a negative binomial distribution ([27, 28];
however, these calculations address comparisons made
within a single factor. We were particularly interested in
the ability to detect interactions among the factors we
varied in the experiment, namely, Genotype, Environ-
ment, and Sex. Thus, we applied the ln&ANOVA calcu-
lation, but it should be realized that there were large
differences between the differential gene expression ana-
lyses assuming a normal distribution and those assuming
a negative binomial distribution. The extent to which
the underlying data distribution assumption affects the
statistical power of our data is unknown, and is a limita-
tion of this analysis. We found that at 80 % power, two
biological replicates (i.e., two flies) could only detect dif-
ferences in expression of 2.5-fold or greater for the
three-way interaction term, Genotype × Environment ×
Sex. Detection of differences was somewhat better for
the Genotype × Environment term; two replicates could
detect 1.75-fold or greater differences. The empirical
study using 2, 3, and 5 flies per condition supports the
notion of using three or more biological replicates in
RNA-Seq experiments. This approach also shows a de-
pendency on the factors being analyzed; for example, dif-
ferences between male and female expression were more
robust than differences across replicate environments.
Often the choice of the number of biological replicates
is not a function of statistical considerations, but eco-
nomic ones. Furthermore, there is often a trade-off be-
tween experimental parameters such as the number of
biological replicates, the number of genotypes or treat-
ments, and the amount of sequence coverage. Previous
studies have noted that adding biological replicates to
the experiment is a more effective way to increase the
statistical power to detect differential gene expression
than increasing sequence depth [32, 33]. Increased bio-
logical replication can mitigate the number of false
positives [32]; though both increased replication and se-
quencing depth improves the detection of genes with
characteristically low expression [32, 33]. We demon-
strated that three biological replicates produced a sub-
stantial improvement in fold-change detection over two;
we recommend using at least three biological replicates
if possible.

Conclusions
Our investigation revealed that the most critical consid-
erations for the analysis of RNA-Seq read count data
were the numbers of biological samples, normalization
method, and underlying data distribution assumptions.
The statistical power analysis suggests that at least three
replicates are required to detect differential expression
among a three-way interaction of experimental factors.
The sensitivity of our data set to differences in
normalization method indicates that this is a crucial
choice and that the normalization method chosen
should account for the large dynamic range observed in
RNA-Seq read count data. We recommend the DESeq
or TMM normalization methods, noting that TMM is
more sensitive to filtering strategy. A generalized linear
model using a negative binomial distribution can be
readily adapted to multi-factor comparisons using DESeq
or edgeR software as we demonstrated here. The size
and complexity of these data enable it to serve as a
benchmark for RNA-Seq analyses. Future challenges in-
clude the incorporation of alternative splicing and poly-
morphism data into this analysis.

Methods
Sample collection and library preparation
We obtained RNA-Seq read count data from individual
Drosophila Genetic Reference Panel (DGRP) flies [34, 35].
The details of the RNA extraction, and library preparation
are provided in Additional file 4: Supplemental Methods.
Briefly, we collected 8 virgin male and 8 virgin female flies
from 16 DGRP genotypes for our study in three separate
biological replicates. The genotypes examined were: RAL-
93, RAL-229, RAL-320, RAL-352, RAL-370, RAL-563,
RAL-630, RAL-703, RAL-761, RAL-787, RAL-790, RAL-
804, RAL-812, RAL-822, RAL-850, and RAL-900. Flies
were frozen after 7 days post-eclosion in 96-well plates.
We replicated the experiment three times to produce 768
RNA sequences. To control the environmental conditions,
we seeded the fly cultures with 5 males and 5 females;
reared the flies in a single incubator on standard Drosoph-
ila food (Bloomington, IN) at 25 °C, 60 % humidity, and a
12:12-h light:dark cycle; collected male and female virgin
flies to control mating status; maintained virgins at
20 to a same-sex vial for four days prior to RNA ex-
traction to control for social exposure [36] and froze
all flies for RNA extraction at the same circadian
time (1:00 pm). We isolated total RNA using the
RNeasy 96 Plate Kit (Qiagen, Valencia, CA) according
to the manufacturer instructions using either vacuum
or spin technology as modified in Additional file 4:
Supplemental Methods. We added 96 synthetic ERCC
spike-in control RNAs to the total RNA prior to li-
brary preparation. Strand-specific libraries 300–350 bp
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in size were prepared by modifying an existing proto-
col [37] (Additional file 4).
Variation in read counts among individual flies could be

due to biological differences, or it could be due to tech-
nical variation in library preparation and sequencing. We
prepared duplicate RNA-Seq libraries for 118 flies chosen
randomly. To determine whether the read count differ-
ences observed among flies were biological or technical
we fit a generalized linear model to the DESeq-normalized
read count data. The model considered each individual fly
(F) as a factor and the duplicate RNA-Seq libraries as
replicates within the factor.

log μikð Þ ¼ β0 þ F

While 9495 genes were differentially expressed
among the individual flies, none of the ERCC spike-in
controls were differentially expressed, indicating the
presence of large biological rather than technical ef-
fects (FDR <0.05). We further examined technical dif-
ferences by plotting the absolute difference in raw
(un-normalized) read counts between replicate librar-
ies for each sample (Additional file 1: Figure S8).
Differences between libraries are less than our low-
expression threshold (the 95th percentile of intergenic
raw read counts), indicating that there is little tech-
nical difference between libraries.

Quality assurance procedures
We used the raw sequence data to verify the sequence
pool index, genotype, and sex labeling of each fly, to de-
fine a threshold for low (undetectable) gene expression,
and to assess the technical variance between library
preparations. We searched the raw sequence data for all
24 indices used in the experiment in order to confirm
the expected index and to identify any contaminating in-
dices. We retained all samples with 95 % or greater of
the expected index in the analysis. The DGRP lines are
fully sequenced [34, 35]; thus, we were able to use
known single nucleotide polymorphism (SNP) sites to
verify the genotype of each fly. Base calls at 2,192,560 in-
formative SNP locations are known for all 16 DGRP
lines. Base calls were extracted from the sequence data
using SAMtools mpileup [38] for those SNP sites having
more than two reads. We required the base calls to be
present in greater than 95 % of the reads with less than
5 % technical errors from sequencing. 1000 SNP sites
across the genome having a base call in the greatest
number of samples were chosen to uniquely identify
each DGRP line. We calculated the differences in SNPs
between each fly sample and known SNPs in each DGRP
line using two measurement variables rij and Rij.

rij ¼ Dij

Mij

,where Dij is the number of mismatched SNP sites be-
tween sample i and DGRP line j and Mij is the number
of matched SNP sites between sample i and DGRP line j.
Rij ¼ 1− rij−min ri:ð Þ

max ri:ð Þ−min ri:ð Þ, where max(ri.) is the maximum rij
over sample i and all DGRPlines, and min(ri.) is the
minimum of rij over sample i and all DGRP lines. Rij has a
value with the range [0,1], where Rij = 1 when rij = min(ri.)
and Rij = 0 when rij = max(ri.). The genotype of each fly
was assigned to the DGRP line having an Rij = 1. We used
the 5 % level of the distribution of rij across genotypes,
0.10, as the threshold for the number of acceptable mis-
matched SNPs. We included all fly sequences that could
be assigned to their expected DGRP line in subsequent
analyses.
Some genes present on the Y chromosome have du-

plicates in other regions of the genome, and the Y
chromosome is gene-poor; thus, mapping sequences
to the Y chromosome is not a reliable indicator of
sex. We used the well-known high levels of sex di-
morphism in Drosophila gene expression [39–46] to
verify the sex of each fly. We defined a male standard
sample as the median value of normalized read
counts for each gene across all male samples, and de-
fined a female standard sample in the same manner.
We calculated the Spearman correlation coefficients
of normalized read counts between each sample fly
and each sex standard. The comparison revealed that
95 % of the flies had a correlation of 0.795 or less
with their opposite sex standard. We therefore required a
correlation of 0.795 or greater for each fly with its same-
sex standard as the threshold for sex verification. We
eliminated the sequence of any fly that did not pass
the genotype and sex quality checks, samples that
failed RNA extraction or library preparation, and sam-
ples that did not have at least 2.5 million uniquely mapped
reads (ModENCODE Consortium, personal communica-
tion); this left us with sequence data for 726 flies. This
data set and additional information is available in the
NCBI Gene Expression Omnibus (GEO) under the acces-
sion number GSE60314.

Empirical low-expression threshold determination
We defined a gene expression threshold based on a
comparison of the distribution of read counts in anno-
tated gene regions (Flybase annotation 5.57) [47] to read
counts observed in intergenic regions. We compiled
read counts from all intergenic regions. We removed all
intergenic regions smaller than the read length of 76 bp,
as there will not be unique reads for these regions. Be-
cause any normalization method used will alter the dis-
tribution of read counts, we made separate distribution
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plots for each normalization method and for the un-
normalized count data. We combined the genic and
intergenic data and normalized it, then plotted the dis-
tributions separately. We chose the 95th percentile of the
intergenic distribution as the low threshold level of gene
expression [20]. We removed those genes having nor-
malized read counts below the low threshold level in all
samples. When this filtering strategy was applied, it was
applied to normalized read counts from the genic re-
gions only. This analysis can be implemented using the
pipeline in Additional file 5.

RNA sequence normalization
We examined the impact that read count normalization
methods have on the identification of differentially
expressed genes. We considered the effect of seven popu-
lar normalization methods used in RNA-sequencing data
analysis as well as the un-normalized number of reads that
mapped uniquely to each gene. We applied total count
normalization (TC) [9, 21], upper quartile normalization
(UQ) [6], median normalization (Med) [21], full quantile
normalization (Q) [23, 24], reads per kilobase per million
mapped reads (RPKM) [7], trimmed mean of M-values
(TMM) [22], and the normalization method supplied in
the DESeq package (DESeq) [13] (see Additional file 5 for
pipeline). Here we defined the un-normalized number of
reads (counts) that mapped uniquely to each gene as the
raw count data (RC). To use the TC, UQ, and Med
normalization methods, the raw count data in each sam-
ple is divided by a ratio. For the TC method, the ratio is
the total number of mapped reads for a given sample di-
vided by the mean total number of mapped reads across
all samples. Likewise, the UQ ratio is the upper quartile of
the raw count data across all genes in each sample divided
by the mean upper quartile across all samples. In addition,
the Med ratio is the median read counts for all genes in a
given sample divided by the median read across all sam-
ples. Both the upper quartile and the median ratios are
calculated after removing genes with zero read counts
across all samples from the data. The Q normalization
equalizes the distribution of raw counts across samples by
ranking the raw counts for each gene in each sample and
applying a new mean count for each gene based upon
rank. RPKM normalization is widely used for RNA-Seq
data and consists of multiplying the raw counts for each
gene in each sample by a factor incorporating both se-
quencing depth and gene length [7]. The trimmed mean
of M-values (TMM) normalization [22] is accomplished in
two steps. In the first step, the gene-wise log fold-changes
(M-values) and absolute expression levels (A-values) are
calculated, respectively, where

Mr
ik ¼ log2

xik=Nk

xir=Nr

� �

andAr
ik ¼ 1

2 log2 xik=Nkð Þ þ log2 xir=Nrð Þð Þ for xi. ≠ 0. xik
and xir are the read counts for gene i of sample k and
the reference sample respectively, while Nk and Nr are
the sample sizes of sample k and a reference sample re-
spectively. We used the default reference sample, which
is the sample having the upper quartile most similar to
the mean upper quartile across all samples. The genes in
the middle 40 % of the M-values and the middle 90 % of
the A-values are recorded. The list of genes overlapping
in these two groups of genes is designated as G*. Note
that the user may choose M-value and A-value percent-
ages other than 40 % and 90 %, respectively; these are
the default percentages. In the second step, a
normalization factor is calculated as the weighted mean
of M-values for each sample, which is:X

i∈G�
wr
ikM

r
ikX

i∈G�
wr
ik

w is the weight calculated as the inverse of approximate
asymptotic variance as given by the following
expression:

wr
ik ¼

Nk−xik
Nkxik

þ Nr−xir
Nrxir

To obtain the TMM-normalized read counts when
using the DESeq program, we also divided the normal-
ized read counts by the mean of the normalized library
size [21].
Like the TMM normalization, DESeq normalization

requires a reference sample to calculate the scaling fac-
tor for normalization [13]. DESeq constructs the refer-
ence sample as the geometric mean of raw counts across
all samples for each gene. The scaling factor for each
sample is then calculated as the median of the ratio of
raw counts of the sample and the reference sample
across all genes.
In addition to the seven normalization methods ap-

plied above, we also considered a recently published
normalization method called remove unwanted vari-
ation with negative control genes (RUVg) [8]. RUVg
normalization assumes that a set of negative control
genes is available and the expression of these negative
control genes are affected by technical, but not bio-
logical, sources of variation in the same way as gene
read counts. RUVg normalization constructs the factors
that capture technical variation from negative control
genes, which are treated as additional covariates in the
models for differential expression analysis. We used Ex-
ternal RNA Control Consortium (ERCC) spike-ins dur-
ing library preparation [5]; 32 of these spike-ins were
added across all samples and did not vary with
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biological sources of variation when compared as repli-
cate libraries. We used these 32 ERCC spike-ins as
negative control genes and applied the RUVSeq R pack-
age [8] to normalize our read count data.

Count data distribution estimations
We modeled the count data as both a negative binomial
distribution and as a normal distribution. To model the
count data as a negative binomial (NB) distribution, [13,
26, 48], we assumed that the number of read counts for
gene i in sample k can be modeled by

xikeNB μik ; σ
2
ik

� �
where μik is the mean, and σik

2 is the variance. The mean
is

E xikð Þ ¼ μik

and the relation between variance and mean is given as:

σ2ik ¼ μik þ μ2ikφi

The dispersion parameter ϕi determines the extent to
which the variance exceeds the mean. We used the
DESeq and edgeR packages to estimate the dispersion
parameter [13, 14] (Additional file 5).
Another strategy for RNA-Seq count data analysis is to

model a normal distribution by ln-transforming normal-
ized count data. This is done by simply taking the ln of
the read count data then applying standard microarray
analysis techniques [49, 50] using the limma R package
(Additional file 5). We used both the negative binomial
and the normal distribution to model the read count
data.

Model fitting and hypothesis testing
To understand how gene expression varies among indi-
vidual flies, we tested each gene for differential expres-
sion among DGRP genotype, environment, sex, and
their interactions. For count data modeled with a nega-
tive binomial distribution, we fitted the following gener-
alized linear model (GLM) for each gene i:

log μik
� � ¼ β0 þ S þ G þ E þ G � E þ S

� G þ S � E þ S � G � E

where S is sex, G represents the DGRP genotype, and E
is the environmental condition. To test the significance
of all factors in the model, we fitted the following series
of models:

Model1 : log μikð Þ ¼ β0
1 þ S þ G þ E

Model2 að Þ : log μikð Þ
¼ β0

1 þ S þ G þ E þ G � E

Model2 bð Þ : log μikð Þ
¼ β0

1 þ S þ G þ E þ G � E þ G
� S

Model2 : log μikð Þ
¼ β0

1 þ S þ G þ E þ G � E þ G � S
þ E � S

To test each term of the main effects, we used Model
1 as the full model, and calculated the likelihood ratio
between Model 1 and Model 1 with each of the main ef-
fects removed in turn, which we term the reduced
Model 1. The likelihood ratio statistic comparing these
two models is simply the difference between the devi-
ances of the full model and the reduced model

−2½Lðμ̂ikR; φ̂i; xÞ−Lðμ̂ikF ; φ̂i; xÞ�
To test the two-way interaction terms G × E, G × S,

and E × S, we used the same approach; we added each
term to be tested in turn, defining it as the full model,
and compared it to the previous reduced version of the
model. For example, Model 2(b) and 2(a) were used to
find genes with a significant G × S interaction; Model
2(b) was the full model, while Model 2(a) was the re-
duced model. To test the significance of the three-way
interaction term S ×G × E, we used the same approach,
where Model 2 was the reduced model. Inspection of the
Model 2, 2(a), and 2(b) equations above suggests that
differential expression detected for each first-order inter-
action term is dependent upon its ordering in the equa-
tion. We therefore compared this analysis with two
other ways of detecting differential gene expression for
first-order interaction terms. In the second approach, we
used the Model 1 as the reduced model and then added
each first-order interaction term in turn to Model 1 to
test the significance of each first-order interaction term.
In the third approach, we assessed the contribution of
each first-order interaction term by using Model 2 as the
full model and Model 2 without each of the first-order
interaction terms in turn as the reduced model.
In addition to using the GLM with negative binomial

distribution to model the count data, we also evaluated
the ln-transformation of the normalized count data com-
bined with analysis of variance (ANOVA), which we
called the ln&ANOVA method. We ln-transformed the
normalized read counts and then fitted the ANOVA
model below using SAS (version 9.3) [25]:

ln normalized count þ 1ð Þ ¼ β0 þ S þ G þ E þ G
� E þ S � G þ S � E
þ S � G � E þ ε

where S, G, and E are as defined above, and β0 is the
intercept, while ε is error.
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Correction for multiple tests
The Benjamini-Hochberg procedure [51] was used to
control the false discovery rate (FDR) based on the P-
values obtained from the analysis. Genes having P-values
with an FDR threshold of < 0.05 were designated as dif-
ferentially expressed (Additional file 5).

Statistical power calculations
For a fixed-effect multi-factor ANOVA model, the test
statistic has an F distribution under the null hypothesis
[52]. The test statistic has a non-central F distribution
with non-centrality parameter φ when the null hypoth-
esis is false [52]. Thus, the power of an F test is the
probability that the observed test statistic is greater than
a critical value of the test, where the probability is calcu-
lated using the significance level and non-centrality
parameter λ (or φ). Given an ANOVA model with
three fixed factors [52, 53], the non-centrality param-
eter for testing the three-way interaction term with

balanced design is given as λ ¼

Xa
i¼1

Xb
j¼1

Xc

k¼1

αβγð Þ2ijk
σ2=n or

φ2 ¼
n
Xa
i¼1

Xb
j¼1

Xc

k¼1

ðαβγÞ2ijk
σ2½ða−1Þðb−1Þðc−1Þþ1� , where a, b, c are the num-

ber of conditions for the three main effects (i.e., a =
16, b = 3 and c = 2), and (αβγ)ijk is the difference be-
tween the condition mean and the value that would be
expected if main effects and two-way interaction terms
are sufficient to account for all factor effects. By introdu-

cing a new parameter d ¼ max μijkð Þ−min μijkð Þ
σ ¼ D

σ [54], it

can be shown that the minimum value of λ is nd2

2 , that is
nD2

2σ2 , where μijk refers to the mean of the three-way inter-
action condition for the first factor at the ith level, the sec-
ond factor at the jth level and the third factor at the kth

level. For our data, μijk is the mean of ln-transformed
normalized counts under the condition of ith genotype, jth

environmental condition and kth sex; D is called the fold-
change. Hence we can calculate a conservative power
estimate using the ln-transformed normalized counts, the
desired significance level, sample size (1–8 flies), and vari-
ance σ2 (as estimated by the mean sum of squares).

Implementation of analysis
Additional file 5 provides the R code used to implement
these analyses.

Ethics statement
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Availability of supporting data
All RNA-seq data from this study are available from the
NCBI Gene Expression Omnibus (GEO) under the acces-
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