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Abstract

Conventional differential expression analyses have been successfully employed to identify

genes whose levels change across experimental conditions. One limitation of this approach

is the inability to discover central regulators that control gene expression networks. In addi-

tion, while methods for identifying central nodes in a network are widely implemented, the

bioinformatics validation process and the theoretical error estimates that reflect the uncer-

tainty in each step of the analysis are rarely considered. Using the betweenness centrality

measure, we identified Etv5 as a potential tissue-level regulator in murine neurofibromatosis

type 1 (Nf1) low-grade brain tumors (optic gliomas). As such, the expression of Etv5 and

Etv5 target genes were increased in multiple independently-generated mouse optic glioma

models relative to non-neoplastic (normal healthy) optic nerves, as well as in the cognate

human tumors (pilocytic astrocytoma) relative to normal human brain. Importantly, differen-

tial Etv5 and Etv5 network expression was not directly the result of Nf1 gene dysfunction in

specific cell types, but rather reflects a property of the tumor as an aggregate tissue. More-

over, this differential Etv5 expression was independently validated at the RNA and protein

levels. Taken together, the combined use of network analysis, differential RNA expression

findings, and experimental validation highlights the potential of the computational network

approach to provide new insights into tumor biology.

Introduction

Similar to other ecological systems, mammalian tissues can also be considered as complex bio-

logical systems, composed of a multitude of cellular and acellular elements that each contribute

to overall biosystem function. In this regard, both normal and disease tissues contain numer-

ous distinct cell types and molecular components that bi-directionally interact to establish new
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RNA-Seq Data for 3-month-old murine non-

neoplastic and OPG-1, OPG-2, OPG-3, OPG-4

models: RNA-Seq murine data that formed the

basis of the original and follow-up analyses. The

non-neoplastic samples are also denoted as FF

(flox/flox control); OPG-1 model is also denoted as

FMC (Gfap-Cre NF1 mutants); the OPG-2 model is

also denoted as F18C (germline F18C NF1

mutants); the OPG-3 is also denoted as FMPC

(Gfap-Cre NF1/PTEN mutants); and the OPG-4

model is also denoted as FMOC (Olig2-Cre NF1
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functional states for tumor tissue relative to their normal non-neoplastic counterparts. One

natural outgrowth of this conceptualization is the idea that normal healthy and disease tissues

can be defined in an objective manner using computational approaches. Algorithms have been

used to classify diseased states, to assess risk as a function of specific factors such as gender,

age, and environmental exposures [1–3]; and to identify individualized treatments based on

gene expression profiles [4–6].

In addition to disease state classification, computational modeling can also be employed to

identify ecosystem relationships that exist in the tissue as a whole. One type of model consists

of representing relationships as a network, where the nodes are proteins, transcription factors,

or genes, and the edges between nodes signify communication pathways. Networks highlight

core differences between normal healthy and tumor tissues, and, as such, might serve to iden-

tify unanticipated regulatory pathways germane to the maintenance of the tumor. To investi-

gate potential networks, we leveraged one authenticated murine model of a brain tumor (optic

glioma) that arises in children with the neurofibromatosis type 1 (NF1) cancer predisposition

syndrome [1, 2]. These optic glioma tumors are low-grade (World Health Organization grade

I pilocytic astrocytomas) neoplasms, which develop early in childhood [7]. Since these tumors

are not removed or biopsied in children with NF1, we specifically chose this Nf1 genetically-

engineered mouse low-grade glioma model system, because it recapitulates many of the fea-

tures seen in the human condition and has been successfully employed to evaluate promising

targeted therapies now in clinical trial for children with the tumors [3–6] (http://clinicaltrials.

org; NCT01089101, NCT01158651 and NCT01734512).

Applications of network analysis to the understanding of cancer biology are relatively new,

and can be divided into three methodological types: (1) enrichment of fixed gene sets, (2) de
novo subnetwork construction and clustering and (3) network-based modeling [8]. While

we applied all three methods to characterize murine Nf1 optic gliomas, the network-based

approach (the third type) was the only one with sufficient power to leverage relational network

information to define specific regulator connections.

In this report, we describe one specific type of network analysis based on measures of net-

work complexity [9]. We focused on a standard measure of network complexity predicated on

the idea of centrality, as measured by betweenness. The general idea is that network complexity

analysis reveals sub-networks that are the biggest contributors to genetic complexity. Genetic

complexity equates to a “surplus of genotypic diversity over phenotypic diversity” [10], and is

associated with networks that are more difficult to interpret. Our proof-of-principle study uses

complexity analysis of weighted transcription networks to identify transcription factors that

comprise a regulatory network unique to low-grade brain tumors arising in the optic nerves of

Nf1 mutant mice (optic gliomas). The edges of the transcription network are given weights

based on transcription data, so that the RNA expression data from a normal control group

result in a “normal” network, while data from a group of tumor samples are used to define a

“tumor” network. Having a normal network and a tumor network side-by-side is important

for comparing the two experimental conditions. Using both networks simultaneously, we were

able to identify the Etv5 network as a defining feature of the neoplastic state in mouse and

human low-grade glioma tumors.

Materials and methods

Mice

Nf1flox/flox (N), Nf1flox/null; GFAP-Cre (OPG-1), Nf1flox/R681�; GFAP-Cre (OPG-2), Nf1flox/null;

Ptenflox/wt; GFAP-Cre (OPG-3), and Nf1flox/null; Olig2-Cre (OPG-4) mice [2, 11–13] were

maintained on a C57Bl/6 background. Mice were housed in standard caging systems, which
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mutants). The samples are publicly available at:

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?

acc=GSE102345. RNA-Seq Data for 6-month-old

murine non-neoplastic and OPG-1 model: RNA-

Seq murine data on 6-month-old mice. The OPG-1

model is also denoted as FMC (Gfap=Cre NF1

mutants). The samples are publicly available at:

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?

acc=GSE102345. qPCR Data for 3-month-old

murine OPG-1: In these experiments, we chose 12

genes (Gldc, Spry4, Fabp5, Pcdhgc3, Spry2, Shc3,

Spred1, Nlgn3, Dusp6, Lrp4, Rsbn1l, and Socs2)

for qPCR validation in optic nerves from normal

healthy and optic glioma-bearing mice (n=3 mice/

group). Cell-type based expression data from the

brain RNA-Seq database: Data analyzed from the

brain RNA-seq database [18]. The samples are

publicly available at: http://web.stanford.edu/group/

barres_lab/brain_rnaseq.html. Microarray Data for

Pediatric Pilocytic Astrocytoma: The dataset is

available at the NCBI GEO repository, GSE42656

(https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?

acc=GSE42656). We used the samples from 14

pediatric pilocytic astrocytomas and 8 fetal

cerebellum samples. The gene expression samples

were measured using Illumina HumanHT-12 V3.0

expression beadchip. [33] Microarray Data for

Juvenile Pilocytic Astrocytoma: The dataset is

available at the NCBI GEO repository, GSE12907

(https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?

acc=GSE12907). We used the samples from 21

juvenile pilocytic astrocytomas and four normal

cerebellum samples. The gene expression samples

were measured using an Affymetrix Human

Genome U133A array. [34]
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included irradiated commercial mouse chow and acidified water available at all times. Tem-

peratures were kept at 70–72˚F with 50–60% humidity on static racks. Light cycles were set at

5:00am on and 7:00pm off. All cages include pressed cotton squares for environmental enrich-

ment that were changed multiple times per week. Every animal was checked at least once per

day, and mating cages and cages with litters were checked twice per day for appearance, move-

ment and overall health to monitor well-being. Mice were euthanized with 200 mg/kg sodium

pentobarbital via i.p. prior to tissue isolation. All procedures were performed in accordance

with an approved Animal Studies Committee protocol at Washington University with associ-

ated ethics committee approval.

Immunohistochemistry

Optic nerves were microdissected and processed as described previously [14, 15]. Rabbit anti-

Etv5 antibody (Novus Biologicals) was diluted at 1:100 for immunohistochemistry.

RNA isolation

Mice were perfused, followed by optic nerves/chiasms microdissection, and preservation in

TRIzol solution. RNA was isolated by phenol/chloroform extraction followed by isopropanol

precipitation. RNA from primary astrocytes was isolated using the RNeasy Mini Kit (Qiagen)

according to the manufacturer’s protocol.

Quantitative real-time PCR

qPCR was performed as described previously [16]. The primers used for these experiments are

listed in S1 Table.

Primary astrocyte culture

Wild-type and Nf1-/- primary astrocytes were generated and maintained as previously

described [17–20].

RNA-seq experiments

RNA-sequencing of optic nerves/chiasms isolated from 6-weeks-old mice was performed as

previously described [15].

Regulatory network construction

The glioma network was inferred from the Rembrandt microarray data set (available from

GEO GSE68848 [21]). The Rembrandt data were generated through the Glioma Molecular

Diagnostic Initiative and include 874 glioma specimens. With the Rembrandt data, the net-

work was built using the ARACNe-AP algorithm [22, 23].

The ARACNe-AP algorithm reconstructs gene regulatory networks from large-scale gene

expression data [23]. The steps used in this algorithm are summarized below:

1. The input to the algorithm is a list of transcription facts and gene expression profile data.

2. The gene expression data is pre-processed in order to determine a mutual information

(MI) threshold. Specifically, all pairwise MI scores between gene expression profiles are esti-

mated, and then their significance assessed by comparing them to a null dataset. The signif-

icance level depends on the sample size of the input.

3. The bootstrapping step: selecting a random sample from the input gene expression profiles.

Identification of ETV5 in a low-grade glioma network
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a. The gene expression profiles are rank-transformed, and then the MI for each Transcrip-

tion Factor/Target pair is calculated.

b. The MI threshold from Step 2 is used to remove any connections that are not statistically

significant.

c. Indirect interactions are removed using the Data Processing Inequality tolerance filter

described in [22].

4. A network is constructed using consensus, by keeping only edges that were detected a sig-

nificant number of times across all bootstrap runs in Step 3. Significance is determined

using a Poisson distribution, keeping only those edges with a p-value less than 0.05.

The ARACNe algorithm, first described in [22], has been successfully used for over a

decade. The Adaptive Paritioning version of the algorithm improves on the original method

by eliminating the use of pre-determined bins of fixed sizes for estimating the mutual informa-

tion. The resulting ARACNe-AP algorithm and its validation are described in detail in [23].

Various networks constructed using the algorithm are available online from bioconductor.org

as the aracne.networks data package. The regulatory network used in this study is provided as

part of the supplementary materials (S2 Table).

Centrality calculations

RNA expression data from optic nerves of Nf1flox/flox (N, normal control group, n = 4) and

Nf1flox/mut; GFAP-Cre (OPG-1, tumor group, n = 11) were generated previously [15] and used

to create separate weighted networks. Note that the network structure is the same for the two

groups, but the weights assigned to the edges differ. Genes that were not expressed in one of

the groups were removed from the network. The network weights are given by the distance

between two nodes (i.e., between two genes). The distances between two genes (j and k) are

calculated as 1 − | ρ(xj, xk)| where ρ(xj, xk) is the minimum of the Pearson and Spearman corre-

lations between the expression levels of gene j and gene k.

The betweenness centrality of gene i is the fraction of shortest paths in the network that go

through gene i. Note that our original choice of transcriptome network built by the ARACNe-

AP algorithm has a consequence that only regulators (and not their targets) have high central-

ity measures. Centrality measures were calculated using the igraph package in R [24].

Differential expression analysis

The differential expression and fold change calculations on the RNA-Seq datasets (including all

of the OPG datasets) were performed using the R package DESeq2 version 1.18.1 [25], including

use of Benjamini-Hochberg adjusted p-values [26] with an adjusted significance level of 0.01.

Published microarray data were analyzed by comparing pilocytic astrocytomas and normal

control samples. The publicly available data were already normalized, and we performed stan-

dard two-sample t-tests on all probes in each dataset. After analysis at the probe level, data were

collated based on the gene to which the probes mapped. Because the analysis was confirmatory

for ETV5 and its network (and not exploratory), we did not adjust for multiple comparisons.

Details of the datasets employed

1. RNA-Seq Data for 3-month-old murine non-neoplastic and OPG-1, OPG-2, OPG-3, OPG-

4 models. RNA-Seq murine data that formed the basis of the original and follow-up analy-

ses. The non-neoplastic samples are also denoted as FF (Nf1flox/flox); OPG-1 model is also
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denoted as FMC (Nf1flox/null; GFAP-Cre); the OPG-2 model is also denoted as F18C

(Nf1flox/R681�; GFAP-Cre); the OPG-3 is also denoted as FMPC (Nf1flox/null; Ptenflox/wt;

GFAP-Cre); and the OPG-4 model is denoted as FMOC (Nf1flox/null; Olig2-Cre). The

samples are publicly available at https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=

GSE102345.

2. RNA-Seq data for 6-week-old murine non-neoplastic and Nf1 OPG-1 model0 RNA-Seq

murine data on 6-week-old OPG-1 (FMC) mice. The OPG-1 model is also denoted as

FMC. The samples are publicly available at https://www.ncbi.nlm.nih.gov/geo/query/acc.

cgi?acc=GSE102345.

3. qPCR data for 3-month-old murine Nf1 OPG-1 model. In these experiments, we chose 12

genes (Gldc, Spry4, Fabp5, Pcdhgc3, Spry2, Shc3, Spred1, Nlgn3, Dusp6, Lrp4, Rsbn1l, and

Socs2) for qPCR validation in optic nerves from normal healthy and optic glioma-bearing

mice (n = 3 mice/group), 8 genes that demonstrated differential expression patterns similar

to the original RNA-seq data (Gldc, Spry4, Fabp5, Pcdhgc3, Spry2, Shc3, Spred1 and Nlgn3,

Fig 1), while 4 demonstrated different patterns or no change (Dusp6, Lrp4, Rsbn1l and

Socs2, data not shown). The p-values were calculated using a t-test (GraphPad, Prism).

4. Cell-type based expression data from the brain RNA-Seq database. Data analyzed from the

brain RNA-seq database [27], Fig 2 compares the expression levels in various cell types. The

samples are publicly available at http://web.stanford.edu/group/barres_lab/brain_rnaseq.

html.

Fig 1. The Etv5 network is differentially expressed in murine Nf1 optic gliomas. Gldc, Spry4, Fabp5, Pcdhgc3, Spry2, Shc3, Spred1 and Nlgn3
RNA expression is increased in optic glioma samples (OPG-1) relative to the normal murine optic nerve (N). n.d., not detected. FC, fold change.

p = 0.0003 (Gldc), p = 0.0258 (Spry4), p<0.0001 (Fabp5), p = 0.0005 (Spry2), p = 0.0045 (Shc3), p = 0.0111 (Spred1), p = 0.0008 (Nlgn3). The

unadjusted p-values were calculated separately using a t-test.

https://doi.org/10.1371/journal.pone.0190001.g001
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5. Microarray data for pediatric pilocytic astrocytomas. The dataset is available at the NCBI

GEO repository, GSE42656 (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=

GSE42656), which included 14 pediatric pilocytic astrocytomas and 8 fetal cerebellum sam-

ples. The gene expression samples were measured using Illumina HumanHT-12 V3.0

expression beadchip [28]. In addition, GSE12907 (https://www.ncbi.nlm.nih.gov/geo/

query/acc.cgi?acc=GSE12907), contained 21 juvenile pilocytic astrocytomas and four nor-

mal cerebellum samples. The gene expression samples were measured using an Affymetrix

Human Genome U133A array [29].

Fig 2. Expression of Etv5 network in the central nervous system. (A) Etv5 RNA expression in astrocytes, neurons, OPCs (oligodendrocyte progenitor

cells), newly formed oligodendrocytes, myelinating oligodendrocytes, microglia and endothelial cells demonstrates preferential enrichment in

astrocytes, OPCs and microglia. Data analyzed from the brain RNA-Seq database [27] (http://web.stanford.edu/group/barres_lab/brain_rnaseq.html).

(B) Gldc, Spry4, Fabp5, Pcdhgc3, Spry2, Shc3, Spred1 and Nlgn3 expression was enriched in astrocytes, OPCs and microglia. Spred1 was the only gene

expressed in microglia.

https://doi.org/10.1371/journal.pone.0190001.g002
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Results

The network complexity analysis in this case study is divided into two steps: (1) discovery of

Etv5 with computational methods and (2) validation of Etv5 with independent experimental

techniques. The edges of the transcription network are given weights based on expression data

such that expression data from a normal control group (N, optic nerves from Nf1flox/flox mice,

which are equivalent to wild-type mice [2]), result in a “normal” network, while data from a

group of optic glioma tumor samples (OPG-1, optic nerves from Nf1flox/null; GFAP-Cre mice,

[2]) comprise a “tumor” network. While the individual bioinformatics steps are not new,

our novel approach illustrates how this practical approach can be implemented to identify

unknown regulatory networks.

First, we use network complexity to identify genes that are central to the tumor network.

Herein, the term central is used in the context of network complexity analysis: a node’s central-

ity measure is determined by the frequency with which it appears in paths between other

nodes in the network, as described below. Next, we identify a single transcription factor, Etv5,

not previously implicated in low-grade glioma, as the gene most differentially central: As

such, Etv5 was the gene most central in the tumor network, and was not central in the normal

network. Finally, we validated the differential expression of Etv5 in several other Nf1 murine

models of optic glioma, as well as in human low-grade glioma (pilocytic astrocytoma, PA)

datasets. This validation was accomplished by comparing expression levels of Etv5 and its tar-

get genes in normal healthy optic nerves and optic gliomas, as well as by determining the cell

type expression profiles of those genes.

Bioinformatic discovery of Etv5

In our analysis, we employed two distinct computational techniques (network and differential

expression analyses) to provide different information about the relationships between the

genes within the networks and across the experimental conditions. The discovery of Etv5 and

its network was only possible using the combination of the different computational techniques

(see Algorithm 1).

Network and complexity analysis

In order to identify genes that might play a role in disease evolution, we sought to determine

what has changed in the intra-cellular network that describes cellular processes. We also

sought to identify genes whose role had significantly changed as the tissue evolved from a

healthy to a diseased state. This study describes how to combine a centrality analysis with dif-

ferential expression to identify potential genes of interest. In order to do this, we required a

network that represented possible interactions between genes. We utilized expression data

from samples in different groups (healthy and diseased, for example) to add weights to an

existing interactome to create a weighted network for each group. This allowed us to identify

“important” subnetworks in each network, and to determine which genes are central to the

important subnetworks in the diseased tissue.

A gene regulatory network (GRN) depicts how some genes encoding regulatory molecules,

such as transcription factors or microRNAs, regulate the expression of other genes [30]. As the

base network for the Etv5 analysis, we used a regulatory network based on biological interactions

between transcription factors and their targets. This network was developed in prior research by

another group, and is described more fully in [23]. The nodes of the network represent regulator

and target genes, and the edges represent protein-DNA interactions. The regulatory network

was derived from transcription (RNA) data, representing a variety of different gliomas, includ-

ing low-grade (benign) and high-grade (malignant) gliomas, to capture pan-glioma regulatory
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interactions. Four hundred twenty-seven human glioma gene expression profiles were obtained

from the Rembrandt data repository [21], and these were combined to create a network using

the ARACNe-AP (Algorithm for the Reconstruction of Accurate Cellular Networks). This net-

work was selected as the most appropriate to use, since it is based on transcription data from gli-

omas. We added edge weights to this network using RNA expression data, as described below.

The details of the ARACNe algorithm are provided in [23]: The basic procedure uses mutual

information (MI) to measure similarity across genes and then bootstrapping to measure the

strength and consistency of the similarities. A step-by-step description of the algorithm is pre-

sented in the Materials and Methods section. The regulatory network is available as S2 Table.

Centrality measures are commonly used to identify nodes that could potentially play

important roles in weighted networks [31]. Some frequently used centrality measures are

closeness, betweenness, and entropy; for example West et al. use differential entropy between

tumor and normal tissue to detect relevant genes [32]. The betweenness measure was selected

as the best for distinguishing between normal control and tumor-weighted networks, since its

large range of values led to a clear discrimination between the tumor and control networks.

Fig 3 and S1 Fig show the comparison of using betweenness and closeness to differentiate the

tumor and normal networks. The betweenness metric identifies genes that are substantially

different across the two networks; the closeness metric does not identify any such stand-out

genes. It should be noted that Etv5 was not among the 50 most differentially-expressed genes

Fig 3. Comparison of betweenness measures in the normal and tumor networks. Filled (red) circles indicate genes whose betweenness measure is

at least 1.1 times as large in the tumor network as in the normal network and either a tumor betweenness or normal betweenness value greater than

1e6. These genes are listed in Table 1, and shown in pink in Fig 4.

https://doi.org/10.1371/journal.pone.0190001.g003
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by standard differential expression analysis, and it is unlikely that it would have been identified

as a potential glioma network regulator.

The Betweenness Centrality of gene i (i.e., node i), bi, is the fraction of shortest paths in the

network that go through gene i:

bi ¼
X

i6¼j6¼k

nj;kðiÞ
nj;k

where nj,k is the number of shortest paths connecting genes j and k, and nj,k(i) is the number of

shortest paths that also go through gene i. The length of the path between any two genes is

given by the sum of the distances, or weights, of its edges, where the distances were computed

using the expression data. Because the edge values are based on the expression data, the

betweenness measures will differ between the normal and tumor expression networks. Impor-

tantly, the genes with larger betweenness values in the tumor expression network relative to

the normal expression network were identified.

Using the 3-month-old murine OPG-1 RNA-Seq dataset, 22 genes were identified as having

betweenness values at least 1.1 times as large in the tumor expression network as in the normal

expression network and either a tumor betweenness or normal betweenness value greater than

1e6. These genes are shown as solid, red circles in Fig 3; listed in Table 1; and denoted as “cen-

tral” to the expression network.

Algorithm 1: Identifying Etv5 network

1. A reference network is identified for all transcription factors. In this study we use the regu-

latory network created with the ARACNe-AP algorithm

2. Weights are added to the edges of the reference network using one minus the minimum of

the Pearson or Spearman correlation of RNA-Seq data. Two different weighted networks

are created—one with tumor RNA-Seq data and one with normal RNA-Seq data

3. From each weighted network, the betweenness value for each gene is calculated

4. Genes with betweenness values 1.1 times as big in the tumor network relative to the normal

network and having either a tumor betweenness or a normal betweenness greater than 1e6

are identified. These genes are considered “central” in the tumor network (Table 1).

5. Of the “central” genes, the most differentially expressed gene is identified (Etv5).

6. Genes which represent targets of the Etv5 transcription factor and are differentially

expressed across the two conditions were identified (Table 2).

Identification of ETV5

Once the twenty-three “central” genes were identified, we determined which of them behaved

differently in the two groups with respect to average RNA expression. One gene, Etv5, emerged

as having a large differential effect across the two expression datasets on the 3-month-old

Table 1. “Central genes”: Transcription factors identified as having betweenness values at least 1.1 times as large in the tumor expression network as in the normal

expression network and either a tumor betweenness or normal betweenness value greater than 1e6.

Cebpz Etv5 Spen Zcchc14 Camta1 Chd5 Cers2
Hnrnpab Ilf2 Zcchc17 Zc3h15 Tulp4 Purb Rpl7
Tcf3 Tead1 Cnbp Prdm2 Sarnp Zranb2 Gcsh
Ift74 Myl12B

https://doi.org/10.1371/journal.pone.0190001.t001
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murine OPG-1 samples. Using the original regulatory network, we identified the target genes

for each of the regulators listed in Table 1. Differential expression analysis was employed to

identify which of the central genes and which of their target genes were significantly different

between the tumor (OPG-1) and the normal (N) 3-month-old samples.

Importantly, of the regulator genes that were determined to be “central” according to the

betweenness measure (Table 1), the gene that was mostly clearly differentially expressed was

Etv5 (Table 3). Additionally, Etv5 also had the highest percentage of differentially-expressed

targets of all of the central genes (Table 4). A list of the 31 differentially-expressed Etv5 target

genes is shown in Table 2. The network consisting of the central regulators, along with the dif-

ferentially expressed targets of Etv5 is shown in Fig 4. Henceforth, we call the subnetwork con-

sisting of Etv5 and its differentially expressed targets as “the Etv5 network”.

Experimental validation

To extend the in silico findings, and to validate Etv5 as a differentially-expressed tumor-specific

gene, we performed a series of complementary experiments. These experiments showed that

Table 2. Thirty-one targets of Etv5 are differentially expressed in 3-month-old murine OPG-1 RNA-Seq samples.

GENE p-value Adjusted p-value log2 Fold Change

Spry2 1.13E-08 2.41E-06 0.916

Dnajb4 2.63E-05 1.65E-03 -0.457

Col2a1 1.07E-04 4.43E-03 1.235

Spred1 1.04E-05 7.78E-04 0.800

Dusp6 1.50E-04 5.54E-03 0.637

S1pr1 6.84E-17 9.28E-14 1.358

Ak4 5.38E-05 2.77E-03 0.959

Fabp5 1.39E-09 3.93E-07 1.087

Fabp7 6.22E-05 3.02E-03 0.956

Rsbn1l 2.16E-04 7.15E-03 -0.428

Btbd3 7.12E-09 1.62E-06 0.755

Gap43 1.94E-05 1.27E-03 -0.797

Gja1 3.64E-10 1.26E-07 0.600

Gldc 6.60E-06 5.29E-04 1.161

Kcnip1 3.06E-04 9.09E-03 -0.797

Igfbp6 3.07E-04 9.10E-03 -0.942

Lrp4 5.38E-05 2.77E-03 0.671

Mmp15 2.11E-04 7.07E-03 1.003

Nt5e 1.18E-04 4.76E-03 -0.744

Pcdhgc3 2.12E-06 2.09E-04 0.932

Tppp3 6.01E-05 2.94E-03 -0.912

Shc3 2.71E-04 8.35E-03 0.903

Nlgn3 1.82E-05 1.21E-03 0.705

Spata6 1.62E-04 5.86E-03 -0.552

Elovl2 1.62E-11 9.28E-09 1.908

Spry4 5.77E-05 2.87E-03 1.104

Socs2 1.77E-04 6.28E-03 -0.814

Slc9a3r1 1.41E-06 1.51E-04 0.722

Chst2 2.28E-11 1.26E-08 1.163

Cxcl14 4.88E-17 7.29E-14 1.425

Dock4 2.88E-05 1.73E-03 0.642

https://doi.org/10.1371/journal.pone.0190001.t002
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Etv5 and its targets are differentially expressed in different cell types, at different stages of

tumor growth, and in different organisms, and lend further credence to the notion that Etv5
and its associated target genes comprise a potential regulatory network in neoplastic tissue rel-

ative to their normal healthy, non-neoplastic counterparts.

In addition to RNA-Seq experiments, we also used quantitative real-time PCR (qPCR) to

analyze Etv5 RNA expression in independently-generated non-neoplastic (Nf1flox/flox [2];

abbreviated N for normal) and tumor-bearing (Nf1flox/null GFAP-Cre [2]; “OPG-1”) optic

nerves. For these studies, four nerves and chiasms from each group were removed from

3-month-old mice at a time when optic gliomas in these mice are first detected [33]. Consistent

with the RNA-seq data, Etv5 expression was detected in the tumor-bearing optic nerves, but

not in their non-neoplastic counterparts (Fig 5A). Moreover, Etv5 protein expression was also

observed in optic glioma tissue, but not in normal healthy optic nerves, by immunohistochem-

istry with an Etv5-specific antibody on paraffin-embedded formalin-fixed specimens (Fig 5B).

Collectively, these results validate the tumor-specific expression of Etv5 at both the RNA and

protein levels.

As an additional method to strengthen the specificity of the observed differential Etv5
expression in the neoplastic tissue, we performed RNA-seq analysis on 6-week-old optic

nerves from normal healthy and optic glioma-bearing mice (n = 3 mice/group). At this stage

of glioma development, the tumors are just beginning to form, as evidenced by an increase in

tumor proliferation and glial cell numbers, but without a change in optic nerve volume [33].

Similar to the results obtained from 3-month-old mouse specimens, there was differential Etv5
RNA-Seq expression in 6-week-old optic glioma-bearing mice, which contain a developing,

Table 3. Differential expression of central genes identified using the betweenness measure.

GENE p-value Adjusted p-value log2 Fold Change

Etv5 1.34E-09 3.87E-07 1.4474

Myl12B 6.81E-04 1.61E-02 -0.5850

Zc3h15 4.03E-03 5.12E-02 -0.5603

Camta1 4.22E-03 5.24E-02 -0.4705

Spen 4.61E-03 5.55E-02 0.5714

Tulp4 6.11E-03 6.48E-02 0.4845

Sarnp 7.36E-03 7.24E-02 0.7022

Zcchc17 9.34E-03 8.26E-02 -0.6699

Ift74 9.66E-03 8.43E-02 -0.5475

Tcf3 1.29E-02 9.89E-02 0.4928

Zcchc14 3.82E-02 1.80E-01 0.3660

Rpl7 3.83E-02 1.80E-01 -0.5100

Cnbp 4.16E-02 1.88E-01 -0.3724

Zranb2 6.71E-02 2.47E-01 -0.3515

Tead1 1.40E-01 3.70E-01 0.2794

Ilf2 1.51E-01 3.83E-01 -0.3077

Cebpz 1.60E-01 3.96E-01 -0.3255

Gcsh 3.92E-01 6.38E-01 -0.1581

Cers2 5.36E-01 7.49E-01 -0.0923

Hnrnpab 6.23E-01 8.06E-01 0.0784

Purb 6.80E-01 8.43E-01 0.0573

Prdm2 8.75E-01 9.45E-01 0.0207

Chd5 8.98E-01 9.57E-01 -0.0334

https://doi.org/10.1371/journal.pone.0190001.t003
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but not mature, tumor [33] (S2 Fig). These observations suggest that differential expression of

Etv5 defines a ground state of neoplasia that exists at a time when it is not yet possible to clearly

classify the mouse optic nerve as a tumor.

Numerous prior studies from our laboratory have employed differential RNA expression

methods to identify genes unique to murine Nf1 optic glioma. These include an analysis of

neoplastic and non-neoplastic cell types; however, none of these previous studies identified

Etv5 as a differentially-expressed gene [16, 34]. In this respect, previous studies including gene

expression profiles for isolated cells in optic glioma did not find that Etv5 was differentially

regulated in any specific single cell type (e.g., astrocytes, microglia). These particular findings

were confirmed by the analysis of Nf1-deficient neoplastic cells (astrocytes) by qPCR (S3 Fig)

and tumor-associated microglia (non-neoplastic cells [16]) using isolated cells and data previ-

ously acquired. Taken together, these observations argue that differential Etv5 expression

reflects a “whole tumor” property, rather than representing the individual contributions from

any single cell type within the tumor.

Next, we sought to determine whether the target genes of Etv5, which were differentially

expressed in the tumor, are similarly differentially expressed in tumor-bearing optic nerves rel-

ative to normal healthy non-neoplastic optic nerve. In these experiments, we chose 12 genes

(Gldc, Spry4, Fabp5, Pcdhgc3, Spry2, Shc3, Spred1, Nlgn3, Dusp6, Lrp4, Rsbn1l, and Socs2) for

independent validation by qPCR (Fig 1). Of the 12 genes chosen, 67% demonstrated differen-

tial expression patterns similar to the original RNA-seq data (Gldc, Spry4, Fabp5, Pcdhgc3,

Table 4. Percent of target genes (from the regulatory network) that are differentially expressed by each of the cen-

tral genes identified using the betweenness measure.

GENE #significant Total targets % significant

Etv5 31 449 0.0690

Cers2 32 496 0.0645

Sarnp 15 255 0.0588

Zcchc14 16 361 0.0433

Tcf3 28 640 0.0437

Tead1 19 443 0.0429

Zc3h15 27 652 0.0414

Tulp4 17 412 0.0413

Rpl7 10 247 0.0405

Purb 27 678 0.0398

All 529 14926 0.0354

Hnrnpab 19 543 0.0350

Cnbp 15 458 0.0328

Camta1 35 1093 0.0320

Chd5 27 852 0.0317

Zcchc17 8 257 0.0311

Prdm2 20 652 0.0307

Spen 12 392 0.0306

Cebpz 10 379 0.0264

Ilf2 13 555 0.0234

Zranb2 11 486 0.0226

Gcsh 0 0 0

Ift74 0 0 0

Myl12B 0 0 0

https://doi.org/10.1371/journal.pone.0190001.t004
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Spry2, Shc3, Spred1 and Nlgn3), while four demonstrated different patterns or no change

(Dusp6, Lrp4, Rsbn1l and Socs2).

Because the expression of Etv5 targets in the tumor may reflect the expression of these

genes in different cell types, we queried an established brain cell type-specific transcriptome

database [27]. We focused on Etv5 and those targets that were significantly differentially

expressed (Gldc, Spry4, Fabp5, Pcdhgc3, Spry2, Shc3, Spred1 and Nlgn3). Using this brain

RNA-Seq database [27], we found enrichment of Etv5 expression in astrocytes, oligodendro-

cyte progenitor cells (OPC) and microglia relative to endothelial cells, neurons, and more dif-

ferentiated oligodendrocytes (Fig 2A). These findings are consistent with biological studies

demonstrating that astrocytes [2], o-GSCs (optic glioma stem cells) [17], and microglia [6, 16]

are all critical mediators of glioma formation and growth. Interestingly, seven of the eight Etv5

Fig 4. The Etv5 network. The subnetwork is comprised of Etv5 (in lavender in the center), and its differentially-expressed targets

(shown in yellow). The remaining central genes, identified by their high betweenness measures relative to the normal network, are

shown on the periphery in pink.

https://doi.org/10.1371/journal.pone.0190001.g004
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target genes were expressed predominantly in o-GSCs and astrocytes, whereas Spred1 was

expressed in all three cell types (Fig 2B). These observations additionally support the idea that

the network formed by Etv5 and its targets reflects a global change in the tumor ecosystem,

rather than differential gene expression by only one cell type in the tumor.

To demonstrate that differential Etv5 expression is a hallmark of murine Nf1 optic glioma,

we leveraged prior data from our laboratory in which multiple distinct genetically-engineered

mouse models of optic glioma were generated. Each of these models differs in important

respects, including the germline Nf1 gene mutation (OPG-2; c.2041C>T; p.R681X as seen in

several patients with NF1-OPG [12]), the presence of additional genetic mutations (OPG-3;

additionally harboring heterozygous Pten loss [11]), and the tumor cell of origin (OPG-4;

Nf1flox/mut; Olig2-Cre in which tumors arise from Olig2+ cells). While the four optic glioma

models are histologically similar to each other, they represent molecularly-distinct tumors, as

assessed by RNA-seq analysis [15]. In each of the murine Nf1 OPG models, we observed

increased Etv5 RNA expression (Table 5). Moreover, in at least three out of the four optic

Fig 5. Etv5 differential expression is confirmed using qPCR on independently-generated murine Nf1 optic gliomas. (A) Etv5 expression was

detected in in one representative murine Nf1 optic glioma model (OPG-1) but was not detected (n.d.) in the normal murine optic nerve (N) by

qPCR. (B) Immunohistochemistry using Etv5-specific antibodies demonstrates Etv5 protein expression in the optic glioma (OPG-1, shown in

brown), but not in the normal optic nerve (N). Nuclei are stained with hematoxylin (shown in blue). Scale bar, 20μm.

https://doi.org/10.1371/journal.pone.0190001.g005

Table 5. Summary of differential Etv5 expression in additional murine Nf1 optic glioma models.

Gene OPG-1 OPG-2 OPG-3 OPG-4

Etv5 2.74 3.54 2.40 2.07

Gldc 2.25 2.85 1.76 1.50

Spry4 2.16 3.04 1.81 1.81

Fabp5 2.13 n.s. 1.69 2.15

Pcdhgc3 1.91 1.91 1.65 1.44

Spry2 1.89 1.62 1.37 n.s.

Shc3 1.88 2.45 1.74 1.84

Spred1 1.74 1.96 n.s. 1.71

Nlgn3 1.63 1.74 1.61 1.62

Values connote fold changes in optic glioma (OPG) RNA expression relative to non-neoplastic (Nf1flox/flox) optic

nerve (n.s., not significant for DESeq2 test, p-values adjusted using Benjamini-Hochberg).

https://doi.org/10.1371/journal.pone.0190001.t005
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glioma models, there is increased expression of the eight validated Etv5 target genes (Gldc,
Spry4, Fabp5, Pcdhgc3, Spry2, Shc3, Spred1 and Nlgn3) (Table 5). These findings further

strengthen the conclusion that differential Etv5 expression is a hallmark of the neoplastic state,

as it is shared amongst multiple distinct murine Nf1 optic glioma models.

Finally, to determine whether differential ETV5 expression is also a feature of human pedi-

atric low-grade gliomas (pilocytic astrocytoma; PA), we leveraged the only two human RNA

microarray datasets that contained reference non-neoplastic tissue for comparison (GSE42656

and GSE12907). We chose these datasets for two major reasons: First, there are no currently-

available datasets with RNA expression data on NF1-associated optic glioma and normal optic

nerve, since these tumors are rarely biopsied as part of routine medical care. Second, while the

genetic etiology of sporadic and NF1-associated PA are distinct, they both result in activation

of the same growth control pathways [3, 35–39] and are histologically similar [40].

In both the pediatric and the juvenile pilocytic astrocytoma datasets, ETV5 was differen-

tially expressed in the tumor groups relative to the non-neoplastic samples (Fig 6), similar to

that observed in the mouse low-grade gliomas. Moreover, using the thirty-one Etv5 target

genes that were differentially expressed in the murine tumors (Table 2), a large fraction of the

probes for those targets were also differentially expressed (unadjusted p-values) in the two

human datasets (56.1% in the pediatric pilocytic astrocytoma dataset and 40.8% of the probes

in the juvenile pilocytic astrocytoma dataset; Fig 7).

Fig 6. Differential expression of ETV5 in human pilocytic astrocytomas. ETV5 is differentially expressed in the

tumor groups from both datasets. Using the pediatric pilocytic astrocytoma data, both of the two Illumina probes for

ETV5 are significantly differentially expressed (p < 0.0001 for both probes). Using the juvenile pilocytic astrocytoma

data, all three of the Affymetrix probes are significantly differentially expressed (p = 0.001, p = 0.00005, p = 0.00003 for

the three probes). Vertical axis is on a log2-scale.

https://doi.org/10.1371/journal.pone.0190001.g006
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Discussion

Leveraging the betweenness network analysis and RNA-sequencing of murine optic glioma

tissues, we discovered Etv5 and Etv5-associated genes as a differentially-regulated transcrip-

tional network in low-grade brain tumors relative to non-neoplastic brain tissue. We further

validated the differential expression of Etv5 and its target genes in several other murine mod-

els of Nf1 optic glioma, as well as in human pilocytic astrocytomas. This type of network

analysis is extremely useful in identifying potential network regulators unique to the neoplas-

tic state, since multiple differentially-expressed genes were identified in tumor versus normal

healthy tissue. In addition, the deployment of multiple computational and statistical analysis

strategies, as well as biological validation across species and time further strengthen the idea

that Etv5 may be a central control element in establishing and/or maintaining low-grade gli-

omas. Moreover, the identification of Etv5 and its network as a tissue-level signature is

Fig 7. Differential expression of ETV5 network genes in human pilocytic astrocytoma. Histograms of (unadjusted) p-values for differential

expression of ETV5 target genes in two human data sets; vertical lines are drawn at p = 0.05. In the GSE42656 dataset, 56.1% of all probes and 64.5% of

the target genes are significantly differentially expressed (top panel). In the GSE12907 dataset, 40.8% of all probes and 38.7% of the target genes were

significantly differentially expressed (middle panel). In the 6-week-old murine OPG-1 data set, 48.3% of the target genes were significantly differentially

expressed (lower panel).

https://doi.org/10.1371/journal.pone.0190001.g007
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supported by the lack of differential Etv5 expression in isolated Nf1-deficient astrocytes or

Nf1-mutant microglia, which are the major neoplastic and non-neoplastic cells in the optic

glioma ecosystem.

ETV5 is a transcription factor that belongs to the conserved E26 transformation-specific

family of transcription factors. Relevant to our study, ETV5 levels are elevated in many tumors,

including glioma [41–43]. As such, ETV5 has been hypothesized to function downstream of

RAS [44], which is consistent with the major role of the Nf1 protein (neurofibromin) as a nega-

tive regulator of RAS in the brain [3, 19]. In addition, ETV5 function is required to sustain

Nf1-deficient high-grade glioma growth [43], but had not been previously implicated in low-

grade gliomas. Since ETV5 expression is not a hallmark of any particular neoplastic cell type in

the low-grade gliomas, it is most likely that the network established reflects aberrant RAS acti-

vation in numerous cell types in the tumor. Future mechanistic studies will be required to

address the relationships between NF1/RAS/MEK/ERK pathway function, ETV5 network reg-

ulation, and NF1-associated low-grade glioma formation or maintenance.

Taken together, we present a proof-of-concept study that establishes betweenness network

analysis as a valuable tool for identifying central genes unique to the tumor ecosystem. While

this approach nicely illustrates the value of computational and bioinformatic approaches for

characterizing the neoplastic state relative to its non-neoplastic counterpart, further investiga-

tion is required to understand the mechanistic role of Etv5 in glioma formation and mainte-

nance. Based on these findings, we recommend the use of network analysis for similar

expression studies designed to differentiate various tumor states.
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